Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Role of Resveratrol in Modulating microRNAs in Human Diseases: From Cancer to Inflammatory Disorder

Author(s): Atefeh Amiri, Maryam Mahjoubin-Tehran, Zatollah Asemi, Alimohammad Shafiee, Sarah Hajighadimi, Sanaz Moradizarmehri, Hamid Reza Mirzaei* and Hamed Mirzaei*

Volume 28, Issue 2, 2021

Published on: 12 December, 2019

Page: [360 - 376] Pages: 17

DOI: 10.2174/0929867326666191212102407

Price: $65

Abstract

Cancer and inflammatory disorders are two important public health issues worldwide with significant socioeconomic impacts. Despite several efforts, the current therapeutic platforms are associated with severe limitations. Therefore, developing new therapeutic strategies for the treatment of these diseases is a top priority. Besides current therapies, the utilization of natural compounds has emerged as a new horizon for the treatment of cancer and inflammatory disorders as well. Such natural compounds could be used either alone or in combination with the standard cancer therapeutic modalities such as chemotherapy, radiotherapy, and immunotherapy. Resveratrol is a polyphenolic compound that is found in grapes as well as other foods. It has been found that this medicinal agent displays a wide pharmacological spectrum, including anti-cancer, anti-inflammatory, anti-microbial, and antioxidant activities. Recently, clinical and pre-clinical studies have highlighted the anti-cancer and anti-inflammatory effects of resveratrol. Increasing evidence revealed that resveratrol exerts its therapeutic effects by targeting various cellular and molecular mechanisms. Among cellular and molecular targets that are modulated by resveratrol, microRNAs (miRNAs) have appeared as key targets. MiRNAs are short non-coding RNAs that act as epigenetic regulators. These molecules are involved in many processes that are involved in the initiation and progression of cancer and inflammatory disorders. Herein, we summarized various miRNAs that are directly/indirectly influenced by resveratrol in cancer and inflammatory disorders.

Keywords: Resveratrol, microRNA, cancer, therapy, non-coding RNAs, non-cancerous diseases.

[1]
Latruffe, N.; Rifler, J.P. Bioactive polyphenols from grapes and wine emphasized with resveratrol. Curr. Pharm. Des., 2013, 19(34), 6053-6063.
[http://dx.doi.org/10.2174/1381612811319340002] [PMID: 23448444]
[2]
Lin, H.Y.; Delmas, D.; Vang, O.; Hsieh, T.C.; Lin, S.; Cheng, G.Y.; Chiang, H.L.; Chen, C.E.; Tang, H.Y.; Crawford, D.R.; Whang-Peng, J.; Hwang, J.; Liu, L.F.; Wu, J.M. Mechanisms of ceramide-induced COX-2-dependent apoptosis in human ovarian cancer OVCAR-3 cells partially overlapped with resveratrol. J. Cell. Biochem., 2013, 114(8), 1940-1954.
[http://dx.doi.org/10.1002/jcb.24539] [PMID: 23495037]
[3]
Limagne, E.; Lançon, A.; Delmas, D.; Cherkaoui-Malki, M.; Latruffe, N. Resveratrol Interferes with IL1-β-Induced Pro-Inflammatory Paracrine Interaction between Primary Chondrocytes and Macrophages. Nutrients, 2016, 8(5)E280
[http://dx.doi.org/10.3390/nu8050280] [PMID: 27187448]
[4]
Akbari, M.; Tamtaji, O.R.; Lankarani, K.B.; Tabrizi, R.; Dadgostar, E.; Kolahdooz, F.; Jamilian, M.; Mirzaei, H.; Asemi, Z. The Effects of Resveratrol Supplementation on Endothelial Function and Blood Pressures Among Patients with Metabolic Syndrome and Related Disorders: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. High Blood Press. Cardiovasc. Prev., 2019, 26(4), 305-319.
[http://dx.doi.org/10.1007/s40292-019-00324-6] [PMID: 31264084]
[5]
Davoodvandi, A.; Sahebnasagh, R.; Mardanshah, O.; Asemi, Z.; Nejati, M.; Shahrzad, M.K.; Mirzaei, H.R.; Mirzaei, H. Medicinal plants as natural polarizers of macrophages: Phytochemicals and Pharmacological effects. Curr. Pharm. Des., 2019.
[http://dx.doi.org/10.2174/1381612825666190829154934] [PMID: 31465276]
[6]
Honari, M.; Shafabakhsh, R.; Reiter, R.J.; Mirzaei, H.; Asemi, Z. Resveratrol is a promising agent for colorectal cancer prevention and treatment: focus on molecular mechanisms. Cancer Cell Int., 2019, 19, 180.
[http://dx.doi.org/10.1186/s12935-019-0906-y] [PMID: 31341423]
[7]
Mirzaei, H.R.; Sahebkar, A.; Salehi, R.; Nahand, J.S.; Karimi, E.; Jaafari, M.R.; Mirzaei, H. Boron neutron capture therapy: Moving toward targeted cancer therapy. J. Cancer Res. Ther., 2016, 12(2), 520-525.
[http://dx.doi.org/10.4103/0973-1482.176167] [PMID: 27461603]
[8]
Saadatpour, Z.; Rezaei, A.; Ebrahimnejad, H.; Baghaei, B.; Bjorklund, G.; Chartrand, M.; Sahebkar, A.; Morovati, H.; Mirzaei, H.R.; Mirzaei, H. Imaging techniques: new avenues in cancer gene and cell therapy. Cancer Gene Ther., 2017, 24(1), 1-5.
[http://dx.doi.org/10.1038/cgt.2016.61] [PMID: 27834357]
[9]
Saadatpour, Z.; Bjorklund, G.; Chirumbolo, S.; Alimohammadi, M.; Ehsani, H.; Ebrahiminejad, H.; Pourghadamyari, H.; Baghaei, B.; Mirzaei, H.R.; Sahebkar, A.; Mirzaei, H.; Keshavarzi, M. Molecular imaging and cancer gene therapy. Cancer Gene Ther., 2016.
[http://dx.doi.org/10.1038/cgt.2016.62] [PMID: 27857058]
[10]
Mirzaei, H.; Sahebkar, A.; Sichani, L.S.; Moridikia, A.; Nazari, S.; Sadri Nahand, J.; Salehi, H.; Stenvang, J.; Masoudifar, A.; Mirzaei, H.R.; Jaafari, M.R. Therapeutic application of multipotent stem cells. J. Cell. Physiol., 2018, 233(4), 2815-2823.
[http://dx.doi.org/10.1002/jcp.25990] [PMID: 28475219]
[11]
Mirzaei, H.R.; Mirzaei, H.; Lee, S.Y.; Hadjati, J.; Till, B.G. Prospects for chimeric antigen receptor (CAR) γδ T cells: A potential game changer for adoptive T cell cancer immunotherapy. Cancer Lett., 2016, 380(2), 413-423.
[http://dx.doi.org/10.1016/j.canlet.2016.07.001] [PMID: 27392648]
[12]
Mirzaei, H.; Sahebkar, A.; Jaafari, M.R.; Hadjati, J.; Javanmard, S.H.; Mirzaei, H.R.; Salehi, R. PiggyBac as a novel vector in cancer gene therapy: current perspective. Cancer Gene Ther., 2016, 23(2-3), 45-47.
[http://dx.doi.org/10.1038/cgt.2015.68] [PMID: 26742580]
[13]
Mirzaei, H.; Salehi, H.; Oskuee, R.K.; Mohammadpour, A.; Mirzaei, H.R.; Sharifi, M.R.; Salarinia, R.; Darani, H.Y.; Mokhtari, M.; Masoudifar, A.; Sahebkar, A.; Salehi, R.; Jaafari, M.R. The therapeutic potential of human adipose-derived mesenchymal stem cells producing CXCL10 in a mouse melanoma lung metastasis model. Cancer Lett., 2018, 419, 30-39.
[http://dx.doi.org/10.1016/j.canlet.2018.01.029] [PMID: 29331419]
[14]
Hesari, A.; Azizian, M.; Sheikhi, A.; Nesaei, A.; Sanaei, S.; Mahinparvar, N.; Derakhshani, M.; Hedayt, P.; Ghasemi, F.; Mirzaei, H. Chemopreventive and therapeutic potential of curcumin in esophageal cancer Current and future status., 2019, 144(6), 1215-1226.
[15]
Banikazemi, Z.; Haji, H.A.; Mohammadi, M.; Taheripak, G.; Iranifar, E.; Poursadeghiyan, M.; Moridikia, A.; Rashidi, B.; Taghizadeh, M.; Mirzaei, H. Diet and cancer prevention: Dietary compounds, dietary MicroRNAs, and dietary exosomes. 2018, 119(1), 185-196.
[16]
Mirzaei, H.; Masoudifar, A.; Sahebkar, A.; Zare, N.; Sadri Nahand, J.; Rashidi, B.; Mehrabian, E.; Mohammadi, M.; Mirzaei, H.R.; Jaafari, M.R.; Micro, R.N.A. MicroRNA: A novel target of curcumin in cancer therapy. J. Cell. Physiol., 2018, 233(4), 3004-3015.
[http://dx.doi.org/10.1002/jcp.26055] [PMID: 28617957]
[17]
Mirzaei, H.; Naseri, G.; Rezaee, R.; Mohammadi, M.; Banikazemi, Z.; Mirzaei, H.R.; Salehi, H.; Peyvandi, M.; Pawelek, J.M.; Sahebkar, A. Curcumin: A new candidate for melanoma therapy? Int. J. Cancer, 2016, 139(8), 1683-1695.
[http://dx.doi.org/10.1002/ijc.30224] [PMID: 27280688]
[18]
Latruffe, N.; Lançon, A.; Frazzi, R.; Aires, V.; Delmas, D.; Michaille, J.J.; Djouadi, F.; Bastin, J.; Cherkaoui-Malki, M. Exploring new ways of regulation by resveratrol involving miRNAs, with emphasis on inflammation. Ann. N. Y. Acad. Sci., 2015, 1348(1), 97-106.
[http://dx.doi.org/10.1111/nyas.12819] [PMID: 26190093]
[19]
Vahdat Lasemi, F.; Mahjoubin Tehran, M.; Aghaee-Bakhtiari, S.H.; Jalili, A.; Jaafari, M.R.; Sahebkar, A. Harnessing nucleic acid-based therapeutics for atherosclerotic cardiovascular disease: state of the art. Drug Discov. Today, 2019, 24(5), 1116-1131.
[http://dx.doi.org/10.1016/j.drudis.2019.04.007] [PMID: 30980904]
[20]
Karius, T.; Schnekenburger, M.; Dicato, M.; Diederich, M. MicroRNAs in cancer management and their modulation by dietary agents. Biochem. Pharmacol., 2012, 83(12), 1591-1601.
[http://dx.doi.org/10.1016/j.bcp.2012.02.004] [PMID: 22342289]
[21]
Lançon, A.; Kaminski, J.; Tili, E.; Michaille, J.J.; Latruffe, N. Control of MicroRNA expression as a new way for resveratrol to deliver its beneficial effects. J. Agric. Food Chem., 2012, 60(36), 8783-8789.
[http://dx.doi.org/10.1021/jf301479v] [PMID: 22571175]
[22]
Tili, E.; Michaille, J.J.; Alder, H.; Volinia, S.; Delmas, D.; Latruffe, N.; Croce, C.M. Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFβ signaling pathway in SW480 cells. Biochem. Pharmacol., 2010, 80(12), 2057-2065.
[http://dx.doi.org/10.1016/j.bcp.2010.07.003] [PMID: 20637737]
[23]
Shenoy, A.; Blelloch, R.H. Regulation of microRNA function in somatic stem cell proliferation and differentiation. Nat. Rev. Mol. Cell Biol., 2014, 15(9), 565-576.
[http://dx.doi.org/10.1038/nrm3854] [PMID: 25118717]
[24]
Lin, S.; Gregory, R.I. MicroRNA biogenesis pathways in cancer. Nat. Rev. Cancer, 2015, 15(6), 321-333.
[http://dx.doi.org/10.1038/nrc3932] [PMID: 25998712]
[25]
de Rie, D.; Abugessaisa, I.; Alam, T.; Arner, E.; Arner, P.; Ashoor, H.; Åström, G.; Babina, M.; Bertin, N.; Burroughs, A.M.; Carlisle, A.J.; Daub, C.O.; Detmar, M.; Deviatiiarov, R.; Fort, A.; Gebhard, C.; Goldowitz, D.; Guhl, S.; Ha, T.J.; Harshbarger, J.; Hasegawa, A.; Hashimoto, K.; Herlyn, M.; Heutink, P.; Hitchens, K.J.; Hon, C.C.; Huang, E.; Ishizu, Y.; Kai, C.; Kasukawa, T.; Klinken, P.; Lassmann, T.; Lecellier, C.H.; Lee, W.; Lizio, M.; Makeev, V.; Mathelier, A.; Medvedeva, Y.A.; Mejhert, N.; Mungall, C.J.; Noma, S.; Ohshima, M.; Okada-Hatakeyama, M.; Persson, H.; Rizzu, P.; Roudnicky, F.; Sætrom, P.; Sato, H.; Severin, J.; Shin, J.W.; Swoboda, R.K.; Tarui, H.; Toyoda, H.; Vitting-Seerup, K.; Winteringham, L.; Yamaguchi, Y.; Yasuzawa, K.; Yoneda, M.; Yumoto, N.; Zabierowski, S.; Zhang, P.G.; Wells, C.A.; Summers, K.M.; Kawaji, H.; Sandelin, A.; Rehli, M.; Hayashizaki, Y.; Carninci, P.; Forrest, A.R.R.; de Hoon, M.J.L. An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat. Biotechnol., 2017, 35(9), 872-878.
[http://dx.doi.org/10.1038/nbt.3947] [PMID: 28829439]
[26]
O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. (Lausanne), 2018, 9, 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[27]
Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5), 843-854.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[28]
Denli, A.M.; Tops, B.B.; Plasterk, R.H.; Ketting, R.F.; Hannon, G.J. Processing of primary microRNAs by the Microprocessor complex. Nature, 2004, 432(7014), 231-235.
[http://dx.doi.org/10.1038/nature03049] [PMID: 15531879]
[29]
Okada, C.; Yamashita, E.; Lee, S.J.; Shibata, S.; Katahira, J.; Nakagawa, A.; Yoneda, Y.; Tsukihara, T. A high-resolution structure of the pre-microRNA nuclear export machinery.Science, 2009, 326(5957), 1275-1279.
[http://dx.doi.org/10.1126/science.1178705] [PMID: 19965479]
[30]
Yoda, M.; Kawamata, T.; Paroo, Z.; Ye, X.; Iwasaki, S.; Liu, Q.; Tomari, Y. ATP-dependent human RISC assembly pathways. Nat. Struct. Mol. Biol., 2010, 17(1), 17-23.
[http://dx.doi.org/10.1038/nsmb.1733] [PMID: 19966796]
[31]
Meijer, H.A.; Smith, E.M.; Bushell, M. Portland Press Limited, 2014.
[32]
Khvorova, A.; Reynolds, A.; Jayasena, S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell, 2003, 115(2), 209-216.
[http://dx.doi.org/10.1016/S0092-8674(03)00801-8] [PMID: 14567918]
[33]
Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol., 2014, 15(8), 509-524.
[http://dx.doi.org/10.1038/nrm3838] [PMID: 25027649]
[34]
Babiarz, J.E.; Ruby, J.G.; Wang, Y.; Bartel, D.P.; Blelloch, R. Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev., 2008, 22(20), 2773-2785.
[http://dx.doi.org/10.1101/gad.1705308] [PMID: 18923076]
[35]
Xie, M.; Li, M.; Vilborg, A.; Lee, N.; Shu, M-D.; Yartseva, V.; Šestan, N.; Steitz, J.A. Mammalian 5′-capped microRNA precursors that generate a single microRNA. Cell, 2013, 155(7), 1568-1580.
[http://dx.doi.org/10.1016/j.cell.2013.11.027] [PMID: 24360278]
[36]
Yang, J-S.; Maurin, T.; Robine, N.; Rasmussen, K.D.; Jeffrey, K.L.; Chandwani, R.; Papapetrou, E.P.; Sadelain, M.; O’Carroll, D.; Lai, E.C. Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc. Natl. Acad. Sci. USA, 2010, 107(34), 15163-15168.
[http://dx.doi.org/10.1073/pnas.1006432107] [PMID: 20699384]
[37]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[38]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[39]
Hejmadi, M. Introduction to cancer biology; Bookboon, 2009.
[40]
Devi, K.P.; Rajavel, T.; Daglia, M.; Nabavi, S.F.; Bishayee, A.; Nabavi, S.M. Seminars in cancer biology; Elsevier, 2017, Vol. 46, pp. 146-157.
[41]
Khodadadi Kohlan, A.; Saidijam, M.; Amini, R.; Samadi, P.; Najafi, R. Induction of let-7e gene expression attenuates oncogenic phenotype in HCT-116 colorectal cancer cells through targeting of DCLK1 regulation. Life Sci., 2019, 228, 221-227.
[http://dx.doi.org/10.1016/j.lfs.2019.05.005] [PMID: 31075231]
[42]
Sethi, S.; Li, Y.; Sarkar, F.H. Regulating miRNA by natural agents as a new strategy for cancer treatment. Curr. Drug Targets, 2013, 14(10), 1167-1174.
[http://dx.doi.org/10.2174/13894501113149990189] [PMID: 23834152]
[43]
Nivelle, L.; Hubert, J.; Courot, E.; Jeandet, P.; Aziz, A.; Nuzillard, J-M.; Renault, J-H.; Clément, C.; Martiny, L.; Delmas, D.; Tarpin, M. Anti-cancer activity of resveratrol and derivatives produced by grapevine cell suspensions in a 14 L stirred bioreactor. Molecules, 2017, 22(3), 474.
[http://dx.doi.org/10.3390/molecules22030474] [PMID: 28300789]
[44]
Lakshminarasimhan, M.; Rauh, D.; Schutkowski, M.; Steegborn, C. Sirt1 activation by resveratrol is substrate sequence-selective. Aging (Albany NY), 2013, 5(3), 151-154.
[http://dx.doi.org/10.18632/aging.100542] [PMID: 23524286]
[45]
Liu, B.; Zhou, Z. Activation of SIRT1 by resveratrol requires lamin A. Aging (Albany NY), 2013, 5(2), 94-95.
[http://dx.doi.org/10.18632/aging.100532] [PMID: 23518473]
[46]
Timmers, S.; Auwerx, J.; Schrauwen, P. The journey of resveratrol from yeast to human.Aging (Albany NY), 2012, 4(3), 146-1158.
[http://dx.doi.org/10.18632/aging.100445] [PMID: 22436213]
[47]
Ren, Z.; Wang, L.; Cui, J.; Huoc, Z.; Xue, J.; Cui, H.; Mao, Q.; Yang, R. Resveratrol inhibits NF-kB signaling through suppression of p65 and IkappaB kinase activities. Pharmazie, 2013, 68(8), 689-694.
[PMID: 24020126]
[48]
Wu, F.; Cui, L. Resveratrol suppresses melanoma by inhibiting NF-κB/miR-221 and inducing TFG expression. Arch. Dermatol. Res., 2017, 309(10), 823-831.
[http://dx.doi.org/10.1007/s00403-017-1784-6] [PMID: 28936555]
[49]
Otsuka, K.; Yamamoto, Y.; Ochiya, T. Regulatory role of resveratrol, a microRNA-controlling compound, in HNRNPA1 expression, which is associated with poor prognosis in breast cancer. Oncotarget, 2018, 9(37), 24718-24730.
[http://dx.doi.org/10.18632/oncotarget.25339] [PMID: 29872500]
[50]
Chaffer, C.L.; Weinberg, R.A. A perspective on cancer cell metastasis. science 2011, 331(6024), 1559-1564.
[51]
Yang, S-F.; Lee, W-J.; Tan, P.; Tang, C-H.; Hsiao, M.; Hsieh, F-K.; Chien, M-H. Upregulation of miR-328 and inhibition of CREB-DNA-binding activity are critical for resveratrol-mediated suppression of matrix metalloproteinase-2 and subsequent metastatic ability in human osteosarcomas.Oncotarget 2015, 6(5), 2736-2753.
[http://dx.doi.org/10.18632/oncotarget.3088] [PMID: 25605016]
[52]
Wong, R.S. Apoptosis in cancer: from pathogenesis to treatment. Journal of experimental & clinical cancer research. CR (East Lansing Mich.), 2011, 30, 87.
[53]
Kong, Y.; Chen, J.; Zhou, Z.; Xia, H.; Qiu, M-H.; Chen, C. Cucurbitacin E induces cell cycle G2/M phase arrest and apoptosis in triple negative breast cancer. PLoS One, 2014, 9(7)e103760
[http://dx.doi.org/10.1371/journal.pone.0103760] [PMID: 25072848]
[54]
Wang, Z.; Li, W.; Meng, X.; Jia, B. Resveratrol induces gastric cancer cell apoptosis via reactive oxygen species, but independent of sirtuin1. Clin. Exp. Pharmacol. Physiol., 2012, 39(3), 227-232.
[http://dx.doi.org/10.1111/j.1440-1681.2011.05660.x] [PMID: 22211760]
[55]
Tan, T-W.; Tsai, H-R.; Lu, H-F.; Lin, H-L.; Tsou, M-F.; Lin, Y-T.; Tsai, H-Y.; Chen, Y-F.; Chung, J-G. Curcumin-induced cell cycle arrest and apoptosis in human acute promyelocytic leukemia HL-60 cells via MMP changes and caspase-3 activation. Anticancer Res., 2006, 26(6B), 4361-4371.
[PMID: 17201156]
[56]
Venkatadri, R.; Muni, T.; Iyer, A.K.; Yakisich, J.S.; Azad, N. Role of apoptosis-related miRNAs in resveratrol-induced breast cancer cell death. Cell Death Dis., 2016, 7(2)e2104
[http://dx.doi.org/10.1038/cddis.2016.6] [PMID: 26890143]
[57]
Wang, G.; Dai, F.; Yu, K.; Jia, Z.; Zhang, A.; Huang, Q.; Kang, C.; Jiang, H.; Pu, P. Resveratrol inhibits glioma cell growth via targeting oncogenic microRNAs and multiple signaling pathways.Int. J. Oncol., 2015, 46(4), 1739-1747.
[http://dx.doi.org/10.3892/ijo.2015.2863] [PMID: 25646654]
[58]
Kumazaki, M.; Noguchi, S.; Yasui, Y.; Iwasaki, J.; Shinohara, H.; Yamada, N.; Akao, Y. Anti-cancer effects of naturally occurring compounds through modulation of signal transduction and miRNA expression in human colon cancer cells. J. Nutr. Biochem., 2013, 24(11), 1849-1858.
[http://dx.doi.org/10.1016/j.jnutbio.2013.04.006] [PMID: 23954321]
[59]
Du, M.; Zhang, Z.; Gao, T. Piceatannol induced apoptosis through up-regulation of microRNA-181a in melanoma cells. Biol. Res., 2017, 50(1), 36.
[http://dx.doi.org/10.1186/s40659-017-0141-8] [PMID: 29041990]
[60]
Wu, H.; Wang, Y.; Wu, C.; Yang, P.; Li, H.; Li, Z. Resveratrol induces cancer cell apoptosis through MiR-326/PKM2-mediated ER stress and mitochondrial fission. J. Agric. Food Chem., 2016, 64(49), 9356-9367.
[http://dx.doi.org/10.1021/acs.jafc.6b04549] [PMID: 27960279]
[61]
Karimi Dermani, F.; Saidijam, M.; Amini, R.; Mahdavinezhad, A.; Heydari, K.; Najafi, R. Resveratrol inhibits proliferation, invasion, and epithelial–mesenchymal transition by increasing miR‐200c expression in HCT‐116 colorectal cancer cells. J. Cell. Biochem., 2017, 118(6), 1547-1555.
[http://dx.doi.org/10.1002/jcb.25816] [PMID: 27918105]
[62]
Zhou, W.; Wang, S.; Ying, Y.; Zhou, R.; Mao, P. miR-196b/miR-1290 participate in the antitumor effect of resveratrol via regulation of IGFBP3 expression in acute lymphoblastic leukemia. Oncol. Rep., 2017, 37(2), 1075-1083.
[http://dx.doi.org/10.3892/or.2016.5321] [PMID: 28000876]
[63]
Dhar, S.; Kumar, A.; Rimando, A.M.; Zhang, X.; Levenson, A.S. Resveratrol and pterostilbene epigenetically restore PTEN expression by targeting oncomiRs of the miR-17 family in prostate cancer. Oncotarget, 2015, 6(29), 27214-27226.
[http://dx.doi.org/10.18632/oncotarget.4877] [PMID: 26318586]
[64]
Ren, X.; Bai, X.; Zhang, X.; Li, Z.; Tang, L.; Zhao, X.; Li, Z.; Ren, Y.; Wei, S.; Wang, Q.; Liu, C.; Ji, J. Quantitative nuclear proteomics identifies that miR-137-mediated EZH2 reduction regulates resveratrol-induced apoptosis of neuroblastoma cells. Mol. Cell. Proteomics, 2015, 14(2), 316-328.
[http://dx.doi.org/10.1074/mcp.M114.041905] [PMID: 25505154]
[65]
Yan, B.; Cheng, L.; Jiang, Z.; Chen, K.; Zhou, C.; Sun, L.; Cao, J.; Qian, W.; Li, J.; Shan, T. Resveratrol Inhibits ROS-Promoted Activation and Glycolysis of Pancreatic Stellate Cells via Suppression of miR-21. Oxidative medicine and cellular longev.ity, 2018, 2018
[66]
Liu, P.; Liang, H.; Xia, Q.; Li, P.; Kong, H.; Lei, P.; Wang, S.; Tu, Z. Resveratrol induces apoptosis of pancreatic cancers cells by inhibiting miR-21 regulation of BCL-2 expression. Clin. Transl. Oncol., 2013, 15(9), 741-746.
[http://dx.doi.org/10.1007/s12094-012-0999-4] [PMID: 23359184]
[67]
Shen, Y-A.; Lin, C-H.; Chi, W-H.; Wang, C-Y.; Hsieh, Y.T.; Wei, Y-H.; Chen, Y-J. Resveratrol impedes the stemness, epithelial-mesenchymal transition, and metabolic reprogramming of cancer stem cells in nasopharyngeal carcinoma through p53 activation.Evidence-based complementary and alternative medicine 2013 2013.
[http://dx.doi.org/10.1155/2013/590393]
[68]
Azimi, A.; Hagh, M.F.; Talebi, M.; Yousefi, B. Hossein pour feizi, A.A.; Baradaran, B.; Movassaghpour, A.A.; Shamsasenjan, K.; Khanzedeh, T.; Ghaderi, A.H.; Heydarabad, M.Z. Time-and concentration-dependent effects of resveratrol on miR 15a and miR16-1 expression and apoptosis in the CCRF-CEM acute lymphoblastic leukemia cell line. Asian Pac. J. Cancer Prev., 2015, 16(15), 6463-6468.
[http://dx.doi.org/10.7314/APJCP.2015.16.15.6463] [PMID: 26434860]
[69]
Han, Z.; Yang, Q.; Liu, B.; Wu, J.; Li, Y.; Yang, C.; Jiang, Y. MicroRNA-622 functions as a tumor suppressor by targeting K-Ras and enhancing the anticarcinogenic effect of resveratrol. Carcinogenesis, 2012, 33(1), 131-139.
[http://dx.doi.org/10.1093/carcin/bgr226] [PMID: 22016468]
[70]
Pan, J.; Shen, J.; Si, W.; Du, C.; Chen, D.; Xu, L.; Yao, M.; Fu, P.; Fan, W. Resveratrol promotes MICA/B expression and natural killer cell lysis of breast cancer cells by suppressing c-Myc/miR-17 pathway. Oncotarget, 2017, 8(39), 65743-65758.
[http://dx.doi.org/10.18632/oncotarget.19445] [PMID: 29029468]
[71]
Vislovukh, A.; Kratassiouk, G.; Porto, E.; Gralievska, N.; Beldiman, C.; Pinna, G.; El’skaya, A.; Harel-Bellan, A.; Negrutskii, B.; Groisman, I. Proto-oncogenic isoform A2 of eukaryotic translation elongation factor eEF1 is a target of miR-663 and miR-744. Br. J. Cancer, 2013, 108(11), 2304-2311.
[http://dx.doi.org/10.1038/bjc.2013.243] [PMID: 23695020]
[72]
Bae, S.; Lee, E-M.; Cha, H.J.; Kim, K.; Yoon, Y.; Lee, H.; Kim, J.; Kim, Y-J.; Lee, H.G.; Jeung, H-K.; Min, Y.H.; An, S. Resveratrol alters microRNA expression profiles in A549 human non-small cell lung cancer cells. Mol. Cells, 2011, 32(3), 243-249.
[http://dx.doi.org/10.1007/s10059-011-1037-z] [PMID: 21887509]
[73]
Wang, H.; Feng, H.; Zhang, Y. Resveratrol inhibits hypoxia-induced glioma cell migration and invasion by the p-STAT3/miR-34a axis. Neoplasma, 2016, 63(4), 532-539.
[http://dx.doi.org/10.4149/neo_2016_406] [PMID: 27268916]
[74]
Zhou, C.; Ding, J.; Wu, Y. Resveratrol induces apoptosis of bladder cancer cells via miR21 regulation of the Akt/Bcl2 signaling pathway. Mol. Med. Rep., 2014, 9(4), 1467-1473.
[http://dx.doi.org/10.3892/mmr.2014.1950] [PMID: 24535223]
[75]
Yu, Y.H.; Chen, H.A.; Chen, P.S.; Cheng, Y.J.; Hsu, W.H.; Chang, Y.W.; Chen, Y.H.; Jan, Y.; Hsiao, M.; Chang, T.Y.; Liu, Y.H.; Jeng, Y.M.; Wu, C.H.; Huang, M.T.; Su, Y.H.; Hung, M.C.; Chien, M.H.; Chen, C.Y.; Kuo, M.L.; Su, J.L. MiR-520h-mediated FOXC2 regulation is critical for inhibition of lung cancer progression by resveratrol. Oncogene, 2013, 32(4), 431-443.
[http://dx.doi.org/10.1038/onc.2012.74] [PMID: 22410781]
[76]
Zhang, H.; Jia, R.; Wang, C.; Hu, T.; Wang, F. Piceatannol promotes apoptosis via up-regulation of microRNA-129 expression in colorectal cancer cell lines. Biochem. Biophys. Res. Commun., 2014, 452(3), 775-781.
[http://dx.doi.org/10.1016/j.bbrc.2014.08.150] [PMID: 25218158]
[77]
Del Follo-Martinez, A.; Banerjee, N.; Li, X.; Safe, S.; Mertens-Talcott, S. Resveratrol and quercetin in combination have anticancer activity in colon cancer cells and repress oncogenic microRNA-27a. Nutr. Cancer, 2013, 65(3), 494-504.
[http://dx.doi.org/10.1080/01635581.2012.725194] [PMID: 23530649]
[78]
Sheth, S.; Jajoo, S.; Kaur, T.; Mukherjea, D.; Sheehan, K.; Rybak, L.P.; Ramkumar, V. Resveratrol reduces prostate cancer growth and metastasis by inhibiting the Akt/MicroRNA-21 pathway. PLoS One, 2012, 7(12)e51655
[http://dx.doi.org/10.1371/journal.pone.0051655] [PMID: 23272133]
[79]
Yang, S.; Li, W.; Sun, H.; Wu, B.; Ji, F.; Sun, T.; Chang, H.; Shen, P.; Wang, Y.; Zhou, D. Resveratrol elicits anti-colorectal cancer effect by activating miR-34c-KITLG in vitro and in vivo. BMC Cancer, 2015, 15(1), 969.
[http://dx.doi.org/10.1186/s12885-015-1958-6] [PMID: 26674205]
[80]
Qin, W.; Zhang, K.; Clarke, K.; Weiland, T.; Sauter, E.R. Methylation and miRNA effects of resveratrol on mammary tumors vs. normal tissue. Nutr. Cancer, 2014, 66(2), 270-277.
[http://dx.doi.org/10.1080/01635581.2014.868910] [PMID: 24447120]
[81]
Saud, S.M.; Li, W.; Morris, N.L.; Matter, M.S.; Colburn, N.H.; Kim, Y.S.; Young, M.R. Resveratrol prevents tumorigenesis in mouse model of Kras activated sporadic colorectal cancer by suppressing oncogenic Kras expression. Carcinogenesis, 2014, 35(12), 2778-2786.
[http://dx.doi.org/10.1093/carcin/bgu209] [PMID: 25280562]
[82]
Hagiwara, K.; Kosaka, N.; Yoshioka, Y.; Takahashi, R.U.; Takeshita, F.; Ochiya, T. Stilbene derivatives promote Ago2-dependent tumour-suppressive microRNA activity. Sci. Rep., 2012, 2, 314.
[http://dx.doi.org/10.1038/srep00314] [PMID: 22423322]
[83]
Wang, C-J.; Guo, H-X.; Han, D-X.; Yu, Z-W.; Zheng, Y.; Jiang, H.; Gao, Y.; Yuan, B.; Zhang, J-B. Pituitary tissue-specific miR-7a-5p regulates FSH expression in rat anterior adenohypophyseal cells.PeerJ, 2019.7e6458.
[PMID: 30993031]
[84]
Jakob, M.; Mattes, L.M.; Küffer, S.; Unger, K.; Hess, J.; Bertlich, M.; Haubner, F.; Ihler, F.; Canis, M.; Weiss, B.G.; Kitz, J. MicroRNA expression patterns in oral squamous cell carcinoma: hsa-mir-99b-3p and hsa-mir-100-5p as novel prognostic markers for oral cancer. Head Neck, 2019, 41(10), 3499-3515.
[http://dx.doi.org/10.1002/hed.25866] [PMID: 31355988]
[85]
Soifer, H.S.; Rossi, J.J.; Saetrom, P. MicroRNAs in disease and potential therapeutic applications.Mol. Ther., 2007, 15(12), 2070-2079.
[http://dx.doi.org/10.1038/sj.mt.6300311] [PMID: 17878899]
[86]
Li, M.; Marin-Muller, C.; Bharadwaj, U.; Chow, K-H.; Yao, Q.; Chen, C. MicroRNAs: control and loss of control in human physiology and disease. World J. Surg., 2009, 33(4), 667-684.
[http://dx.doi.org/10.1007/s00268-008-9836-x] [PMID: 19030926]
[87]
Tili, E.; Michaille, J-J.; Adair, B.; Alder, H.; Limagne, E.; Taccioli, C.; Ferracin, M.; Delmas, D.; Latruffe, N.; Croce, C.M. Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis, 2010, 31(9), 1561-1566.
[http://dx.doi.org/10.1093/carcin/bgq143] [PMID: 20622002]
[88]
Ghiringhelli, F.; Rebe, C.; Hichami, A.; Delmas, D. Immunomodulation and anti-inflammatory roles of polyphenols as anticancer agents.Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 2012, 12(8), 852-873.
[http://dx.doi.org/10.2174/187152012802650048]
[89]
Jin, H.; Zhang, H.; Ma, T.; Lan, H.; Feng, S.; Zhu, H.; Ji, Y. Resveratrol Protects Murine Chondrogenic ATDC5 Cells Against LPS-Induced Inflammatory Injury Through Up-Regulating MiR-146b. Cell. Physiol. Biochem., 2018, 47(3), 972-980.
[http://dx.doi.org/10.1159/000490141] [PMID: 29843156]
[90]
Alghetaa, H.; Mohammed, A.; Sultan, M.; Busbee, P.; Murphy, A.; Chatterjee, S.; Nagarkatti, M.; Nagarkatti, P. Resveratrol protects mice against SEB-induced acute lung injury and mortality by miR-193a modulation that targets TGF-β signalling. J. Cell. Mol. Med., 2018, 22(5), 2644-2655.
[http://dx.doi.org/10.1111/jcmm.13542] [PMID: 29512867]
[91]
Johnson, E.R.; Matthay, M.A. Acute lung injury: epidemiology, pathogenesis, and treatment. J. Aerosol Med. Pulm. Drug Deliv., 2010, 23(4), 243-252.
[http://dx.doi.org/10.1089/jamp.2009.0775] [PMID: 20073554]
[92]
Wang, Q.; Xu, J.; Rottinghaus, G.E.; Simonyi, A.; Lubahn, D.; Sun, G.Y.; Sun, A.Y. Resveratrol protects against global cerebral ischemic injury in gerbils. Brain Res., 2002, 958(2), 439-447.
[http://dx.doi.org/10.1016/S0006-8993(02)03543-6] [PMID: 12470882]
[93]
Sun, A.Y.; Wang, Q.; Simonyi, A.; Sun, G.Y. Resveratrol as a therapeutic agent for neurodegenerative diseases. Mol. Neurobiol., 2010, 41(2-3), 375-383.
[http://dx.doi.org/10.1007/s12035-010-8111-y] [PMID: 20306310]
[94]
Wang, Z-H.; Zhang, J-L.; Duan, Y-L.; Zhang, Q-S.; Li, G-F.; Zheng, D-L. MicroRNA-214 participates in the neuroprotective effect of Resveratrol via inhibiting α-synuclein expression in MPTP-induced Parkinson’s disease mouse. Biomed. Pharmacother., 2015, 74, 252-256.
[http://dx.doi.org/10.1016/j.biopha.2015.08.025] [PMID: 26349993]
[95]
Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; Geny, B.; Laakso, M.; Puigserver, P.; Auwerx, J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 2006, 127(6), 1109-1122.
[http://dx.doi.org/10.1016/j.cell.2006.11.013] [PMID: 17112576]
[96]
Rivera, L.; Morón, R.; Sánchez, M.; Zarzuelo, A.; Galisteo, M. Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity (Silver Spring), 2008, 16(9), 2081-2087.
[http://dx.doi.org/10.1038/oby.2008.315] [PMID: 18551111]
[97]
Dal-Pan, A.; Blanc, S.; Aujard, F. Resveratrol suppresses body mass gain in a seasonal non-human primate model of obesity. BMC Physiol., 2010, 10(1), 11.
[http://dx.doi.org/10.1186/1472-6793-10-11] [PMID: 20569453]
[98]
Kim, J.Y.; Kim, E.H.; Park, S.S.; Lim, J.H.; Kwon, T.K.; Choi, K.S. Quercetin sensitizes human hepatoma cells to TRAIL-induced apoptosis via Sp1-mediated DR5 up-regulation and proteasome-mediated c-FLIPS down-regulation. J. Cell. Biochem., 2008, 105(6), 1386-1398.
[http://dx.doi.org/10.1002/jcb.21958] [PMID: 18980244]
[99]
Xie, H.; Lim, B.; Lodish, H.F. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes, 2009, 58(5), 1050-1057.
[http://dx.doi.org/10.2337/db08-1299] [PMID: 19188425]
[100]
Gracia, A.; Miranda, J.; Fernández-Quintela, A.; Eseberri, I.; Garcia-Lacarte, M.; Milagro, F.I.; Martínez, J.A.; Aguirre, L.; Portillo, M.P. Involvement of miR-539-5p in the inhibition of de novo lipogenesis induced by resveratrol in white adipose tissue.Food Funct, 2016, 7(3), 1680-1688.
[http://dx.doi.org/10.1039/C5FO01090J] [PMID: 26952965]
[101]
Eseberri, I.; Lasa, A.; Miranda, J.; Gracia, A.; Portillo, M.P. Potential miRNA involvement in the anti-adipogenic effect of resveratrol and its metabolites. PLoS One, 2017, 12(9)e0184875
[http://dx.doi.org/10.1371/journal.pone.0184875] [PMID: 28953910]
[102]
Karuppagounder, S.S.; Pinto, J.T.; Xu, H.; Chen, H-L.; Beal, M.F.; Gibson, G.E. Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem. Int., 2009, 54(2), 111-118.
[http://dx.doi.org/10.1016/j.neuint.2008.10.008] [PMID: 19041676]
[103]
Mizutani, K.; Ikeda, K.; Kawai, Y.; Yamori, Y. Resveratrol stimulates the proliferation and differentiation of osteoblastic MC3T3-E1 cells. Biochem. Biophys. Res. Commun., 1998, 253(3), 859-863.
[http://dx.doi.org/10.1006/bbrc.1998.9870] [PMID: 9918820]
[104]
Guo, D.W.; Han, Y.X.; Cong, L.; Liang, D.; Tu, G.J. Resveratrol prevents osteoporosis in ovariectomized rats by regulating microRNA-338-3p. Mol. Med. Rep., 2015, 12(2), 2098-2106.
[http://dx.doi.org/10.3892/mmr.2015.3581] [PMID: 25845653]
[105]
Lukiw, W.J.; Zhao, Y.; Cui, J.G. An NF-kappaB-sensitive micro RNA-146a-mediated inflammatory circuit in Alzheimer disease and in stressed human brain cells. J. Biol. Chem., 2008, 283(46), 31315-31322.
[http://dx.doi.org/10.1074/jbc.M805371200] [PMID: 18801740]
[106]
Aires, V.; Delmas, D.; Djouadi, F.; Bastin, J.; Cherkaoui-Malki, M.; Latruffe, N. Resveratrol-Induced Changes in MicroRNA Expression in Primary Human Fibroblasts Harboring Carnitine-Palmitoyl Transferase-2 Gene Mutation, Leading to Fatty Acid Oxidation Deficiency. Molecules, 2017, 23(1), 7.
[http://dx.doi.org/10.3390/molecules23010007] [PMID: 29271911]
[107]
Xin, Y.; Zhang, H.; Jia, Z.; Ding, X.; Sun, Y.; Wang, Q.; Xu, T. Resveratrol improves uric acid-induced pancreatic β-cells injury and dysfunction through regulation of miR-126. Biomed. Pharmacother., 2018, 102, 1120-1126.
[http://dx.doi.org/10.1016/j.biopha.2018.03.172] [PMID: 29710530]
[108]
Wang, X.; Zhang, Y. Resveratrol alleviates LPS-induced injury in human keratinocyte cell line HaCaT by upregulation of miR-17. Biochem. Biophys. Res. Commun. 2018, 501(1), 106-112.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.184] [PMID: 29704506]
[109]
Keshavarzi, M.; Darijani, M.; Momeni, F.; Moradi, P.; Ebrahimnejad, H.; Masoudifar, A.; Mirzaei, H. Molecular Imaging and Oral Cancer Diagnosis and Therapy. J. Cell. Biochem., 2017, 118(10), 3055-3060.
[http://dx.doi.org/10.1002/jcb.26042] [PMID: 28390191]
[110]
Yang, B.; Ma, S.; Wang, Y.B.; Xu, B.; Zhao, H.; He, Y.Y.; Li, C.W.; Zhang, J.; Cao, Y.K.; Feng, Q.Z. Resveratrol exerts protective effects on anoxia/reoxygenation injury in cardiomyocytes via miR-34a/Sirt1 signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(12), 2734-2741.
[PMID: 27383330]
[111]
Zhang, Y.; Lu, Y.; Ong’achwa, M.J.; Ge, L.; Qian, Y.; Chen, L.; Hu, X.; Li, F.; Wei, H.; Zhang, C. Resveratrol Inhibits the TGF-β1-Induced Proliferation of Cardiac Fibroblasts and Collagen Secretion by Downregulating miR-17 in Rat. BioMed research international, 2018 2018.
[112]
Zhang, Y.; Du, X.; Li, W.; Sang, H.; Qian, A.; Sun, L.; Li, X.; Li, C. Resveratrol improves endothelial progenitor cell function through miR-138 by targeting focal adhesion kinase (FAK) and promotes Thrombus resolution in vivo. Med. Sci. Monit., 2018, 24, 951-960.
[http://dx.doi.org/10.12659/MSM.906116] [PMID: 29447140]
[113]
Shen, J.; Xu, L.; Qu, C.; Sun, H.; Zhang, J. Resveratrol prevents cognitive deficits induced by chronic unpredictable mild stress: Sirt1/miR-134 signalling pathway regulates CREB/BDNF expression in hippocampus in vivo and in vitro. Behav. Brain Res., 2018, 349, 1-7.
[http://dx.doi.org/10.1016/j.bbr.2018.04.050] [PMID: 29715537]
[114]
Wang, J.; He, F.; Chen, L.; Li, Q.; Jin, S.; Zheng, H.; Lin, J.; Zhang, H.; Ma, S.; Mei, J.; Yu, J. Resveratrol inhibits pulmonary fibrosis by regulating miR-21 through MAPK/AP-1 pathways. Biomed. Pharmacother., 2018, 105, 37-44.
[http://dx.doi.org/10.1016/j.biopha.2018.05.104] [PMID: 29843043]
[115]
de Queiroz, K.B.; Dos Santos Fontes Pereira, T.; Araújo, M.S.S.; Gomez, R.S.; Coimbra, R.S. Resveratrol Acts anti-inflammatory and neuroprotective in an infant rat model of pneumococcal meningitis by modulating the hippocampal miRNome.Mol. Neurobiol., 2018, 55(12), 8869-8884.
[http://dx.doi.org/10.1007/s12035-018-1037-5] [PMID: 29611100]
[116]
Xu, X.H.; Ding, D.F.; Yong, H.J.; Dong, C.L.; You, N.; Ye, X.L.; Pan, M.L.; Ma, J.H.; You, Q.; Lu, Y.B. Resveratrol transcriptionally regulates miRNA-18a-5p expression ameliorating diabetic nephropathy via increasing autophagy. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(21), 4952-4965.
[PMID: 29164562]
[117]
Zeng, K.; Wang, Y.; Yang, N.; Wang, D.; Li, S.; Ming, J.; Wang, J.; Yu, X.; Song, Y.; Zhou, X.; Deng, B.; Wu, X.; Huang, L.; Yang, Y. Resveratrol inhibits diabetic-induced Müller cells apoptosis through microRNA-29b/specificity protein 1 pathway. Mol. Neurobiol., 2017, 54(6), 4000-4014.
[http://dx.doi.org/10.1007/s12035-016-9972-5] [PMID: 27311771]
[118]
Bian, H.; Shan, H.; Chen, T. Resveratrol ameliorates hypoxia/ischemia-induced brain injury in the neonatal rat via the miR-96/Bax axis. Childs Nerv. Syst., 2017, 33(11), 1937-1945.
[http://dx.doi.org/10.1007/s00381-017-3509-8] [PMID: 28721600]
[119]
Gracia, A.; Fernández-Quintela, A.; Miranda, J.; Eseberri, I.; González, M.; Portillo, M.P. Are mirna-103, mirna-107 and mirna-122 involved in the prevention of liver steatosis induced by resveratrol? Nutrients, 2017, 9(4), 360.
[http://dx.doi.org/10.3390/nu9040360] [PMID: 28375178]
[120]
Hibender, S.; Franken, R.; van Roomen, C.; Ter Braake, A.; van der Made, I.; Schermer, E.E.; Gunst, Q.; van den Hoff, M.J.; Lutgens, E.; Pinto, Y.M.; Groenink, M.; Zwinderman, A.H.; Mulder, B.J.; de Vries, C.J.; de Waard, V. Resveratrol inhibits aortic root dilatation in the Fbn1C1039G/+ Marfan mouse model. Arterioscler. Thromb. Vasc. Biol., 2016, 36(8), 1618-1626.
[http://dx.doi.org/10.1161/ATVBAHA.116.307841] [PMID: 27283746]
[121]
Kadhim, S.; Singh, N.P.; Zumbrun, E.E.; Cui, T.; Chatterjee, S.; Hofseth, L.; Abood, A.; Nagarkatti, P.; Nagarkatti, M. Resveratrol-mediated attenuation of Staphylococcus aureus enterotoxin B-induced acute liver injury is associated with regulation of microRNA and induction of Myeloid-derived Suppressor Cells. Front. Microbiol., 2018, 9, 2910.
[http://dx.doi.org/10.3389/fmicb.2018.02910] [PMID: 30619104]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy