Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Microextraction and Chromatographic Analysis of Budesonide Epimers in Exhaled Breath Condensate

Author(s): Laleh Samini, Maryam Khoubnasabjafari, Mohamad M. Alimorad, Vahid Jouyban-Gharamaleki, Hak-Kim Chan and Abolghasem Jouyban*

Volume 16, Issue 8, 2020

Page: [1032 - 1040] Pages: 9

DOI: 10.2174/1573411015666191203104522

Price: $65

Abstract

Background: Analysis of drug concentrations in biological fluids is required in clinical sciences for various purposes. Among other biological samples, exhaled breath condensate (EBC) is a potential sample for follow up of drug concentrations.

Methods: A dispersive liquid-liquid microextraction (DLLME) procedure followed by a validated liquid chromatography method was employed for the determination of budesonide (BDS) in EBC samples collected using a homemade setup. EBC is a non-invasive biological sample with possible applications for monitoring drug concentrations. The proposed analytical method is validated according to the FDA guidelines using EBC-spiked samples. Its applicability is tested on EBC samples collected from healthy volunteers receiving a single puff of BDS.

Results: The best DLLME conditions involved the use of methanol (1 mL) as a disperser solvent, chloroform (200 μL) as an extraction solvent, and centrifugation rate of 3500 rpm for 5 minutes. The method was validated over a concentration range of 21-210 μg·L-1 in EBC. Inter- and intra-day precisions were less than 10% where the acceptable levels are less than 20%. The validated method was successfully applied for the determination of BDS in EBC samples.

Conclusion: The findings of this study indicate that the developed method can be used for the extraction and quantification of BDS in EBC samples using a low cost method.

Keywords: Bioanalysis, budesonide, determination, exhaled breath condensate, HPLC-UV, microextraction.

Graphical Abstract
[1]
Meltzer, E.O.; Pearlman, D.S.; Eckerwall, G.; Uryniak, T.; DePietro, M.; Lampl, K. Efficacy and safety of budesonide administered by pressurized metered-dose inhaler in children with asthma. Ann. Allergy Asthma Immunol., 2015, 115(6), 516-522.
[http://dx.doi.org/10.1016/j.anai.2015.09.007] [PMID: 26460293]
[2]
Danese, S.; Siegel, C.A.; Peyrin-Biroulet, L. Review article: Integrating budesonide-MMX into treatment algorithms for mild-to-moderate ulcerative colitis. Aliment. Pharmacol. Ther., 2014, 39(10), 1095-1103.
[http://dx.doi.org/10.1111/apt.12712] [PMID: 24641622]
[3]
Lipworth, B.J. Pharmacokinetics of inhaled drugs. Br. J. Clin. Pharmacol., 1996, 42(6), 697-705.
[http://dx.doi.org/10.1046/j.1365-2125.1996.00493.x] [PMID: 8971424]
[4]
Sebastian, S.; Wilhelm, A.; Jessica, L.; Myers, S.; Veysey, M. Budesonide treatment for microscopic colitis: systematic review and meta-analysis. Eur. J. Gastroenterol. Hepatol., 2019, 31(8), 919-927.
[http://dx.doi.org/10.1097/MEG.0000000000001456] [PMID: 31211724]
[5]
Brogden, R.N.; McTavish, D. Budesonide. An updated review of its pharmacological properties, and therapeutic efficacy in asthma and rhinitis. Drugs, 1992, 44(3), 375-407.
[http://dx.doi.org/10.2165/00003495-199244030-00007] [PMID: 1382936]
[6]
Di Natale, C.; Paolesse, R.; Martinelli, E.; Capuano, R. Solid-state gas sensors for breath analysis: a review. Anal. Chim. Acta, 2014, 824, 1-17.
[http://dx.doi.org/10.1016/j.aca.2014.03.014] [PMID: 24759744]
[7]
Dodig, S.; Cepelak, I. Exhaled breath condensate--from an analytical point of view. Biochem. Med. (Zagreb), 2013, 23(3), 281-295.
[http://dx.doi.org/10.11613/BM.2013.034] [PMID: 24266297]
[8]
Amann, A. Costello, Bde.L.; Miekisch, W.; Schubert, J.; Buszewski, B.; Pleil, J.; Ratcliffe, N.; Risby, T. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J. Breath Res., 2014, 8(3), 034001
[http://dx.doi.org/10.1088/1752-7155/8/3/034001] [PMID: 24946087]
[9]
Khoubnasabjafari, M.; Rahimpour, E.; Jouyban, A. Exhaled breath condensate as an alternative sample for drug monitoring. Bioanalysis, 2018, 10(2), 61-64.
[http://dx.doi.org/10.4155/bio-2017-0205] [PMID: 29236512]
[10]
Risby, T.H. Critical issues for breath analysis. J. Breath Res., 2008, 2, 030302
[http://dx.doi.org/10.1088/1752-7163/2/3/030302]
[11]
Rahimpour, E.; Khoubnasabjafari, M.; Jouyban-Gharamaleki, V.; Jouyban, A. Non-volatile compounds in exhaled breath condensate: review of methodological aspects. Anal. Bioanal. Chem., 2018, 410(25), 6411-6440.
[http://dx.doi.org/10.1007/s00216-018-1259-4] [PMID: 30046867]
[12]
Haslbeck, K.; Schwarz, K.; Hohlfeld, J.M.; Aeume, J.R.; Koch, W. Submicron droplet formation in the human lung. J. Aerosol Sci., 2010, 41, 423-438.
[http://dx.doi.org/10.1016/j.jaerosci.2010.02.010]
[13]
Berchtold, C.; Bosilkovska, M.; Daali, Y.; Walder, B.; Zenobi, R. Real–time monitoring of exhaled drugs by mass spectrometry. Mass Spectrom. Rev., 2013, 9999, 1-20.
[PMID: 24272872]
[14]
Salem, Y.A.; Shaldam, M.A.; El-Sherbiny, D.T.; El-Wasseef, D.R.; El-Ashry, S.M. Simultaneous determination of formoterol fumarate and budesonide epimers in metered dose inhaler using ion-pair chromatography. J. Chromatogr. Sci., 2017, 55(10), 1013-1020.
[http://dx.doi.org/10.1093/chromsci/bmx067] [PMID: 28977479]
[15]
Lindberg, C.; Blomqvist, A. Paulson, J. Determination of budesonide (22 R, S) in human plasma by automated liquid chromatography/thermospray mass spectrometry. Biolog. Mass Spectrom. (Tokyo), 1992, 21, 525-533.
[PMID: 1457467]
[16]
Szeitz, A.; Manji, J.; Riggs, K.W.; Thamboo, A.; Javer, A.R. Validated assay for the simultaneous determination of cortisol and budesonide in human plasma using ultra high performance liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal., 2014, 90, 198-206.
[http://dx.doi.org/10.1016/j.jpba.2013.12.006] [PMID: 24389462]
[17]
Nilsson, K.; Andersson, M.; Beck, O. Phospholipid removal combined with a semi-automated 96-well SPE application for determination of budesonide in human plasma with LC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 970, 31-35.
[http://dx.doi.org/10.1016/j.jchromb.2014.08.035] [PMID: 25228411]
[18]
Buscher, B.A.P.; Jägfeldt, H.; Sandman, H.; Brust-van Schaik, R.; van Schaik, F.; Brüll, L.P. The determination of budesonide and fluticasone in human sputum samples collected from COPD patients using LC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 880(1), 6-11.
[http://dx.doi.org/10.1016/j.jchromb.2011.10.029] [PMID: 22169057]
[19]
Faouzi, M.A.; Dine, T.; Luyckx, M.; Brunet, C.; Gressier, B.; Cazin, M.; Wallaert, B.; Cazin, J.C. High-performance liquid chromatographic method for the determination of budesonide in bronchoalveolar lavage of asthmatic patients. J. Chromatogr. B Biomed. Appl., 1995, 664(2), 463-467.
[http://dx.doi.org/10.1016/0378-4347(94)00473-I] [PMID: 7780604]
[20]
Deventer, K.; Mikulcíková, P.; Van Hoecke, H.; Van Eenoo, P.; Delbeke, F.T. Detection of budesonide in human urine after inhalation by liquid chromatography-mass spectrometry. J. Pharm. Biomed. Anal., 2006, 42(4), 474-479.
[http://dx.doi.org/10.1016/j.jpba.2006.05.016] [PMID: 16842962]
[21]
Khoubnasabjafari, M.; Rahimpour, E.; Samini, M.; Jouyban-Gharamaleki, V.; Chen, L.; Chen, D.; Chan, H.K.; Jouyban, A. A new hypothesis to investigate bioequivalence of pharmaceutical inhalation products. Daru, 2019, 27(1), 517-524.
[http://dx.doi.org/10.1007/s40199-019-00250-x] [PMID: 30847847]
[22]
Khoubnasabjafari, M.; Ansarin, K.; Jouyban-Gharamaleki, V.; Panahi-Azar, V.; Shayanfar, A.; Mohammadzadeh, L.; Jouyban, A. Extraction and analysis of methadone in exhaled breath condensate using a validated HPLC-UV method. J. Pharm. Pharm. Sci., 2015, 18(2), 207-219.
[http://dx.doi.org/10.18433/J3WK65] [PMID: 26158286]
[23]
Hamidi, S.; Khoubnasabjafari, M.; Ansarin, K.; Jouyban-Gharamaleki, V.; Jouyban, A. Chiral separation of methadone in exhaled breath condensate using capillary electrophoresis. Anal. Methods, 2017, 9, 2342-2350.
[http://dx.doi.org/10.1039/C7AY00110J]
[24]
Jouyban, A.; Samadi, A.; Khoubnasabjafari, M.; Jouyban-Gharamaleki, V.; Ranjbar, F. Amidosulfonic acid capped silver nanoparticles as a new spectrophotometric probe for rapid quantification of lamotrigine in exhaled breath condensate. Mikrochim. Acta, 2017, 184, 2991-2998.
[http://dx.doi.org/10.1007/s00604-017-2325-x]
[25]
Mohamadian, E.; Shayanfar, A.; Khoubnasabjafari, M.; Jouyban-Gharamaleki, V.; Ghaffary, S.; Jouyban, A. Analysis of deferiprone in exhaled breath condensate using silver nanoparticles enhanced terbium fluorescence. Anal. Methods, 2017, 9, 5640-5645.
[http://dx.doi.org/10.1039/C7AY01715D]
[26]
Hamidi, S.; Amini, M.; Khoubnasabjafari, M.; Jouyban-Gharamaleki, V.; Sate, H.; Jouyban, A. LC-MS Determination of propranolol in exhaled breath condensate. Pharm. Sci., 2017, 23, 264-270.
[http://dx.doi.org/10.15171/PS.2017.39]
[27]
Pourkarim, F.; Rahimpour, E.; Khoubnasabjafari, M.; Jouyban-Gharamaleki, V.; Jouyban, A. Determination of verapamil in exhaled breath condensate by using a microextraction and liquid chromatography. Pharm. Sci., 2019, 2019(25), 50-56.
[http://dx.doi.org/10.15171/PS.2019.8]
[28]
Hatefi, A.; Rahimpour, E.; Khoubnasabjafari, M.; Edalat, M.; Jouyban-Gharamaleki, V.; Alvani-Alamdari, S.; Nokhodchi, A.; Pournaghi-Azar, M.H.; Jouyban, A. A single-shot diagnostic platform based on copper nanoclusters coated with cetyl trimethylammonium bromide for determination of carbamazepine in exhaled breath condensate. Mikrochim. Acta, 2019, 186(3), 194.
[http://dx.doi.org/10.1007/s00604-019-3278-z] [PMID: 30778721]
[29]
Jouyban, A.; Farajzadeh, M.R.; Khoubnasabjafari, M. Jouyban-Gharamaleki, V Afshar Mogaddam, M. R. Development of deep eutectic solvent based solidification of organic droplets-liquid phase microextraction; Application to determination of some pesticides in farmer’s saliva and exhaled breath condensate samples. Anal. Methods, 2019, 11, 1530-1540.
[http://dx.doi.org/10.1039/C8AY02279H]
[31]
Jouyban, A.; Khoubnasabjafari, M.; Ansarin, K.; Jouyban-Gharamaleki, V. Breath sampling setup. Iranian Patent, , 2013.
[32]
Food and Drug Administration. US Department of Health and Human Services; Food and Drug Administration, Center for Drug Evaluation and Research: Rockville, MD, 2001.
[33]
De la Guardia, M.; Garrigues, S. Analytical research based on the use of low cost instrumentation. Pharm. Sci., 2019, 25, 82-84.
[http://dx.doi.org/10.15171/PS.2019.13]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy