Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

An Overview of Recent Advances in Biological and Pharmaceutical Developments of Fluoro-containing Drugs

Author(s): Nader G. Khaligh*, Hanna Abbo, Salam J.J. Titinchi and Mohd R. Johan

Volume 23, Issue 26, 2019

Page: [2916 - 2944] Pages: 29

DOI: 10.2174/1385272824666191213123930

Price: $65

conference banner
Abstract

This review article provides a brief assessment of the biological and pharmaceutical developments of fluorinated drugs. It also discusses possible impacts on the further development of new fluoro-containing pharmaceuticals. Structural aspects of new drug-candidates currently under development and their biological properties, therapeutic potential and syntheses are critically evaluated.

Keywords: Fluoro-containing pharmaceutical, structure-activity relationship, biological property, therapeutic potential, fluorinated organic molecules, new drug-candidates.

Graphical Abstract
[1]
Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology; Wiley-Blackwell: Chichester, 2009.
[http://dx.doi.org/10.1002/9781444312096]
[2]
Shah, P.; Westwell, A.D. The role of fluorine in medicinal chemistry. J. Enzyme Inhib. Med. Chem., 2007, 22(5), 527-540.
[http://dx.doi.org/10.1080/14756360701425014] [PMID: 18035820]
[3]
Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications; Wiley-VCH, 2004.
[http://dx.doi.org/10.1002/352760393X]
[4]
Ismail, F. Important fluorinated drugs in experimental and clinical use. J. Fluor. Chem., 2002, 118, 27-33.
[http://dx.doi.org/10.1016/S0022-1139(02)00201-4]
[5]
Smart, B.E. Fluorine substituent effects (on bioactivity). J. Fluor. Chem., 2001, 109, 3-11.
[http://dx.doi.org/10.1016/S0022-1139(01)00375-X]
[6]
Park, B.K.; Kitteringham, N.R.; O’Neill, P.M. Metabolism of fluorine-containing drugs. Annu. Rev. Pharmacol. Toxicol., 2001, 41, 443-470.
[http://dx.doi.org/10.1146/annurev.pharmtox.41.1.443] [PMID: 11264465]
[7]
Wang, J.; Sánchez-Roselló, M.; Aceña, J.L.; del Pozo, C.; Sorochinsky, A.E.; Fustero, S.; Soloshonok, V.A.; Liu, H. Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001-2011). Chem. Rev., 2014, 114(4), 2432-2506.
[http://dx.doi.org/10.1021/cr4002879] [PMID: 24299176]
[8]
Cahard, D.; Bizet, V. The influence of fluorine in asymmetric catalysis. Chem. Soc. Rev., 2014, 43(1), 135-147.
[http://dx.doi.org/10.1039/C3CS60193E] [PMID: 24162874]
[9]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[10]
Wu, Y.J.; Davis, C.D.; Dworetzky, S.; Fitzpatrick, W.C.; Harden, D.; He, H.; Knox, R.J.; Newton, A.E.; Philip, T.; Polson, C.; Sivarao, D.V.; Sun, L.Q.; Tertyshnikova, S.; Weaver, D.; Yeola, S.; Zoeckler, M.; Sinz, M.W. Fluorine substitution can block CYP3A4 metabolism-dependent inhibition: identification of (S)-N-[1-(4-fluoro-3- morpholin-4-ylphenyl)ethyl]-3- (4-fluorophenyl)acrylamide as an orally bioavailable KCNQ2 opener devoid of CYP3A4 metabolism-dependent inhibition. J. Med. Chem., 2003, 46(18), 3778-3781.
[http://dx.doi.org/10.1021/jm034111v] [PMID: 12930139]
[11]
Zamora, I.; Afzelius, L.; Cruciani, G. Predicting drug metabolism: a site of metabolism prediction tool applied to the cytochrome P450 2C9. J. Med. Chem., 2003, 46(12), 2313-2324.
[http://dx.doi.org/10.1021/jm021104i] [PMID: 12773036]
[12]
Swallow, S. Fluorine in medicinal chemistry. Prog. Med. Chem., 2015, 54, 65-133.
[http://dx.doi.org/10.1016/bs.pmch.2014.11.001] [PMID: 25727703]
[13]
Yamazaki, T.; Taguchi, T.; Ojima, I.; Ojima, I., Eds.; Fluorine in Medicinal Chemistry and Chemical Biology; Wiley-Blackwell: Chichester, 2009, pp. 3-46.
[14]
Dalvit, C.; Invernizzi, C.; Vulpetti, A. Fluorine as a hydrogen-bond acceptor: experimental evidence and computational calculations. Chemistry, 2014, 20(35), 11058-11068.
[http://dx.doi.org/10.1002/chem.201402858] [PMID: 25044441]
[15]
Strunecká, A.; Patočka, J.; Connett, P. Fluorine in medicine. J. Appl. Biomed., 2004, 2, 141-150.
[http://dx.doi.org/10.32725/jab.2004.017]
[16]
Uchida, H.; Miyata, K.; Oba, M.; Ishii, T.; Suma, T.; Itaka, K.; Nishiyama, N.; Kataoka, K. Odd-even effect of repeating aminoethylene units in the side chain of N-substituted polyaspartamides on gene transfection profiles. J. Am. Chem. Soc., 2011, 133(39), 15524-15532.
[http://dx.doi.org/10.1021/ja204466y] [PMID: 21879762]
[17]
Jayaraman, M.; Ansell, S.M.; Mui, B.L.; Tam, Y.K.; Chen, J.; Du, X.; Butler, D.; Eltepu, L.; Matsuda, S.; Narayanannair, J.K.; Rajeev, K.G.; Hafez, I.M.; Akinc, A.; Maier, M.A.; Tracy, M.A.; Cullis, P.R.; Madden, T.D.; Manoharan, M.; Hope, M.J. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. Int. Ed. Engl., 2012, 51(34), 8529-8533.
[http://dx.doi.org/10.1002/anie.201203263] [PMID: 22782619]
[18]
Alabi, C.A.; Love, K.T.; Sahay, G.; Yin, H.; Luly, K.M.; Langer, R.; Anderson, D.G. Multiparametric approach for the evaluation of lipid nanoparticles for siRNA delivery. Proc. Natl. Acad. Sci. USA, 2013, 110(32), 12881-12886.
[http://dx.doi.org/10.1073/pnas.1306529110] [PMID: 23882076]
[19]
Sato, Y.; Hatakeyama, H.; Hyodo, M.; Harashima, H. Relationship between the physicochemical properties of lipid nanoparticles and the quality of siRNA delivery to liver cells. Mol. Ther., 2016, 24(4), 788-795.
[http://dx.doi.org/10.1038/mt.2015.222] [PMID: 26678452]
[20]
Hao, J.; Kos, P.; Zhou, K.; Miller, J.B.; Xue, L.; Yan, Y.; Xiong, H.; Elkassih, S.; Siegwart, D.J. Rapid synthesis of a lLipocationic polyester library via ring-opening polymerization of functional valerolactones for efficacious siRNA delivery. J. Am. Chem. Soc., 2015, 137(29), 9206-9209.
[http://dx.doi.org/10.1021/jacs.5b03429] [PMID: 26166403]
[21]
Okamoto, A.; Koide, H.; Morita, N.; Hirai, Y.; Kawato, Y.; Egami, H.; Hamashima, Y.; Asai, T.; Dewa, T.; Oku, N. Rigorous control of vesicle-forming lipid pKa by fluorine-conjugated bioisosteres for gene-silencing with siRNA. J. Control. Release, 2019, 295, 87-92.
[http://dx.doi.org/10.1016/j.jconrel.2018.12.044] [PMID: 30593831]
[22]
Olsen, J.; Seiler, P.; Wagner, B.; Fischer, H.; Tschopp, T.; Obst-Sander, U.; Banner, D.W.; Kansy, M.; Müller, K.; Diederich, F. A fluorine scan of the phenylamidinium needle of tricyclic thrombin inhibitors: effects of fluorine substitution on pKa and binding affinity and evidence for intermolecular C-F...CN interactions. Org. Biomol. Chem., 2004, 2(9), 1339-1352.
[http://dx.doi.org/10.1039/B402515F] [PMID: 15105924]
[23]
Brunner, M.; Langer, O.; Dobrozemsky, G.; Müller, U.; Zeitlinger, M.; Mitterhauser, M.; Wadsak, W.; Dudczak, R.; Kletter, K.; Müller, M. [18F] Ciprofloxacin, a new positron emission tomography tracer for noninvasive assessment of the tissue distribution and pharmacokinetics of ciprofloxacin in humans. Antimicrob. Agents Chemother., 2004, 48(10), 3850-3857.
[http://dx.doi.org/10.1128/AAC.48.10.3850-3857.2004] [PMID: 15388445]
[24]
Gleisner, H.; Welz, B.; Einax, J.W. Optimization of fluorine determination via the molecular absorption of gallium mono-fluoride in a graphite furnace using a high-resolution continuum source spectrometer. Spectrochim. Acta B At. Spectrosc., 2010, 65, 864-869.
[http://dx.doi.org/10.1016/j.sab.2010.08.003]
[25]
Gleisner, H.; Einax, J.W.; Morés, S.; Welz, B.; Carasek, E. A fast and accurate method for the determination of total and soluble fluorine in toothpaste using high-resolution graphite furnace molecular absorption spectrometry and its comparison with established techniques. J. Pharm. Biomed. Anal., 2011, 54(5), 1040-1046.
[http://dx.doi.org/10.1016/j.jpba.2010.12.013] [PMID: 21215545]
[26]
Cobb, S.; Murphy, C. 19F NMR applications in chemical biology. J. Fluor. Chem., 2009, 130, 132-143.
[http://dx.doi.org/10.1016/j.jfluchem.2008.11.003]
[27]
Ametamey, S.M.; Honer, M.; Schubiger, P.A. Molecular imaging with PET. Chem. Rev., 2008, 108(5), 1501-1516.
[http://dx.doi.org/10.1021/cr0782426] [PMID: 18426240]
[28]
Kimura, Y.; Simeon, F.J.; Hatazawa, P.; Mozley, V.; Pike, R.; Innis, M. Fugita. Biodistribution and radiation dosimetry of a positron emission tomographic ligand, 18F-SP203, to image metabotropic glutamate subtype 5 receptors in humans. Eur. J. Nucl. Med. Mol. Imaging, 2010, 37, 1943-1949.
[http://dx.doi.org/10.1007/s00259-010-1447-8] [PMID: 20585776]
[29]
O’Hagan, D. Understanding organofluorine chemistry. An introduction to the C-F bond. Chem. Soc. Rev., 2008, 37(2), 308-319.
[http://dx.doi.org/10.1039/B711844A] [PMID: 18197347]
[30]
Welch, J.T.; Eswaraksrishnan, S. Fluorine in Bioorganic Chemistry; Wiley: New York, 1991.
[31]
Timperley, C.M. Fluorine Chemistry at the Millennium: Fascinated by Fluorine; Banks, R.E., Ed.; Elsevier: Amsterdam, 2000, pp. 499-537.
[http://dx.doi.org/10.1016/B978-008043405-6/50040-2]
[32]
Hiyama, T. Organofluorine Compounds. Chemistry and Applications; Springer: Berlin, 2000.
[http://dx.doi.org/10.1007/978-3-662-04164-2]
[33]
Romanenko, V.D.; Kukhar, V.P. Fluorinated organophosphates for biomedical targets. Tetrahedron, 2008, 64, 6153-6190.
[http://dx.doi.org/10.1016/j.tet.2008.04.064]
[34]
Kim, H.W.; Rossi, P.; Shoemaker, R.K.; DiMagno, S.G. Structure and transport properties of a novel, heavily fluorinated carbohydrate analogue. J. Am. Chem. Soc., 1998, 120, 9082-9083.
[http://dx.doi.org/10.1021/ja9803714]
[35]
Mikami, K.; Itoh, Y.; Yamanaka, M. Fluorinated carbonyl and olefinic compounds: basic character and asymmetric catalytic reactions. Chem. Rev., 2004, 104(1), 1-16.
[http://dx.doi.org/10.1021/cr030685w] [PMID: 14719970]
[36]
Lemal, D.M.J. Perspective on fluorocarbon chemistry. J. Org. Chem., 2004, 69(1), 1-11.
[http://dx.doi.org/10.1021/jo0302556] [PMID: 14703372]
[37]
Makhaeva, G.F.; Malygin, V.V.; Aksinenko, A.Y.; Sokolov, V.B.; Strakhova, N.N.; Rasdolsky, A.N.; Richardson, R.J.; Martynov, I.V. Fluorinated α-aminophosphonates--a new type of irreversible inhibitors of serine hydrolases. Dokl. Biochem. Biophys., 2005, 400, 92-95.
[http://dx.doi.org/10.1007/s10628-005-0041-7] [PMID: 15846994]
[38]
Wijeyesakere, S.J.; Nasser, F.A.; Kampf, J.W.; Aksinenko, A.Y.; Sokolov, V.B.; Malygin, V.V.; Makhaeva, G.F.; Richardson, R.J. Diethyl [2,2,2-trifluoro-1-phenyl-sulfonyl-amino-1-(trifluoro-meth-yl)eth-yl]phospho-nate. Acta Crystallogr. Sect. E Struct. Rep. Online, 2008, 64(Pt 8), o1425.
[http://dx.doi.org/10.1107/S1600536808020175] [PMID: 19079747]
[39]
Makhaeva, G.F.; Serebryakova, O.G.; Boltneva, N.P.; Galenko, T.G.; Aksinenko, A.Y.; Sokolov, V.B.; Martynov, I.V. Esterase profile and analysis of structure-inhibitor selectivity relationships for homologous phosphorylated 1-hydroperfluoroisopropanols. Dokl. Biochem. Biophys., 2008, 423, 352-357.
[http://dx.doi.org/10.1134/S1607672908060094] [PMID: 19230387]
[40]
Makhaeva, G.F.; Aksinenko, A.Y.; Sokolov, V.B.; Serebryakova, O.G.; Richardson, R.J. Synthesis of organophosphates with fluorine-containing leaving groups as serine esterase inhibitors with potential for Alzheimer disease therapeutics. Bioorg. Med. Chem. Lett., 2009, 19(19), 5528-5530.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.065] [PMID: 19717305]
[41]
Abdou, I.M.; Saleh, A.M.; Zohdi, H.F. Synthesis and antitumor activity of 5-trifluoromethyl-2,4- dihydropyrazol-3-one nucleosides. Molecules, 2004, 9(3), 109-116.
[http://dx.doi.org/10.3390/90300109] [PMID: 18007415]
[42]
Isanbor, C.; O’Hagan, D. Fluorine in medicinal chemistry: a review of anticancer agents. J. Fluor. Chem., 2006, 127, 303-319.
[http://dx.doi.org/10.1016/j.jfluchem.2006.01.011]
[43]
European Association for Study of the Liver. European Organisation for Research and Treatment of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. Eur. J. Cancer, 2012, 48, 599-641.
[http://dx.doi.org/10.1016/j.ejca.2011.12.021]
[44]
Rupnarain, C.; Dlamini, Z.; Naicker, S.; Bhoola, K. Colon cancer: genomics and apoptotic events. Biol. Chem., 2004, 385(6), 449-464.
[http://dx.doi.org/10.1515/BC.2004.053] [PMID: 15255176]
[45]
Kumar, S.S.; Athimoolam, S.; Sridhar, B. Structural, spectral, theoretical and anticancer studies on new co-crystal of the drug 5-fluorouracil. J. Mol. Struct., 2018, 1173, 951-958.
[http://dx.doi.org/10.1016/j.molstruc.2018.07.079]
[46]
Bhattarai, N.; Gunn, J.; Zhang, M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev., 2010, 62(1), 83-99.
[http://dx.doi.org/10.1016/j.addr.2009.07.019] [PMID: 19799949]
[47]
Horo, H.; Das, S.; Mandal, B.; Kundu, L.M. Development of a photoresponsive chitosan conjugated prodrug nano-carrier for controlled delivery of antitumor drug 5-fluorouracil. Int. J. Biol. Macromol., 2019, 121, 1070-1076.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.095] [PMID: 30342947]
[48]
Nagarajan, V.; Chandiramouli, R. A study on quercetin and 5-fluorouracil drug interaction on graphyne nanosheets and solvent effects – A first-principles study. J. Mol. Liq., 2019, 275, 713-722.
[http://dx.doi.org/10.1016/j.molliq.2018.11.083]
[49]
Chiu, Y.L.; Rana, T.M. siRNA function in RNAi: a chemical modification analysis. RNA, 2003, 9(9), 1034-1048.
[http://dx.doi.org/10.1261/rna.5103703] [PMID: 12923253]
[50]
Krüger, M.; Huang, M-D.; Becker-Roß, H.; Florek, S.; Ott, I.; Gust, R. Quantification of the fluorine containing drug 5-fluorouracil in cancer cells by GaF molecular absorption via high-resolution continuum source molecular absorption spectrometry. Spectrochim. Acta B At. Spectrosc., 2012, 69, 50-55.
[http://dx.doi.org/10.1016/j.sab.2012.02.004]
[51]
Fimognari, C.; Nüsse, M.; Berti, F.; Iori, R.; Cantelli-Forti, G.; Hrelia, P. Cyclin D3 and p53 mediate sulforaphane-induced cell cycle delay and apoptosis in non-transformed human T lymphocytes. Cell. Mol. Life Sci., 2002, 59(11), 2004-2012.
[http://dx.doi.org/10.1007/PL00012523] [PMID: 12530531]
[52]
Fimognari, C.; Nüsse, M.; Cesari, R.; Iori, R.; Cantelli-Forti, G.; Hrelia, P. Growth inhibition, cell-cycle arrest and apoptosis in human T-cell leukemia by the isothiocyanate sulforaphane. Carcinogenesis, 2002, 23(4), 581-586.
[http://dx.doi.org/10.1093/carcin/23.4.581] [PMID: 11960909]
[53]
Gamet-Payrastre, L.; Li, P.; Lumeau, S.; Cassar, G.; Dupont, M.A.; Chevolleau, S.; Gasc, N.; Tulliez, J.; Tercé, F. Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res., 2000, 60(5), 1426-1433.
[PMID: 10728709]
[54]
Wang, L.; Liu, D.; Ahmed, T.; Chung, F.L.; Conaway, C.; Chiao, J.W. Targeting cell cycle machinery as a molecular mechanism of sulforaphane in prostate cancer prevention. Int. J. Oncol., 2004, 24(1), 187-192.
[http://dx.doi.org/10.3892/ijo.24.1.187] [PMID: 14654956]
[55]
Kiełbasiński, P.; Łuczak, J.; Cierpiał, T.; Błaszczyk, J.; Sieroń, L.; Wiktorska, K.; Lubelska, K.; Milczarek, M.; Chilmończyk, Z. New enantiomeric fluorine-containing derivatives of sulforaphane: synthesis, absolute configurations and biological activity. Eur. J. Med. Chem., 2014, 76, 332-342.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.036] [PMID: 24589488]
[56]
Seitz, J.; Vineberg, J.G.; Zuniga, E.S.; Ojima, I. Iwao Ojima, Fluorine-containing taxoid anticancer agents and their tumor-targeted drug delivery. J. Fluor. Chem., 2013, 152, 157-165.
[http://dx.doi.org/10.1016/j.jfluchem.2013.05.013] [PMID: 23935213]
[57]
Ojima, I.; Inoue, T.; Chakravarty, S. Enantiopure fluorine-containing taxoids: potent anticancer agents and versatile probes for biomedical problems. J. Fluor. Chem., 1999, 97, 3-10.
[http://dx.doi.org/10.1016/S0022-1139(99)00058-5]
[58]
Ojima, I.; Slater, J.C.; Michaud, E.; Kuduk, S.D.; Bounaud, P-Y.; Vrignaud, P.; Bissery, M.C.; Veith, J.M.; Pera, P.; Bernacki, R.J. Syntheses and structure-activity relationships of the second-generation antitumor taxoids: exceptional activity against drug-resistant cancer cells. J. Med. Chem., 1996, 39(20), 3889-3896.
[http://dx.doi.org/10.1021/jm9604080] [PMID: 8831755]
[59]
Ojima, I.; Kuduk, S.; Slater, J.; Gimi, R.; Sun, C-M. Syntheses of new fluorine-containing taxoids by means of β-Lactam synthon method. Tetrahedron, 1996, 52, 209-224.
[http://dx.doi.org/10.1016/0040-4020(95)00865-6]
[60]
Kuznetsova, L.V.; Pepe, A.; Ungureanu, I.M.; Pera, P.; Bernacki, R.J.; Ojima, I. Syntheses and structure–activity relationships of novel 3′-difluoromethyl and 3′-trifluoromethyl-taxoids. J. Fluor. Chem., 2008, 129(9), 817-828.
[http://dx.doi.org/10.1016/j.jfluchem.2008.05.013] [PMID: 19448839]
[61]
Ojima, I.; Slater, J.C. Synthesis of novel 3′-trifluoromethyl taxoids through effective kinetic resolution of racemic 4-CF3-β-lactams with baccatins. Chirality, 1997, 9(5-6), 487-494.
[http://dx.doi.org/10.1002/(SICI)1520-636X(1997)9:5/6<487:AID-CHIR15>3.0.CO;2-K] [PMID: 9329178]
[62]
Haranahalli, K.; Honda, T.; Ojima, I. Recent progress in the strategic incorporation of fluorine into medicinally active compounds. J. Fluor. Chem., 2019, 217, 29-40.
[http://dx.doi.org/10.1016/j.jfluchem.2018.11.002] [PMID: 31537946]
[63]
Yang, X.; Guan, A. Application of fluorine-containing non-steroidal anti-androgen compounds in treating prostate cancer. J. Fluor. Chem., 2014, 161, 1-10.
[http://dx.doi.org/10.1016/j.jfluchem.2014.02.001]
[64]
Dinesha, S.; Viveka, S.; Priya, B.K.; Pai, K.S.; Naveen, S.; Lokanath, N.K.; Nagaraja, G.K. Synthesis and pharmacological evaluation of some new fluorine containing hydroxypyrazolines as potential anticancer and antioxidant agents. Eur. J. Med. Chem., 2015, 104, 25-32.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.029] [PMID: 26433616]
[65]
Li, S.; Li, G.; Yang, X.; Meng, Q.; Yuan, S.; He, Y.; Sun, D. Design, synthesis and biological evaluation of artemisinin derivatives containing fluorine atoms as anticancer agents. Bioorg. Med. Chem. Lett., 2018, 28(13), 2275-2278.
[http://dx.doi.org/10.1016/j.bmcl.2018.05.035] [PMID: 29789258]
[66]
Li, J.; Tian, Z.; Ge, X.; Xu, Z.; Feng, Y.; Liu, Z. Design, synthesis, and evaluation of fluorine and naphthyridine-based half-sandwich organoiridium/ruthenium complexes with bioimaging and anticancer activity. Eur. J. Med. Chem., 2019, 163, 830-839.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.021] [PMID: 30579123]
[67]
Shaw-Reid, C.A.; Munshi, V.; Graham, P.; Wolfe, A.; Witmer, M.; Danzeisen, R.; Olsen, D.B.; Carroll, S.S.; Embrey, M.; Wai, J.S.; Miller, M.D.; Cole, J.L.; Hazuda, D.J. Inhibition of HIV-1 ribonuclease H by a novel diketo acid, 4-[5-(benzoylamino)thien-2-yl]-2,4-dioxobutanoic acid. J. Biol. Chem., 2003, 278(5), 2777-2780.
[http://dx.doi.org/10.1074/jbc.C200621200] [PMID: 12480948]
[68]
Tramontano, E.; Esposito, F.; Badas, R.; Di Santo, R.; Costi, R.; La Colla, P. 6-[1-(4-Fluorophenyl)methyl-1H-pyrrol-2-yl)]-2,4-dioxo-5-hexenoic acid ethyl ester a novel diketo acid derivative which selectively inhibits the HIV-1 viral replication in cell culture and the ribonuclease H activity in vitro. Antiviral Res., 2005, 65(2), 117-124.
[http://dx.doi.org/10.1016/j.antiviral.2004.11.002] [PMID: 15708638]
[69]
Lévai, A. Synthesis of pyrazolines by the reactions of α, β-enones with diazomethane and hydrazines. Chem. Heterocycl. Compd., 1997, 33, 647-659.
[http://dx.doi.org/10.1007/BF02291794]
[70]
Karthikeyan, M.S.; Holla, B.S.; Kumari, N.S. Synthesis and antimicrobial studies on novel chloro-fluorine containing hydroxy pyrazolines. Eur. J. Med. Chem., 2007, 42(1), 30-36.
[http://dx.doi.org/10.1016/j.ejmech.2006.07.011] [PMID: 17007964]
[71]
Gadakh, A.V.; Pandit, C.; Rindhe, S.S.; Karale, B.K. Synthesis and antimicrobial activity of novel fluorine containing 4-(substituted-2-hydroxybenzoyl)-1H-pyrazoles and pyrazolyl benzo[d]oxazoles. Bioorg. Med. Chem. Lett., 2010, 20(18), 5572-5576.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.019] [PMID: 20724151]
[72]
Andreotti, D.; Rossi, T.; Gaviraghi, G.; Donati, D.; Marchioro, C.; Di Modugno, E.; Perboni, A. Synthesis and antibacterial activity of 4- and 8-methoxy trinems. Bioorg. Med. Chem. Lett., 1996, 6, 491-496.
[http://dx.doi.org/10.1016/0960-894X(96)00056-X]
[73]
Vilar, M.; Galleni, M.; Solmajer, T.; Turk, B.; Frère, J.M.; Matagne, A. Kinetic study of two novel enantiomeric tricyclic β-lactams which efficiently inactivate class C β-lactamases. Antimicrob. Agents Chemother., 2001, 45(8), 2215-2223.
[http://dx.doi.org/10.1128/AAC.45.8.2215-2223.2001] [PMID: 11451677]
[74]
Mohar, B.; Stephan, M.; Urleb, U. Stereoselective synthesis of fluorine-containing analogues of anti-bacterial sanfetrinem and LK-157. Tetrahedron, 2010, 66, 4144-4149.
[http://dx.doi.org/10.1016/j.tet.2010.03.104]
[75]
Wang, B.L.; Shi, Y.X.; Ma, Y.; Liu, X.H.; Li, Y.H.; Song, H.B.; Li, B.J.; Li, Z.M. Synthesis and biological activity of some novel trifluoromethyl-substituted 1,2,4-triazole and bis(1,2,4-triazole) Mannich bases containing piperazine rings. J. Agric. Food Chem., 2010, 58(9), 5515-5522.
[http://dx.doi.org/10.1021/jf100300a] [PMID: 20384340]
[76]
Wang, B.L.; Liu, X.H.; Zhang, X.L.; Zhang, J.F.; Song, H.B.; Li, Z.M. Synthesis, structure and biological activity of novel 1,2,4-triazole mannich bases containing a substituted benzylpiperazine moiety. Chem. Biol. Drug Des., 2011, 78(1), 42-49.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01132.x] [PMID: 21521489]
[77]
Zhang, L.Y.; Wang, B.L.; Zhan, Y.Z.; Zhang, Y.; Zhang, X.; Li, Z.M. Synthesis and biological activities of some fluorine- and piperazine-containing 1,2,4-triazole thione derivatives. Chin. Chem. Lett., 2016, 27, 163-167.
[http://dx.doi.org/10.1016/j.cclet.2015.09.015]
[78]
Nayak, N.; Ramprasad, J.; Dalimba, U. Synthesis and antitubercular and antibacterial activity of some active fluorine containing quinolone-pyrazole hybrid derivatives. J. Fluor. Chem., 2016, 183, 59-68.
[http://dx.doi.org/10.1016/j.jfluchem.2016.01.011]
[79]
Li, Z.; Qian, X.; Song, G.; Li, Z. Synthesis and biological activities of fluorine-containing N,N'-diphenylcarbamimidothioates. J. Fluor. Chem., 2001, 108, 143-146.
[http://dx.doi.org/10.1016/S0022-1139(01)00352-9]
[80]
Xu, X.; Qianb, X.; Lia, Z.; Song, G.; Chen, W. Synthesis and fungicidal activity of fluorine-containing phenylimino-thiazolidines derivatives. J. Fluor. Chem., 2005, 126, 297-300.
[http://dx.doi.org/10.1016/j.jfluchem.2004.10.018]
[81]
Phillips, W.G.; Rejda-Heath, M. Thiazole carboxanilide fungicides: A new structure-activity relationship for succinate dehydrogenase inhibitors. Pestic. Sci., 1993, 38, 1-7.
[http://dx.doi.org/10.1002/ps.2780380102]
[82]
Tomlin, C.D.S. The Pesticide Manual; 12th; British Crop Protection Council: Bracknel, . , 2000, p. 1008.
[83]
Tomlin, C.D.S. The Pesticide Manual; 12th; British Crop Protection Council: Bracknel, . , 2000, p. 901.
[84]
Liu, C.L.; Li, Z.M.; Zhong, B. Synthesis and biological activity of novel 2-methyl-4-trifluoromethyl-thiazole-5-carboxamide derivatives. J. Fluor. Chem., 2004, 125, 1287-1290.
[http://dx.doi.org/10.1016/j.jfluchem.2004.03.006]
[85]
Blum, M.; Boehler, M.; Randall, E.; Young, V.; Csukai, M.; Kraus, S.; Moulin, F.; Scalliet, G.; Avrova, A.O.; Whisson, S.C.; Fonne-Pfister, R. Mandipropamid targets the cellulose synthase-like PiCesA3 to inhibit cell wall biosynthesis in the oomycete plant pathogen, Phytophthora infestans. Mol. Plant Pathol., 2010, 11(2), 227-243.
[http://dx.doi.org/10.1111/j.1364-3703.2009.00604.x] [PMID: 20447272]
[86]
Li, S.; Cui, C.; Wang, M.Y.; Yu, S.J.; Shi, Y.X.; Zhang, X.; Li, Z-M.; Zhao, W.G.; Liluorine, B.J. Synthesis and fungicidal activity of new fluorine-containing mandelic acid amide compounds. J. Fluor. Chem., 2012, 137, 108-112.
[http://dx.doi.org/10.1016/j.jfluchem.2012.02.011]
[87]
Lamberth, C.; Cederbaum, F.; Jeanguenat, A.; Kempf, H.J.; Zeller, M.; Zeun, R. Synthesis and fungicidal activity of N-2-(3-methoxy-4-propargyloxy) phenethyl amides. Part II: anti-oomycetic mandelamides. Pest Manag. Sci., 2006, 62(5), 446-451.
[http://dx.doi.org/10.1002/ps.1188] [PMID: 16550505]
[88]
Guan, A.; Liu, C.; Huang, G.; Li, H.; Hao, S.; Xu, Y.; Xie, Y.; Li, Z. Synthesis and fungicidal activity of fluorine-containing chlorothalonil derivatives. J. Fluor. Chem., 2014, 160, 82-87.
[http://dx.doi.org/10.1016/j.jfluchem.2014.01.006]
[89]
Guan, A.; Wang, M.; Chen, W.; Yang, F.; Yang, J.; Zhao, Y.; Li, Z.; Liu, C. Design, synthesis and antifungal activity of new substituted difluoromethylpyrimidinamine derivatives. J. Fluor. Chem., 2017, 201, 49-54.
[http://dx.doi.org/10.1016/j.jfluchem.2017.08.008]
[90]
Zhang, X-X.; Jin, H.; Deng, Y-J.; Gao, X-H.; Li, Y.; Zhao, Y-T.; Tao, K.; Hou, T-P. Synthesis and biological evaluation of novel pyrazole carboxamide with diarylamine-modified scaffold as potent antifungal agents. Chin. Chem. Lett., 2017, 28, 1731-1736.
[http://dx.doi.org/10.1016/j.cclet.2017.04.021]
[91]
Yu, F.; Guan, A.; Li, M.; Hu, L.; Li, X. Design, synthesis, and fungicidal activity of novel 1,3,4-oxadiazole derivatives. Chin. Chem. Lett., 2018, 29, 915-918.
[http://dx.doi.org/10.1016/j.cclet.2018.01.050]
[92]
Wang, X.; Fu, X.; Chen, M.; Wang, A.; Yan, J.; Mei, Y.; Wang, M.; Yang, C. Novel 1,3,5-thiadiazine-2-thione derivatives containing a hydrazide moiety: design, synthesis and bioactive evaluation against phytopathogenic fungi in vitro and in vivo. Chin. Chem. Lett., 2019, 30(7), 1419-1422.
[http://dx.doi.org/10.1016/j.cclet.2019.03.038]
[93]
Mauler-Machnik, A.; Wachendorff-Neumann, U.; Gayer, H. Fungicidal active substance combinations. US 6,559,136, May 6 2003.
[94]
Wang, Q.; Sun, H.; Cao, H.; Cheng, M.; Huang, R. Synthesis and herbicidal activity of 2-cyano-3-substituted-pyridinemethylaminoacrylates. J. Agric. Food Chem., 2003, 51(17), 5030-5035.
[http://dx.doi.org/10.1021/jf034067s] [PMID: 12903965]
[95]
Liu, Y.; Zhao, Q.; Wang, Q.; Li, H.; Huang, R.; Li, Y. Synthesis and herbicidal activity of 2-cyano-3-(2-fluoro-5-pyridyl) methylaminoacrylates. J. Fluor. Chem., 2005, 126, 345-348.
[http://dx.doi.org/10.1016/j.jfluchem.2004.12.015]
[96]
Kawamura, S.; Izumi, K.; Sato, J.; Sanemitsu, Y.; Hamada, T.; Shibata, H.; Sato, R. Iminothiazolines, their Production and Use as Herbicides, and Intermediates for their Production, ; US 5244863, September 14, . 1993.
[97]
Li, G.; Qian, X.; Cui, J.; Huang, Q.; Cui, D.; Zhang, R.; Liu, F. Synthesis and herbicidal activities of fluorine-containing 3-pyridylmethyl-2-phenylimino-thiazolidine derivatives. J. Fluor. Chem., 2006, 127, 182-186.
[http://dx.doi.org/10.1016/j.jfluchem.2005.10.016]
[98]
Wang, W.; He, H-W.; Zuo, N.; Zhang, X.; Lin, J-S.; Chen, W.; Peng, H. Synthesis and herbicidal activity of 2-(substituted phenoxyacetoxy) alkyl-5,5-dimethyl-1,3,2-dioxaphosphinan-2-one containing fluorine. J. Fluor. Chem., 2012, 142, 24-28.
[http://dx.doi.org/10.1016/j.jfluchem.2012.06.020]
[99]
Chanquia, S.N.; Larregui, F.; Puente, V.; Labriola, C.; Lombardo, E.; García Liñares, G. Synthesis and biological evaluation of new quinoline derivatives as antileishmanial and antitrypanosomal agents. Bioorg. Chem., 2019, 83, 526-534.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.053] [PMID: 30469145]
[100]
Liñares, G.G.; Gismondi, S.; Codesido, N.O.; Moreno, S.N.; Docampo, R.; Rodriguez, J.B. Fluorine-containing aryloxyethyl thiocyanate derivatives are potent inhibitors of Trypanosoma cruzi and Toxoplasma gondii proliferation. Bioorg. Med. Chem. Lett., 2007, 17(18), 5068-5071.
[http://dx.doi.org/10.1016/j.bmcl.2007.07.012] [PMID: 17643987]
[101]
Baragaña, B.; Hallyburton, I.; Lee, M.C.S.; Norcross, N.R.; Grimaldi, R.; Otto, T.D.; Proto, W.R.; Blagborough, A.M.; Meister, S.; Wirjanata, G.; Ruecker, A.; Upton, L.M.; Abraham, T.S.; Almeida, M.J.; Pradhan, A.; Porzelle, A.; Luksch, T.; Martínez, M.S.; Luksch, T.; Bolscher, J.M.; Woodland, A.; Norval, S.; Zuccotto, F.; Thomas, J.; Simeons, F.; Stojanovski, L.; Osuna-Cabello, M.; Brock, P.M.; Churcher, T.S.; Sala, K.A.; Zakutansky, S.E.; Jiménez-Díaz, M.B.; Sanz, L.M.; Riley, J.; Basak, R.; Campbell, M.; Avery, V.M.; Sauerwein, R.W.; Dechering, K.J.; Noviyanti, R.; Campo, B.; Frearson, J.A.; Angulo-Barturen, I.; Ferrer-Bazaga, S.; Gamo, F.J.; Wyatt, P.G.; Leroy, D.; Siegl, P.; Delves, M.J.; Kyle, D.E.; Wittlin, S.; Marfurt, J.; Price, R.N.; Sinden, R.E.; Winzeler, E.A.; Charman, S.A.; Bebrevska, L.; Gray, D.W.; Campbell, S.; Fairlamb, A.H.; Willis, P.A.; Rayner, J.C.; Fidock, D.A.; Read, K.D.; Gilbert, I.H. A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature, 2015, 522(7556), 315-320.
[http://dx.doi.org/10.1038/nature14451] [PMID: 26085270]
[102]
Krungkrai, J.; Krungkrai, S.R.; Phakanont, K. Antimalarial activity of orotate analogs that inhibit dihydroorotase and dihydroorotate dehydrogenase. Biochem. Pharmacol., 1992, 43(6), 1295-1301.
[http://dx.doi.org/10.1016/0006-2952(92)90506-E] [PMID: 1348618]
[103]
Greene, S.; Watanabe, K.; Braatz-Trulson, J.; Lou, L. Inhibition of dihydroorotate dehydrogenase by the immunosuppressive agent leflunomide. Biochem. Pharmacol., 1995, 50(6), 861-867.
[http://dx.doi.org/10.1016/0006-2952(95)00255-X] [PMID: 7575649]
[104]
Fox, R.I.; Herrmann, M.L.; Frangou, C.G.; Wahl, G.M.; Morris, R.E.; Strand, V.; Kirschbaum, B.J. Mechanism of action for leflunomide in rheumatoid arthritis. Clin. Immunol., 1999, 93(3), 198-208.
[http://dx.doi.org/10.1006/clim.1999.4777] [PMID: 10600330]
[105]
Williamson, R.A.; Yea, C.M.; Robson, P.A.; Curnock, A.P.; Gadher, S.; Hambleton, A.B.; Woodward, K.; Bruneau, J.M.; Hambleton, P.; Spinella-Jaegle, S.; Morand, P.; Courtin, O.; Sautés, C.; Westwood, R.; Hercend, T.; Kuo, E.A.; Ruuth, E. Dihydroorotate dehydrogenase is a target for the biological effects of leflunomide. Transplant. Proc., 1996, 28(6), 3088-3091.
[PMID: 8962196]
[106]
Rückemann, K.; Fairbanks, L.D.; Carrey, E.A.; Hawrylowicz, C.M.; Richards, D.F.; Kirschbaum, B.; Simmonds, H.A. Leflunomide inhibits pyrimidine de novo synthesis in mitogen-stimulated T-lymphocytes from healthy humans. J. Biol. Chem., 1998, 273(34), 21682-21691.
[http://dx.doi.org/10.1074/jbc.273.34.21682] [PMID: 9705303]
[107]
Waldman, W.J.; Knight, D.A.; Blinder, L.; Shen, J.; Lurain, N.S.; Miller, D.M.; Sedmak, D.D.; Williams, J.W.; Chong, A.S. Inhibition of cytomegalovirus in vitro and in vivo by the experimental immunosuppressive agent leflunomide. Intervirology, 1999, 42(5-6), 412-418.
[http://dx.doi.org/10.1159/000053979] [PMID: 10702725]
[108]
Davis, J.P.; Cain, G.A.; Pitts, W.J.; Magolda, R.L.; Copeland, R.A. The immunosuppressive metabolite of leflunomide is a potent inhibitor of human dihydroorotate dehydrogenase. Biochemistry, 1996, 35(4), 1270-1273.
[http://dx.doi.org/10.1021/bi952168g] [PMID: 8573583]
[109]
Dong, F.; Guo, W.; Chu, S.W.; Ha, C.S. Novel fluorinated polysilsesquioxane hollow spheres: synthesis and application in drug release. Chem. Commun. (Camb.), 2010, 46(40), 7498-7500.
[http://dx.doi.org/10.1039/c0cc01658f] [PMID: 20856943]
[110]
Ma, S.; Zhou, J.; Wali, A.R.; He, Y.; Xu, X.; Tang, J.Z.; Gu, Z. Self-assembly of pH-sensitive fluorinated peptide dendron functionalized dextran nanoparticles for on-demand intracellular drug delivery. J. Mater. Sci. Mater. Med., 2015, 26(8), 219.
[http://dx.doi.org/10.1007/s10856-015-5550-z] [PMID: 26238777]
[111]
Wang, M.; Liu, H.; Li, L.; Cheng, Y. A fluorinated dendrimer achieves excellent gene transfection efficacy at extremely low nitrogen to phosphorus ratios. Nat. Commun., 2014, 5, 3053.
[http://dx.doi.org/10.1038/ncomms4053] [PMID: 24407172]
[112]
Liu, H.; Zhang, S.; Li, Y.; Yang, D.; Hu, J.; Huang, X. A novel perfluorocyclobutyl aryl ether-based graft copolymer via 2-methyl-1,4-bistrifluorovinyloxybenzene and styrene. Polymer (Guildf.), 2010, 51, 5198-5206.
[http://dx.doi.org/10.1016/j.polymer.2010.08.055]
[113]
Granger, C.E.; Félix, C.P.; Parrot-Lopez, H.P.; Langlois, B.R. Fluorine containing β-cyclodextrin: a new class of amphiphilic carriers. Tetrahedron Lett., 2000, 41, 9257-9260.
[http://dx.doi.org/10.1016/S0040-4039(00)01716-0]
[114]
Allen, C.; Maysinger, D.; Eisenberg, A. Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf. B Biointerfaces, 1999, 16, 3-27.
[http://dx.doi.org/10.1016/S0927-7765(99)00058-2]
[115]
Cha, M.S.; Kim, J.W.; Ha, J.W.; Park, I.J.; Lee, S.B.; Yang, T.; Cheng, S. Self-emulsification and surface modification effect of fluorinated amphiphilic acrylate graft copolymers. J. Polym. Sci. A Polym. Chem., 2010, 48, 4574-4582.
[http://dx.doi.org/10.1002/pola.24249]
[116]
Hussain, H.; Busse, K.; Kressler, J. Poly(ethylene oxide)- and poly(perfluorohexylethyl methacrylate)-containing amphiphilic block copolymers: association properties in aqueous solution. Macromol. Chem. Phys., 2003, 204, 936-946.
[http://dx.doi.org/10.1002/macp.200390070]
[117]
Im, J.S.; Yun, J.; Lim, Y.M.; Kim, H.I.; Lee, Y.S. Fluorination of electrospun hydrogel fibers for a controlled release drug delivery system. Acta Biomater., 2010, 6(1), 102-109.
[http://dx.doi.org/10.1016/j.actbio.2009.06.017] [PMID: 19531386]
[118]
Li, X.; Li, H.; Liu, G.; Deng, Z.; Wu, S.; Li, P.; Xu, Z.; Xu, H.; Chu, P.K. Magnetite-loaded fluorine-containing polymeric micelles for magnetic resonance imaging and drug delivery. Biomaterials, 2012, 33(10), 3013-3024.
[http://dx.doi.org/10.1016/j.biomaterials.2011.12.042] [PMID: 22243798]
[119]
Liu, W.; Li, X.; Wong, Y-S.; Zheng, W.; Zhang, Y.; Cao, W.; Chen, T. Selenium nanoparticles as a carrier of 5-fluorouracil to achieve anticancer synergism. ACS Nano, 2012, 6(8), 6578-6591.
[http://dx.doi.org/10.1021/nn202452c] [PMID: 22823110]
[120]
Liu, G.; Fan, W.; Li, L.; Chu, P.K.; Yeung, K.W.K.; Wu, S.; Xu, Z. Novel anionic fluorine-containing amphiphilic self-assembly polymer micelles for potential application in protein drug carrier. J. Fluor. Chem., 2012, 141, 21-28.
[http://dx.doi.org/10.1016/j.jfluchem.2012.05.021]
[121]
Jee, J.P.; Parlato, M.C.; Perkins, M.G.; Mecozzi, S.; Pearce, R.A. Exceptionally stable fluorous emulsions for the intravenous delivery of volatile general anesthetics. Anesthesiology, 2012, 116(3), 580-585.
[http://dx.doi.org/10.1097/ALN.0b013e3182475d4d] [PMID: 22354241]
[122]
Parlato, M.C.; Jee, J.P.; Teshite, M.; Mecozzi, S. Synthesis, characterization, and applications of hemifluorinated dibranched amphiphiles. J. Org. Chem., 2011, 76(16), 6584-6591.
[http://dx.doi.org/10.1021/jo200835y] [PMID: 21736353]
[123]
Fast, J.P.; Perkins, M.G.; Pearce, R.A.; Mecozzi, S. Fluoropolymer-based emulsions for the intravenous delivery of sevoflurane. Anesthesiology, 2008, 109(4), 651-656.
[http://dx.doi.org/10.1097/ALN.0b013e31818630ff] [PMID: 18813044]
[124]
Fleetwood, M.C.; McCoy, A.M.; Mecozzi, S. Synthesis and characterization of environmentally benign, semifluorinated polymers and their applications in drug delivery. J. Fluor. Chem., 2016, 190, 75-80.
[http://dx.doi.org/10.1016/j.jfluchem.2016.09.001]
[125]
Binder, L.; Jatschka, J.; Kulovits, E.M.; Seeböck, S.; Kählig, H.; Valenta, C. Simultaneous penetration monitoring of oil component and active drug from fluorinated nanoemulsions. Int. J. Pharm., 2018, 552(1-2), 312-318.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.012] [PMID: 30308268]
[126]
Papadopoulos, N.; Lennartsson, J. The PDGF/PDGFR pathway as a drug target. Mol. Aspects Med., 2018, 62, 75-88.
[http://dx.doi.org/10.1016/j.mam.2017.11.007] [PMID: 29137923]
[127]
Benezra, M.; Hambardzumyan, D.; Penate-Medina, O.; Veach, D.R.; Pillarsetty, N.; Smith-Jones, P.; Phillips, E.; Ozawa, T.; Zanzonico, P.B.; Longo, V.; Holland, E.C.; Larson, S.M.; Bradbury, M.S. Fluorine-labeled dasatinib nanoformulations as targeted molecular imaging probes in a PDGFB-driven murine glioblastoma model. Neoplasia, 2012, 14(12), 1132-1143.
[http://dx.doi.org/10.1593/neo.121750] [PMID: 23308046]
[128]
Zhang, Z.; Shen, W.; Ling, J.; Yan, Y.; Hu, J.; Cheng, Y. The fluorination effect of fluoroamphiphiles in cytosolic protein delivery. Nat. Commun., 2018, 9(1), 1377.
[http://dx.doi.org/10.1038/s41467-018-03779-8] [PMID: 29636457]
[129]
Yan, G.; Wang, J.; Zhang, P.; Hu, L.; Wang, X.; Yang, G.; Fu, S.; Cheng, X.; Tang, R. Tunable dynamic fluorinated poly (orthoester)-based drug carriers for greatly enhanced chemotherapeutic efficacy. Polym. Chem., 2017, 8, 2063-2073.
[http://dx.doi.org/10.1039/C6PY02204A]
[130]
Cheng, X.; Zeng, X.; Zheng, Y.; Wang, X.; Tang, R. Surface-fluorinated and pH-sensitive carboxymethyl chitosan nanoparticles to overcome biological barriers for improved drug delivery in vivo. Carbohydr. Polym., 2019, 208, 59-69.
[http://dx.doi.org/10.1016/j.carbpol.2018.12.063] [PMID: 30658832]
[131]
Englert, C.; Brendel, J.C.; Majdanski, T.C.; Yildirim, T.; Schubert, S.; Gottschaldt, M.; Windhab, N.; Schubert, U.S. Pharmapolymers in the 21st century: synthetic polymers in drug delivery applications. Prog. Polym. Sci., 2018, 87, 107-164.
[http://dx.doi.org/10.1016/j.progpolymsci.2018.07.005]
[132]
Weir, M.R.; Bakris, G.L.; Bushinsky, D.A.; Mayo, M.R.; Garza, D.; Stasiv, Y.; Wittes, J.; Christ-Schmidt, H.; Berman, L.; Pitt, B. OPAL-HK Investigators.Patiromer in patients with kidney disease and hyperkalemia receiving RAAS inhibitors. N. Engl. J. Med., 2015, 372(3), 211-221.
[http://dx.doi.org/10.1056/NEJMoa1410853] [PMID: 25415805]
[133]
Chin-Quee, S.L.; Hsu, S.H.; Nguyen-Ehrenreich, K.L.; Tai, J.T.; Abraham, G.M.; Pacetti, S.D.; Chan, Y.F.; Nakazawa, G.; Kolodgie, F.D.; Virmani, R.; Ding, N.N.; Coleman, L.A. Endothelial cell recovery, acute thrombogenicity, and monocyte adhesion and activation on fluorinated copolymer and phosphorylcholine polymer stent coatings. Biomaterials, 2010, 31(4), 648-657.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.079] [PMID: 19822362]
[134]
Sanders, D.P.; Fukushima, K.; Coady, D.J.; Nelson, A.; Fujiwara, M.; Yasumoto, M.; Hedrick, J.L. A simple and efficient synthesis of functionalized cyclic carbonate monomers using a versatile pentafluorophenyl ester intermediate. J. Am. Chem. Soc., 2010, 132(42), 14724-14726.
[http://dx.doi.org/10.1021/ja105332k] [PMID: 20883030]
[135]
Xu, J.; Xue, Y.; Hu, G.; Lin, T.; Gou, J.; Yin, T.; He, H.; Zhang, Y.; Tang, X. A comprehensive review on contact lens for ophthalmic drug delivery. J. Control. Release, 2018, 281, 97-118.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.020] [PMID: 29782944]
[136]
Yañez, F.; Martikainen, L.; Braga, M.E.; Alvarez-Lorenzo, C.; Concheiro, A.; Duarte, C.M.; Gil, M.H.; de Sousa, H.C. Supercritical fluid-assisted preparation of imprinted contact lenses for drug delivery. Acta Biomater., 2011, 7(3), 1019-1030.
[http://dx.doi.org/10.1016/j.actbio.2010.10.003] [PMID: 20934541]
[137]
Thompson, A.M.; Blaser, A.; Palmer, B.D.; Anderson, R.F.; Shinde, S.S.; Launay, D.; Chatelain, E.; Maes, L.; Franzblau, S.G.; Wan, B.; Wang, Y.; Ma, Z.; Denny, W.A. 6-Nitro-2,3-dihydroimidazo[2,1-b][1,3]thiazoles: facile synthesis and comparative appraisal against tuberculosis and neglected tropical diseases. Bioorg. Med. Chem. Lett., 2017, 27(11), 2583-2589.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.069] [PMID: 28462832]
[138]
Silva, F.T.; Franco, C.H.; Favaro, D.C.; Freitas-Junior, L.H.; Moraes, C.B.; Ferreira, E.I. Design, synthesis and antitrypanosomal activity of some nitrofurazone 1,2,4-triazolic bioisosteric analogues. Eur. J. Med. Chem., 2016, 121, 553-560.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.065] [PMID: 27318979]
[139]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; O’Shea, I.P.; Wilkinson, S.R.; Kaiser, M.; Chatelain, E.; Ioset, J-R. Discovery of potent nitrotriazole-based antitrypanosomal agents: in vitro and in vivo evaluation. Bioorg. Med. Chem., 2015, 23(19), 6467-6476.
[http://dx.doi.org/10.1016/j.bmc.2015.08.014] [PMID: 26344593]
[140]
Devine, W.; Woodring, J.L.; Swaminathan, U.; Amata, E.; Patel, G.; Erath, J.; Roncal, N.E.; Lee, P.J.; Leed, S.E.; Rodriguez, A.; Mensa-Wilmot, K.; Sciotti, R.J.; Pollastri, M.P. Protozoan parasite growth inhibitors discovered by cross-screening yield potent scaffolds for lead discovery. J. Med. Chem., 2015, 58(14), 5522-5537.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00515] [PMID: 26087257]
[141]
Moreno-Viguri, E.; Jiménez-Montes, C.; Martín-Escolano, R.; Santivañez-Veliz, M.; Martin-Montes, A.; Azqueta, A.; Jimenez-Lopez, M.; Zamora Ledesma, S.; Cirauqui, N.; López de Ceráin, A.; Marín, C.; Sánchez-Moreno, M.; Pérez-Silanes, S. In vitro and in vivo anti-trypanosoma cruzi activity of new arylamine mannich Base-type derivatives. J. Med. Chem., 2016, 59(24), 10929-10945.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00784] [PMID: 28002965]
[142]
Téllez-Valencia, A.; Olivares-Illana, V.; Hernández-Santoyo, A.; Pérez-Montfort, R.; Costas, M.; Rodríguez-Romero, A.; López-Calahorra, F.; Tuena De Gómez-Puyou, M.; Gómez-Puyou, A. Inactivation of triosephosphate isomerase from Trypanosoma cruzi by an agent that perturbs its dimer interface. J. Mol. Biol., 2004, 341(5), 1355-1365.
[http://dx.doi.org/10.1016/j.jmb.2004.06.056] [PMID: 15321726]
[143]
Kuo, M.R.; Morbidoni, H.R.; Alland, D.; Sneddon, S.F.; Gourlie, B.B.; Staveski, M.M.; Leonard, M.; Gregory, J.S.; Janjigian, A.D.; Yee, C.; Musser, J.M.; Kreiswirth, B.; Iwamoto, H.; Perozzo, R.; Jacobs, W.R., Jr; Sacchettini, J.C.; Fidock, D.A. Targeting tuberculosis and malaria through inhibition of Enoyl reductase: compound activity and structural data. J. Biol. Chem., 2003, 278(23), 20851-20859.
[http://dx.doi.org/10.1074/jbc.M211968200] [PMID: 12606558]
[144]
He, X.; Alian, A.; Stroud, R.; Ortiz de Montellano, P.R. Pyrrolidine carboxamides as a novel class of inhibitors of enoyl acyl carrier protein reductase from Mycobacterium tuberculosis. J. Med. Chem., 2006, 49(21), 6308-6323.
[http://dx.doi.org/10.1021/jm060715y] [PMID: 17034137]
[145]
He, X.; Alian, A.; Ortiz de Montellano, P.R. Inhibition of the Mycobacterium tuberculosis enoyl acyl carrier protein reductase InhA by arylamides. Bioorg. Med. Chem., 2007, 15(21), 6649-6658.
[http://dx.doi.org/10.1016/j.bmc.2007.08.013] [PMID: 17723305]
[146]
Biava, M.; Porretta, G.C.; Poce, G.; Battilocchio, C.; Alfonso, S.; De Logu, A.; Serra, N.; Manetti, F.; Botta, M. Identification of a novel pyrrole derivative endowed with antimycobacterial activity and protection index comparable to that of the current antitubercular drugs streptomycin and rifampin. Bioorg. Med. Chem., 2010, 18(22), 8076-8084.
[http://dx.doi.org/10.1016/j.bmc.2010.09.006] [PMID: 20934344]
[147]
Batt, S.M.; Jabeen, T.; Bhowruth, V.; Quill, L.; Lund, P.A.; Eggeling, L.; Alderwick, L.J.; Fütterer, K.; Besra, G.S. Structural basis of inhibition of Mycobacterium tuberculosis DprE1 by benzothiazinone inhibitors. Proc. Natl. Acad. Sci. USA, 2012, 109(28), 11354-11359.
[http://dx.doi.org/10.1073/pnas.1205735109] [PMID: 22733761]
[148]
Gao, C.; Ye, T.H.; Wang, N.Y.; Zeng, X.X.; Zhang, L.D.; Xiong, Y.; You, X.Y.; Xia, Y.; Xu, Y.; Peng, C.T.; Zuo, W.Q.; Wei, Y.; Yu, L.T. Synthesis and structure-activity relationships evaluation of benzothiazinone derivatives as potential anti-tubercular agents. Bioorg. Med. Chem. Lett., 2013, 23(17), 4919-4922.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.069] [PMID: 23886691]
[149]
Makarov, V.; Lechartier, B.; Zhang, M.; Neres, J.; van der Sar, A.M.; Raadsen, S.A.; Hartkoorn, R.C.; Ryabova, O.B.; Vocat, A.; Decosterd, L.A.; Widmer, N.; Buclin, T.; Bitter, W.; Andries, K.; Pojer, F.; Dyson, P.J.; Cole, S.T. Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Mol. Med., 2014, 6(3), 372-383.
[http://dx.doi.org/10.1002/emmm.201303575] [PMID: 24500695]
[150]
Peng, C.T.; Gao, C.; Wang, N.Y.; You, X.Y.; Zhang, L.D.; Zhu, Y.X.; Xv, Y.; Zuo, W.Q.; Ran, K.; Deng, H.X.; Lei, Q.; Xiao, K.J.; Yu, L.T. Synthesis and antitubercular evaluation of 4-carbonyl piperazine substituted 1,3-benzothiazin-4-one derivatives. Bioorg. Med. Chem. Lett., 2015, 25(7), 1373-1376.
[http://dx.doi.org/10.1016/j.bmcl.2015.02.061] [PMID: 25754492]
[151]
Gao, C.; Peng, C.; Shi, Y.; You, X.; Ran, K.; Xiong, L.; Ye, T.H.; Zhang, L.; Wang, N.; Zhu, Y.; Liu, K.; Zuo, W.; Yu, L.; Wei, Y. Benzothiazinethione is a potent preclinical candidate for the treatment of drug-resistant tuberculosis. Sci. Rep., 2016, 6, 29717.
[http://dx.doi.org/10.1038/srep29717] [PMID: 27405961]
[152]
Poce, G.; Bates, R.H.; Alfonso, S.; Cocozza, M.; Porretta, G.C.; Ballell, L.; Rullas, J.; Ortega, F.; De Logu, A.; Agus, E.; La Rosa, V.; Pasca, M.R.; De Rossi, E.; Wae, B.; Franzblau, S.G.; Manetti, F.; Botta, M.; Biava, M. Improved BM212 MmpL3 inhibitor analogue shows efficacy in acute murine model of tuberculosis infection. PLoS One, 2013, 8(2)e56980
[http://dx.doi.org/10.1371/journal.pone.0056980] [PMID: 23437287]
[153]
Nandha, B.; Nargund, L.V.G.; Nargund, S.L. Design and synthesis of some new imidazole and 1,2,4-triazole substituted fluorobenzimidazoles for antitubercular and antifungal activity. Der. Pharma Chem., 2013, 5, 317-327.
[154]
Shirude, P.S.; Madhavapeddi, P.; Naik, M.; Murugan, K.; Shinde, V.; Nandishaiah, R.; Bhat, J.; Kumar, A.; Hameed, S.; Holdgate, G.; Davies, G.; McMiken, H.; Hegde, N.; Ambady, A.; Venkatraman, J.; Panda, M.; Bandodkar, B.; Sambandamurthy, V.K.; Read, J.A. Methyl-thiazoles: a novel mode of inhibition with the potential to develop novel inhibitors targeting InhA in Mycobacterium tuberculosis. J. Med. Chem., 2013, 56(21), 8533-8542.
[http://dx.doi.org/10.1021/jm4012033] [PMID: 24107081]
[155]
Remuiñán, M.J.; Pérez-Herrán, E.; Rullás, J.; Alemparte, C.; Martínez-Hoyos, M.; Dow, D.J.; Afari, J.; Mehta, N.; Esquivias, J.; Jiménez, E.; Ortega-Muro, F.; Fraile-Gabaldón, M.T.; Spivey, V.L.; Loman, N.J.; Pallen, M.J.; Constantinidou, C.; Minick, D.J.; Cacho, M.; Rebollo-López, M.J.; González, C.; Sousa, V.; Angulo-Barturen, I.; Mendoza-Losana, A.; Barros, D.; Besra, G.S.; Ballell, L.; Cammack, N. Tetrahydropyrazolo[1,5-a]pyrimidine-3-carboxamide and N-benzyl-6′,7′-dihydrospiro[piperidine-4,4′-thieno[3,2-c]pyran] analogues with bactericidal efficacy against Mycobacterium tuberculosis targeting MmpL3. PLoS One, 2013, 8(4)e60933
[http://dx.doi.org/10.1371/journal.pone.0060933] [PMID: 23613759]
[156]
Panda, M.; Ramachandran, S.; Ramachandran, V.; Shirude, P.S.; Humnabadkar, V.; Nagalapur, K.; Sharma, S.; Kaur, P.; Guptha, S.; Narayan, A.; Mahadevaswamy, J.; Ambady, A.; Hegde, N.; Rudrapatna, S.S.; Hosagrahara, V.P.; Sambandamurthy, V.K.; Raichurkar, A. Discovery of pyrazolopyridones as a novel class of noncovalent DprE1 inhibitor with potent anti-mycobacterial activity. J. Med. Chem., 2014, 57(11), 4761-4771.
[http://dx.doi.org/10.1021/jm5002937] [PMID: 24818517]
[157]
Kang, S.; Kim, R.Y.; Seo, M.J.; Lee, S.; Kim, Y.M.; Seo, M.; Seo, J.J.; Ko, Y.; Choi, I.; Jang, J.; Nam, J.; Park, S.; Kang, H.; Kim, H.J.; Kim, J.; Ahn, S.; Pethe, K.; Nam, K.; No, Z.; Kim, J. Lead optimization of a novel series of imidazo[1,2-a]pyridine amides leading to a clinical candidate (Q203) as a multi- and extensively-drug-resistant anti-tuberculosis agent. J. Med. Chem., 2014, 57(12), 5293-5305.
[http://dx.doi.org/10.1021/jm5003606] [PMID: 24870926]
[158]
Rybniker, J.; Vocat, A.; Sala, C.; Busso, P.; Pojer, F.; Benjak, A.; Cole, S.T. Lansoprazole is an antituberculous prodrug targeting cytochrome bc1. Nat. Commun., 2015, 6, 7659.
[http://dx.doi.org/10.1038/ncomms8659] [PMID: 26158909]
[159]
Neres, J.; Hartkoorn, R.C.; Chiarelli, L.R.; Gadupudi, R.; Pasca, M.R.; Mori, G.; Venturelli, A.; Savina, S.; Makarov, V.; Kolly, G.S.; Molteni, E.; Binda, C.; Dhar, N.; Ferrari, S.; Brodin, P.; Delorme, V.; Landry, V.; de Jesus Lopes Ribeiro, A.L.; Farina, D.; Saxena, P.; Pojer, F.; Carta, A.; Luciani, R.; Porta, A.; Zanoni, G.; De Rossi, E.; Costi, M.P.; Riccardi, G.; Cole, S.T. 2-Carboxyquinoxalines kill Mycobacterium tuberculosis through noncovalent inhibition of DprE1. ACS Chem. Biol., 2015, 10(3), 705-714.
[http://dx.doi.org/10.1021/cb5007163] [PMID: 25427196]
[160]
Neres, J.; Pojer, F.; Molteni, E.; Chiarelli, L.R.; Dhar, N.; Boy-Röttger, S.; Buroni, S.; Fullam, E.; Degiacomi, G.; Lucarelli, A.P.; Read, R.J.; Zanoni, G.; Edmondson, D.E.; De Rossi, E.; Pasca, M.R.; McKinney, J.D.; Dyson, P.J.; Riccardi, G.; Mattevi, A.; Cole, S.T.; Binda, C. Structural basis for benzothiazinone-mediated killing of Mycobacterium tuberculosis. Sci. Transl. Med., 2012, 4(150)150ra121
[http://dx.doi.org/10.1126/scitranslmed.3004395] [PMID: 22956199]
[161]
Stec, J.; Onajole, O.K.; Lun, S.; Guo, H.; Merenbloom, B.; Vistoli, G.; Bishai, W.R.; Kozikowski, A.P. Indole-2-carboxamide-based MmpL3 inhibitors show exceptional antitubercular activity in an animal model of tuberculosis infection. J. Med. Chem., 2016, 59(13), 6232-6247.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00415] [PMID: 27275668]
[162]
Moraski, G.C.; Seeger, N.; Miller, P.A.; Oliver, A.G.; Boshoff, H.I.; Cho, S.; Mulugeta, S.; Anderson, J.R.; Franzblau, S.G.; Miller, M.J. Arrival of imidazo[2,1-b]thiazole-5-carboxamides: potent anti-tuberculosis agents that target QcrB. ACS Infect. Dis., 2016, 2(6), 393-398.
[http://dx.doi.org/10.1021/acsinfecdis.5b00154] [PMID: 27627627]
[163]
Wang, H.; Lv, K.; Li, X.; Wang, B.; Wang, A.; Tao, Z.; Geng, Y.; Wang, B.; Huang, M.; Liu, M.; Guo, H.; Lu, Y. Design, synthesis and antimycobacterial activity of novel nitrobenzamide derivatives. Chin. Chem. Lett., 2019, 30, 413-416.
[http://dx.doi.org/10.1016/j.cclet.2018.08.005]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy