Generic placeholder image

Current Cardiology Reviews


ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Review Article

Usefulness of Biomarkers for Predicting Response to Cardiac Resynchronization Therapy

Author(s): Mohammad H. Asgardoon, Ali Vasheghani-Farahani and Alborz Sherafati*

Volume 16, Issue 2, 2020

Page: [132 - 140] Pages: 9

DOI: 10.2174/1573403X15666191206163846

Price: $65


Cardiac Resynchronization Therapy (CRT) is an effective treatment strategy for heart failure. It significantly improves clinical symptoms and decreases mortality and long-term morbidity. However, some patients do not respond properly to this treatment. In this review, the role of different biomarkers in predicting response to CRT is discussed. Some biomarkers, including natriuretic peptides and inflammatory markers have promising results but further trials are needed for more evaluation.

Methods: All the studies reporting the extent of biomarkers for predicting the response to cardiac resynchronization therapy were included in this study. For studies using the same database, the ones with a higher number of cases and more complete data were included. Conclusions were drawn from relevant randomized controlled clinical trials and meta-analyses about CRT implantation and its associated alterations in biomarker levels. Cardiac Resynchronization in Heart Failure (CARE-HF) study was the first and the largest study on patients with CRT with the longest followup, which showed a significant correlation between BNP levels and long-term CRT outcome. CRP has been demonstrated to be a mediator of inflammation and a marker indicating the presence of an inflammatory process.

Conclusion: Natriuretic peptides, including BNP, markers of collagen synthesis like PINP, inflammatory markers, especially CRP, gal-3, and CT-apelin yield promising results in left ventricular remodeling and their relationship with response to CRT implantation is seen. Although more research is needed in this area as little information is available for baseline and preprocedural measurements, so that it would be easy to choose appropriate candidates for CRT implantation.

Keywords: Heart failure, CRT, biomarkers, natriuretic peptides, electrocardiography, inflammatory markers.

Graphical Abstract
Lewis GF, Gold MR. Developments in cardiac resynchronisation therapy. Arrhythm Electrophysiol Rev 2015; 4(2): 122-8.
[] [PMID: 26835113]
Looi K-L, Tang AS, Agarwal S. Use of cardiac resynchronisation therapy - change of clinical settings. Arrhythm Electrophysiol Rev 2014; 3(1): 20-4.
[] [PMID: 26835060]
Dewhurst MJ, Linker NJ. Current evidence and recommendations for cardiac resynchronisation therapy. Arrhythm Electrophysiol Rev 2014; 3(1): 9-14.
[] [PMID: 26835058]
Young JB, Abraham WT, Smith AL, et al. Multicenter InSync ICD Randomized Clinical Evaluation (MIRACLE ICD) Trial Investiga-tors. Combined cardiac resynchronization and implantable car-dioversion defibrillation in advanced chronic heart failure: The MIRACLE ICD Trial. JAMA 2003; 289(20): 2685-94.
[] [PMID: 12771115]
Cazeau S, Ritter P, Lazarus A, et al. Multisite pacing for end-stage heart failure: early experience. Pacing Clin Electrophysiol 1996; 19(11 Pt 2): 1748-57.
[] [PMID: 8945034]
Butter C, Auricchio A, Stellbrink C, et al. Pacing Therapy for Chronic Heart Failure II Study Group. Effect of resynchronization therapy stimulation site on the systolic function of heart failure pa-tients. Circulation 2001; 104(25): 3026-9.
[] [PMID: 11748094]
Stellbrink C, Breithardt OA, Franke A, et al. PATH-CHF (PAcing THerapies in Congestive Heart Failure) Investigators; CPI Guidant Congestive Heart Failure Research Group. Impact of cardiac resyn-chronization therapy using hemodynamically optimized pacing on left ventricular remodeling in patients with congestive heart failure and ventricular conduction disturbances. J Am Coll Cardiol 2001; 38(7): 1957-65.
[] [PMID: 11738300]
Linde C, Abraham WT, Gold MR, Daubert C. REVERSE Study Group. Cardiac resynchronization therapy in asymptomatic or mildly symptomatic heart failure patients in relation to etiology: results from the REVERSE (REsynchronization reVErses Remodeling in Systolic Left vEntricular Dysfunction) study. J Am Coll Cardiol 2010; 56(22): 1826-31.
[] [PMID: 21087711]
Rehman SU, Mueller T, Januzzi JL Jr. Characteristics of the novel interleukin family biomarker ST2 in patients with acute heart failure. J Am Coll Cardiol 2008; 52(18): 1458-65.
[] [PMID: 19017513]
Rosamond W, Flegal K, Friday G, et al. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics--2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2007; 115(5): e69-e171.
[] [PMID: 17194875]
Daniels LB, Maisel AS. Natriuretic peptides. J Am Coll Cardiol 2007; 50(25): 2357-68.
[] [PMID: 18154959]
Liquori ME, Christenson RH, Collinson PO, Defilippi CR. Cardiac biomarkers in heart failure. Clin Biochem 2014; 47(6): 327-37.
[] [PMID: 24530339]
Levin ER, Gardner DG, Samson WK. Natriuretic peptides. N Engl J Med 1998; 339(5): 321-8.
[] [PMID: 9682046]
Anand IS, Fisher LD, Chiang YT, et al. Val-HeFT Investigators. Changes in brain natriuretic peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial (Val-HeFT). Circulation 2003; 107(9): 1278-83.
[] [PMID: 12628948]
Nagaya N, Nishikimi T, Goto Y, et al. Plasma brain natriuretic peptide is a biochemical marker for the prediction of progressive ventricular remodeling after acute myocardial infarction. Am Heart J 1998; 135(1): 21-8.
[] [PMID: 9453517]
Hessel MH, Bleeker GB, Bax JJ, et al. Reverse ventricular remodelling after cardiac resynchronization therapy is associated with a reduction in serum tenascin-C and plasma matrix metalloproteinase-9 levels. Eur J Heart Fail 2007; 9(10): 1058-63.
[] [PMID: 17728181]
Cleland JG, Daubert JC, Erdmann E, et al. CARE-HF study Steering Committee and Investigators. The CARE-HF study (CArdiac REsynchronisation in Heart Failure study): rationale, design and end-points. Eur J Heart Fail 2001; 3(4): 481-9.
[] [PMID: 11511435]
Molhoek SG, Bax JJ, van Erven L, et al. Atrial and brain natriuretic peptides as markers of response to resynchronisation therapy. Heart 2004; 90(1): 97-8.
[] [PMID: 14676258]
Hoogslag GE, Höke U, Thijssen J, et al. Clinical, echocardiographic, and neurohormonal response to cardiac resynchronization therapy: are they interchangeable? Pacing Clin Electrophysiol 2013; 36(11): 1391-401.
[] [PMID: 23826659]
Kubánek M, Málek I, Bytesník J, et al. Decrease in plasma B-type natriuretic peptide early after initiation of cardiac resynchronization therapy predicts clinical improvement at 12 months. Eur J Heart Fail 2006; 8(8): 832-40.
[] [PMID: 16546444]
Fruhwald FM, Fahrleitner-Pammer A, Berger R, et al. Early and sustained effects of cardiac resynchronization therapy on N-terminal pro-B-type natriuretic peptide in patients with moderate to severe heart failure and cardiac dyssynchrony. Eur Heart J 2007; 28(13): 1592-7.
[] [PMID: 17298973]
Lellouche N, De Diego C, Cesario DA, et al. Usefulness of preimplantation B-type natriuretic peptide level for predicting response to cardiac resynchronization therapy. Am J Cardiol 2007; 99(2): 242-6.
[] [PMID: 17223426]
Kosztin A, Szeplaki G, Kovacs A, et al. Impact of CT-apelin and NT-proBNP on identify-ing non-responders to cardiac resynchronization therapy. Biomarkers 2016; 1-8.
[PMID: 27471876]
Yu CM, Fung JW, Zhang Q, et al. Improvement of serum NT-ProBNP predicts improvement in cardiac function and favorable prognosis after cardiac resynchronization therapy for heart failure. J Card Fail 2005; 11(5)(Suppl.): S42-6.
[] [PMID: 15948100]
Filzmaier K, Sinha AM, Breithardt OA, et al. Short-term effects of cardiac resynchronization on brain natriuretic peptide release in patients with systolic heart failure and ventricular conduction disturbance. J Am Coll Cardiol 2002; 39: 111.
Delgado RM, Palanichamy N, Radovancevic R, Vrtovec B, Radovancevic B. Brain natriuretic peptide levels and response to cardiac resynchronization therapy in heart failure patients. Congest Heart Fail 2006; 12(5): 250-3.
[] [PMID: 17033272]
Brenyo A, Barsheshet A, Rao M, et al. Brain natriuretic peptide and cardiac resynchronization therapy in patients with mildly symptomatic heart failure. Circ Heart Fail 2013; 6(5): 998-1004.
[] [PMID: 23801020]
Truong QA, Januzzi JL, Szymonifka J, et al. Coronary sinus biomarker sampling compared to peripheral venous blood for predicting outcomes in patients with severe heart failure undergoing cardiac resynchronization therapy: the BIOCRT study. Heart Rhythm 2014; 11(12): 2167-75.
[] [PMID: 25014756]
Maisel A, Xue Y, Shah K, et al. Increased 90-day mortality in patients with acute heart failure with elevated copeptin: secondary results from the Biomarkers in Acute Heart Failure (BACH) study. Circ Heart Fail 2011; 4(5): 613-20.
[] [PMID: 21765124]
Stoiser B, Mörtl D, Hülsmann M, et al. Copeptin, a fragment of the vasopressin precursor, as a novel predictor of outcome in heart failure. Eur J Clin Invest 2006; 36(11): 771-8.
[] [PMID: 17032344]
Neuhold S, Huelsmann M, Strunk G, et al. Comparison of copeptin, B-type natriuretic peptide, and amino-terminal pro-B-type natriuretic peptide in patients with chronic heart failure: prediction of death at different stages of the disease. J Am Coll Cardiol 2008; 52(4): 266-72.
[] [PMID: 18634981]
Boriani G, Regoli F, Saporito D, et al. Neurohormones and inflammatory mediators in patients with heart failure undergoing cardiac resynchronization therapy: time courses and prediction of response. Peptides 2006; 27(7): 1776-86.
[] [PMID: 16621149]
Sokal A, Lenarczyk R, Kowalski O, et al. Prognostic value of collagen turnover biomarkers in cardiac resynchronization therapy: A subanalysis of the TRUST CRT randomized trial population. Heart Rhythm 2016; 13(5): 1088-95.
[] [PMID: 26776557]
García-Bolao I, López B, Macías A, Gavira JJ, Azcárate P, Díez J. Impact of collagen type I turnover on the long-term response to cardiac resynchronization therapy. Eur Heart J 2008; 29(7): 898-906.
[] [PMID: 18334474]
Petrovic I, Stankovic I, Milasinovic G, et al. The relationship of myocardial collagen metabolism and reverse remodeling after cardiac resynchronization therapy. J Med Biochem 2016; 35(2): 130-6.
[] [PMID: 28356872]
Bruggink AH, van Oosterhout MF, de Jonge N, et al. Reverse remodeling of the myocardial extracellular matrix after prolonged left ventricular assist device support follows a biphasic pattern. J Heart Lung Transplant 2006; 25(9): 1091-8.
[] [PMID: 16962471]
Umar S, Bax JJ, Klok M, et al. Myocardial collagen metabolism in failing hearts before and during cardiac resynchronization therapy. Eur J Heart Fail 2008; 10(9): 878-83.
[] [PMID: 18768351]
Dong YX, Burnett JC Jr, Chen HH, et al. Effect of cardiac resynchronization therapy on broad neurohormone biomarkers in heart failure. J Interv Card Electrophysiol 2011; 30(3): 241-9.
[] [PMID: 21336616]
Lopez-Andrès N, Rossignol P, Iraqi W, et al. Association of galectin-3 and fibrosis markers with long-term cardiovascular outcomes in patients with heart failure, left ventricular dysfunction, and dyssynchrony: insights from the CARE-HF (Cardiac Resynchronization in Heart Failure) trial. Eur J Heart Fail 2012; 14(1): 74-81.
[] [PMID: 22089058]
McAloon CJ, Ali D, Hamborg T, et al. Extracellular cardiac matrix biomarkers in patients with reduced ejection fraction heart failure as predictors of response to cardiac resynchronisation therapy: a systematic review. 2017; 4(2): e000639
Katritsis DG, Auricchio A. Do We need an implantable car-dioverter-defibrillator for primary prevention in cardiac resynchro-nisation therapy patients? Arrhythm Electrophysiol Rev 2018; 7(3): 157-8.
[] [PMID: 30416727]
van Kimmenade RR, Januzzi JL Jr, Ellinor PT, et al. Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol 2006; 48(6): 1217-24.
[] [PMID: 16979009]
de Boer RA, Lok DJ, Jaarsma T, et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med 2011; 43(1): 60-8.
[] [PMID: 21189092]
Shah RV, Chen-Tournoux AA, Picard MH, van Kimmenade RR, Januzzi JL. Galectin-3, cardiac structure and function, and long-term mortality in patients with acutely decompensated heart failure. Eur J Heart Fail 2010; 12(8): 826-32.
[] [PMID: 20525986]
Stolen CM, Adourian A, Meyer TE, Stein KM, Solomon SD. Plasma galectin-3 and heart failure outcomes in MADIT-CRT (multicenter automatic defibrillator implantation trial with cardiac resynchronization therapy). J Card Fail 2014; 20(11): 793-9.
[] [PMID: 25106783]
Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 2003; 107(3): 363-9.
[] [PMID: 12551853]
Kamioka M, Suzuki H, Yamada S, Kamiyama Y, Saitoh S, Takeishi Y. High sensitivity C-reactive protein predicts nonresponders and cardiac deaths in severe heart failure patients after CRT implantation. Int Heart J 2012; 53(5): 306-12.
[] [PMID: 23038092]
Glick A, Michowitz Y, Keren G, George J. Neurohormonal and inflammatory markers as predictors of short-term outcome in patients with heart failure and cardiac resynchronization therapy. Isr Med Assoc J 2006; 8(6): 391-5.
[PMID: 16833167]
Elahi M, Asopa S, Matata B. NO-cGMP and TNF-α counter regulatory system in blood: understanding the mechanisms leading to myocardial dysfunction and failure. Biochim Biophys Acta 2007; 1772(1): 5-14.
[] [PMID: 17045464]
Brouwers C, Versteeg H, Meine M, et al. Association between brain natriuretic peptide, markers of inflammation and the objective and subjective response to cardiac resynchronization therapy. Brain Behav Immun 2014; 40: 211-8.
[] [PMID: 24704567]
Rordorf R, Savastano S, Sanzo A, et al. Tumor necrosis factor-α predicts response to cardiac resynchronization therapy in patients with chronic heart failure. Circ J 2014; 78(9): 2232-9.
[] [PMID: 24954238]
Belperio J, Horwich T, Abraham WT, et al. Inflammatory media-tors and clinical outcome in patients with advanced heart failure re-ceiving cardiac resynchronization therapy. Am J Cardiol 2016; 117(4): 617-25.
[] [PMID: 26832186]
Calabrò P, Limongelli G, Riegler L, et al. Novel insights into the role of cardiotrophin-1 in cardiovascular diseases. J Mol Cell Cardiol 2009; 46(2): 142-8.
[] [PMID: 19059413]
Wollert KC, Taga T, Saito M, et al. Cardiotrophin-1 activates a distinct form of cardiac muscle cell hypertrophy. Assembly of sarcomeric units in series via gp130/leukemia inhibitory factor receptor-dependent pathways. J Biol Chem 1996; 271(16): 9535-45.
[] [PMID: 8621626]
Jougasaki M, Tachibana I, Luchner A, Leskinen H, Redfield MM, Burnett JC Jr. Augmented cardiac cardiotrophin-1 in experimental congestive heart failure. Circulation 2000; 101(1): 14-7.
[] [PMID: 10618298]
Limongelli G, Roselli T, Pacileo G, et al. Effect of cardiac resynchronization therapy on cardiotrophin-1 circulating levels in patients with heart failure. Intern Emerg Med 2014; 9(1): 43-50.
[] [PMID: 22179744]
Chong KS, Gardner RS, Morton JJ, Ashley EA, McDonagh TA. Plasma concentrations of the novel peptide apelin are decreased in patients with chronic heart failure. Eur J Heart Fail 2006; 8(4): 355-60.
[] [PMID: 16464638]
Chen MM, Ashley EA, Deng DX, et al. Novel role for the potent endogenous inotrope apelin in human cardiac dysfunction. Circulation 2003; 108(12): 1432-9.
[] [PMID: 12963638]
Kosztin A, Széplaki G, Kovács A, et al. Impact of CT-apelin and NT-proBNP on identifying non-responders to cardiac resynchronization therapy. Biomarkers 2017; 22(3-4): 279-86.
[] [PMID: 27471876]
Michelucci A, D’Elios MM, Sticchi E, et al. Autoantibodies against β1-Adrenergic Receptors: Response to cardiac resynchro-nization therapy and renal function. Pacing Clin Electrophysiol 2016; 39(1): 65-72.
[] [PMID: 26411359]
Ravassa S, García-Bolao I, Zudaire A, et al. Cardiac resynchronization therapy-induced left ventricular reverse remodelling is associated with reduced plasma annexin A5. Cardiovasc Res 2010; 88(2): 304-13.
[] [PMID: 20542876]
António N, Soares A, Carvalheiro T, et al. Circulating endothelial progenitor cells as a predictor of response to cardiac resynchronization therapy: the missing piece of the puzzle? Pacing Clin Electrophysiol 2014; 37(6): 731-9.
[] [PMID: 24383551]
Zampetaki A, Mayr M. MicroRNAs in vascular and metabolic disease. Circ Res 2012; 110(3): 508-22.
[] [PMID: 22302757]
Montgomery RL, Hullinger TG, Semus HM, et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation 2011; 124(14): 1537-47.
[] [PMID: 21900086]
Zhu H, Fan GC. Extracellular/circulating microRNAs and their potential role in cardiovascular disease. Am J Cardiovasc Dis 2011; 1(2): 138-49.
[PMID: 22059153]
Melman YF, Shah R, Danielson K, et al. Circulating MicroRNA-30d is associated with response to cardiac resynchronization therapy in heart failure and regulates cardiomyocyte apoptosis: A translational pilot study. Circulation 2015; 131(25): 2202-16.
[] [PMID: 25995320]
McAloon CJ, Barwari T, Hu J, et al. Characterisation of circulating biomarkers before and after cardiac resynchronisation therapy and their role in predicting CRT response: The COVERT-HF study 2018; 5(2): e000899
Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction. Cardiovasc Res 2002; 53(1): 31-47.
[] [PMID: 11744011]
Francia P, Balla C, Ricotta A, et al. Plasma osteopontin reveals left ventricular reverse remodelling following cardiac resynchronization therapy in heart failure. Int J Cardiol 2011; 153(3): 306-10.
[] [PMID: 20863582]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy