Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article (Mini-Review)

Nanomedicines for Subcellular Targeting: The Mitochondrial Perspective

Author(s): Olakunle Oladimeji, Jude Akinyelu and Moganavelli Singh*

Volume 27 , Issue 33 , 2020

Page: [5480 - 5509] Pages: 30

DOI: 10.2174/0929867326666191125092111

Price: $65

Abstract

Background: Over the past decade, there has been a surge in the number of mitochondrialactive therapeutics for conditions ranging from cancer to aging. Subcellular targeting interventions can modulate adverse intracellular processes unique to the compartments within the cell. However, there is a dearth of reviews focusing on mitochondrial nano-delivery, and this review seeks to fill this gap with regards to nanotherapeutics of the mitochondria.

Methods: Besides its potential for a higher therapeutic index than targeting at the tissue and cell levels, subcellular targeting takes into account the limitations of systemic drug administration and significantly improves pharmacokinetics. Hence, an extensive literature review was undertaken and salient information was compiled in this review.

Results: From literature, it was evident that nanoparticles with their tunable physicochemical properties have shown potential for efficient therapeutic delivery, with several nanomedicines already approved by the FDA and others in clinical trials. However, strategies for the development of nanomedicines for subcellular targeting are still emerging, with an increased understanding of dysfunctional molecular processes advancing the development of treatment modules. For optimal delivery, the design of an ideal carrier for subcellular delivery must consider the features of the diseased microenvironment. The functional and structural features of the mitochondria in the diseased state are highlighted and potential nano-delivery interventions for treatment and diagnosis are discussed.

Conclusion: This review provides an insight into recent advances in subcellular targeting, with a focus on en route barriers to subcellular targeting. The impact of mitochondrial dysfunction in the aetiology of certain diseases is highlighted, and potential therapeutic sites are identified.

Keywords: Subcellular, targeting, mitochondria, therapeutics, nanomedicine, nanocarriers.

[1]
Greish, K.; Mathur, A.; Bakhiet, M.; Taurin, S. Nanomedicine: is it lost in translation? Ther. Deliv., 2018, 9(4), 269-285.
[http://dx.doi.org/10.4155/tde-2017-0118] [PMID: 29495928]
[2]
Rizzo, L.Y.; Theek, B.; Storm, G.; Kiessling, F.; Lammers, T. Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr. Opin. Biotechnol., 2013, 24(6), 1159-1166.
[http://dx.doi.org/10.1016/j.copbio.2013.02.020] [PMID: 23578464]
[3]
Wagner, A.M.; Spencer, D.S.; Peppas, N.A. Advanced architectures in the design of responsive polymers for cancer nanomedicine. J. Appl. Polym. Sci., 2018, 135(24), 46154.
[http://dx.doi.org/10.1002/app.46154] [PMID: 30174339]
[4]
Rajendran, L.; Knölker, H.J.; Simons, K. Subcellular targeting strategies for drug design and delivery. Nat. Rev. Drug Discov., 2010, 9(1), 29-42.
[http://dx.doi.org/10.1038/nrd2897] [PMID: 20043027]
[5]
Vyas, S.; Zaganjor, E.; Haigis, M.C. Mitochondria and cancer. Cell, 2016, 166(3), 555-566.
[http://dx.doi.org/10.1016/j.cell.2016.07.002] [PMID: 27471965]
[6]
Rozanov, D.; Cheltsov, A.; Nilsen, A.; Boniface, C.; Forquer, I.; Korkola, J.; Gray, J.; Tyner, J.; Tognon, C.E.; Mills, G.B.; Spellman, P. Targeting mitochondria in cancer therapy could provide a basis for the selective anti-cancer activity. PLoS One, 2019, 14(3)e0205623
[http://dx.doi.org/10.1371/journal.pone.0205623] [PMID: 30908483]
[7]
Badrinath, N.; Yoo, S.Y. Mitochondria in cancer: in the aspects of tumorigenesis and targeted therapy. Carcinogenesis, 2018, 39(12), 1419-1430.
[http://dx.doi.org/10.1093/carcin/bgy148] [PMID: 30357389]
[8]
Stöckigt, F.; Beiert, T.; Knappe, V.; Baris, O.R.; Wiesner, R.J.; Clemen, C.S.; Nickenig, G.; Andrié, R.P.; Schrickel, J.W. Aging-related mitochondrial dysfunction facilitates the occurrence of serious arrhythmia after myocardial infarction. Biochem. Biophys. Res. Commun., 2017, 493(1), 604-610.
[http://dx.doi.org/10.1016/j.bbrc.2017.08.145] [PMID: 28867191]
[9]
Strebhardt, K.; Ullrich, A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat. Rev. Cancer, 2008, 8(6), 473-480.
[http://dx.doi.org/10.1038/nrc2394] [PMID: 18469827]
[10]
Hendricks, W.P.; Yang, J.; Sur, S.; Zhou, S. Formulating the magic bullet: barriers to clinical translation of nanoparticle cancer gene therapy. Nanomedicine (Lond.), 2014, 9(8), 1121-1124.
[http://dx.doi.org/10.2217/nnm.14.63] [PMID: 25118704]
[11]
Preissner, S.C.; Hoffmann, M.F.; Preissner, R.; Dunkel, M.; Gewiess, A.; Preissner, S. Polymorphic cytochrome P450 enzymes (CYPs) and their role in personalized therapy. PLoS One, 2013, 8(12)e82562
[http://dx.doi.org/10.1371/journal.pone.0082562] [PMID: 24340040]
[12]
Aqil, F.; Munagala, R.; Jeyabalan, J.; Vadhanam, M.V. Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer Lett., 2013, 334(1), 133-141.
[http://dx.doi.org/10.1016/j.canlet.2013.02.032] [PMID: 23435377]
[13]
Hoshyar, N.; Gray, S.; Han, H.; Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond.), 2016, 11(6), 673-692.
[http://dx.doi.org/10.2217/nnm.16.5] [PMID: 27003448]
[14]
Bartlett, D.W.; Davis, M.E. Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles. Bioconjug. Chem., 2007, 18(2), 456-468.
[http://dx.doi.org/10.1021/bc0603539] [PMID: 17326672]
[15]
George, L.; Elizabeth, H.; George, L., Jr The role of the reticuloendothelial system in natural immunity. Neuro Immune Biol., 2005, 5, 95-101.
[http://dx.doi.org/10.1016/S1567-7443(05)80011-0]
[16]
Sun, X.; Rossin, R.; Turner, J.L.; Becker, M.L.; Joralemon, M.J.; Welch, M.J.; Wooley, K.L. An assessment of the effects of shell cross-linked nanoparticle size, core composition, and surface PEGylation on in vivo biodistribution. Biomacromolecules, 2005, 6(5), 2541-2554.
[http://dx.doi.org/10.1021/bm050260e] [PMID: 16153091]
[17]
Perrault, S.D.; Walkey, C.; Jennings, T.; Fischer, H.C.; Chan, W.C. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett., 2009, 9(5), 1909-1915.
[http://dx.doi.org/10.1021/nl900031y] [PMID: 19344179]
[18]
Salmaso, S.; Caliceti, P. Stealth properties to improve therapeutic efficacy of drug nanocarriers. J. Drug Deliv., 2013, 2013374252
[http://dx.doi.org/ 10.1155/2013/374252] [PMID: 23533769]
[19]
Yang, Q.; Lai, S.K. Anti-PEG immunity: emergence, characteristics, and unaddressed questions. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(5), 655-677.
[http://dx.doi.org/10.1002/wnan.1339] [PMID: 25707913]
[20]
Abu Lila, A.S.; Kiwada, H.; Ishida, T. The accelerated blood clearance (ABC) phenomenon: clinical challenge and approaches to manage. J. Control. Release, 2013, 172(1), 38-47.
[http://dx.doi.org/10.1016/j.jconrel.2013.07.026] [PMID: 23933235]
[21]
Abd Ellah, N.H.; Abouelmagd, S.A. Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges. Expert Opin. Drug Deliv., 2017, 14(2), 201-214.
[http://dx.doi.org/10.1080/17425247.2016.1213238] [PMID: 27426638]
[22]
Dams, E.T.; Laverman, P.; Oyen, W.J.; Storm, G.; Scherphof, G.L.; van Der, J.W.M.; Corstens, F.H.; Boerman, O.C. Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J. Pharmacol. Exp. Ther., 2000, 292(3), 1071-1079.
[PMID: 10688625]
[23]
Garay, R.P.; El-Gewely, R.; Armstrong, J.K.; Garratty, G.; Richette, P. Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents, 2012.9(11), 1319-1323.
[http://dx.doi.org/10.1517/17425247.2012.720969] [PMID: 22931049]
[24]
Salatin, S.; Yari Khosroushahi, A. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. J. Cell. Mol. Med., 2017, 21(9), 1668-1686.
[http://dx.doi.org/10.1111/jcmm.13110] [PMID: 28244656]
[25]
Uthaman, S.; Lee, S.J.; Cherukula, K.; Cho, C.S.; Park, I.K. Polysaccharide-coated magnetic nanoparticles for imaging and gene therapy. BioMed Res. Int., 2015, 2015959175
[http://dx.doi.org/10.1155/2015/959175] [PMID: 26078971]
[26]
Yang, Y.; Zhang, Y.M.; Chen, Y.; Chen, J.T.; Liu, Y. Polysaccharide-based noncovalent assembly for targeted delivery of taxol. Sci. Rep., 2016, 6, 19212.
[http://dx.doi.org/10.1038/srep19212] [PMID: 26759029]
[27]
Lin, W.J.; Lee, W.C. Polysaccharide-modified nanoparticles with intelligent CD44 receptor targeting ability for gene delivery. Int. J. Nanomedicine, 2018, 13, 3989-4002.
[http://dx.doi.org/10.2147/IJN.S163149] [PMID: 30022822]
[28]
Wang, C.; Gao, X.; Chen, Z.; Chen, Y.; Chen, H. Preparation, characterization and application of polysaccharide-based metallic nanoparticles: a review. Polymers (Basel), 2017, 9(12), 689.
[http://dx.doi.org/10.3390/polym9120689] [PMID: 30965987]
[29]
Zheng, L.; Sundaram, H.S.; Wei, Z.; Li, C.; Yuan, Z. Applications of zwitterionic polymers. React. Funct. Polym., 2017, 118, 51-61.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2017.07.006]
[30]
Hadjesfandiari, N.; Parambath, A. Stealth coatings for nanoparticles: polyethylene glycol alternatives; Engineer. Biomat. Drug Deliv. Sys, 2018, pp. 345-361.
[http://dx.doi.org/ 10.1016/B978-0-08-101750-0.00013-1]
[31]
Devlin, T.M. Textbook of Biochemistry: With Clinical Correlations; John Wiley & Sons: New York, 2011.
[32]
Yang, N.J.; Hinner, M.J. Getting across the cell membrane: an overview for small molecules, peptides and proteins. Methods Mol. Biol., 2015, 29-53.
[http://dx.doi.org/10.1007/978-1-4939-2272-7_3] [PMID: 25560066]
[33]
Gershell, L.J.; Atkins, J.H. A brief history of novel drug discovery technologies. Nat. Rev. Drug Discov., 2003, 2(4), 321-327.
[http://dx.doi.org/10.1038/nrd1064] [PMID: 12669031]
[34]
Kuhn, D.A.; Vanhecke, D.; Michen, B.; Blank, F.; Gehr, P.; Petri-Fink, A.; Rothen-Rutishauser, B. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein J. Nanotechnol., 2014, 5, 1625-1636.
[http://dx.doi.org/10.3762/bjnano.5.174] [PMID: 25383275]
[35]
Bakema, J.E.; van Egmond, M. The human immunoglobulin A Fc receptor FcαRI: a multifaceted regulator of mucosal immunity. Mucosal Immunol., 2011, 4(6), 612-624.
[http://dx.doi.org/10.1038/mi.2011.36] [PMID: 21937986]
[36]
Rosales, C.; Uribe-Querol, E. Phagocytosis: a fundamental process in immunity. BioMed Res. Int., 2017, 2017, 9042-9851.
[http://dx.doi.org/10.1155/2017/9042851] [PMID: 28691037]
[37]
Gordon, S. Phagocytosis: an immunobiologic process. Immunity, 2016, 44(3), 463-475.
[http://dx.doi.org/10.1016/j.immuni.2016.02.026] [PMID: 26982354]
[38]
Kumari, S.; Mg, S.; Mayor, S. Endocytosis unplugged: multiple ways to enter the cell. Cell Res., 2010, 20(3), 256-275.
[http://dx.doi.org/10.1038/cr.2010.19] [PMID: 20125123]
[39]
Kaksonen, M.; Roux, A. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol., 2018, 19(5), 313-326.
[http://dx.doi.org/10.1038/nrm.2017.132] [PMID: 29410531]
[40]
McMahon, H.T.; Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol., 2011, 12(8), 517-533.
[http://dx.doi.org/10.1038/nrm3151] [PMID: 21779028]
[41]
Singh, M.; Jadhav, H.R.; Bhatt, T. Dynamin functions and ligands: classical mechanisms behind. Mol. Pharmacol., 2017, 91(2), 123-134.
[http://dx.doi.org/10.1124/mol.116.105064] [PMID: 27879341]
[42]
Grassart, A.; Cheng, A.T.; Hong, S.H.; Zhang, F.; Zenzer, N.; Feng, Y.; Briner, D.M.; Davis, G.D.; Malkov, D.; Drubin, D.G. Actin and dynamin2 dynamics and interplay during clathrin-mediated endocytosis. J. Cell Biol., 2014, 205(5), 721-735.
[http://dx.doi.org/10.1083/jcb.201403041] [PMID: 24891602]
[43]
El-Sayed, A.; Harashima, H. Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis. Mol. Ther., 2013, 21(6), 1118-1130.
[http://dx.doi.org/10.1038/mt.2013.54] [PMID: 23587924]
[44]
Foroozandeh, P.; Aziz, A.A. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res. Lett., 2018, 13(1), 339.
[http://dx.doi.org/10.1186/s11671-018-2728-6] [PMID: 30361809]
[45]
Kiss, A.L.; Botos, E. Endocytosis via caveolae: alternative pathway with distinct cellular compartments to avoid lysosomal degradation? J. Cell. Mol. Med., 2009, 13(7), 1228-1237.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00754.x] [PMID: 19382909]
[46]
Echarri, A.; Del Pozo, M.A. Imaging the complexity, plasticity, and dynamics of caveolae. In: Cell Membrane Nano-domains; From Biochemistry to Nanoscopy, 2014; p. 113.
[47]
Cossart, P.; Helenius, A. Endocytosis of viruses and bacteria. Cold Spring Harb. Perspect. Biol., 2014, 6(8)a016972
[http://dx.doi.org/10.1101/cshperspect.a016972] [PMID: 25085912]
[48]
Akinyelu, J.; Singh, M. Chitosan stabilized gold-folate-poly(lactide-co-glycolide) nanoplexes facilitate efficient gene delivery in hepatic and breast cancer cells. J. Nanosci. Nanotechnol., 2018, 18(7), 4478-4486.
[http://dx.doi.org/10.1166/jnn.2018.15286] [PMID: 29442622]
[49]
Ha, K.D.; Bidlingmaier, S.M.; Liu, B. Macropinocytosis exploitation by cancers and cancer therapeutics. Front. Physiol., 2016, 7, 381.
[http://dx.doi.org/10.3389/fphys.2016.00381] [PMID: 27672367]
[50]
Bloomfield, G.; Kay, R.R. Uses and abuses of macropinocytosis. J. Cell Sci., 2016, 129(14), 2697-2705.
[http://dx.doi.org/10.1242/jcs.176149] [PMID: 27352861]
[51]
BoseDasgupta. S.; Moes, S.; Jenoe, P.; Pieters, J. Cytokine-induced macropinocytosis in macrophages is regulated by 14-3-3ζ through its interaction with serine-phosphorylated coronin 1. FEBS J., 2015, 282(7), 1167-1181.
[http://dx.doi.org/10.1111/febs.13214] [PMID: 25645340]
[52]
Shang, L.; Nienhaus, K.; Nienhaus, G.U. Engineered nanoparticles interacting with cells: size matters. J. Nanobiotechnology, 2014, 12(1), 5.
[http://dx.doi.org/10.1186/1477-3155-12-5] [PMID: 24491160]
[53]
Wan, Y.; Moyle, P.M.; Toth, I. Endosome escape strategies for improving the efficacy of oligonucleotide delivery systems. Curr. Med. Chem., 2015, 22(29), 3326-3346.
[http://dx.doi.org/10.2174/0929867322666150825162941] [PMID: 26303176]
[54]
Yuan, H.; Li, J.; Bao, G.; Zhang, S. Variable nanoparticle-cell adhesion strength regulates cellular uptake. Phys. Rev. Lett., 2010, 105(13)138101
[http://dx.doi.org/10.1103/PhysRevLett.105.138101] [PMID: 21230813]
[55]
Zhang, S.; Li, J.; Lykotrafitis, G.; Bao, G.; Suresh, S. Size‐dependent endocytosis of nanoparticles. Adv. Mater., 2009, 21(4), 419-424.
[http://dx.doi.org/10.1002/adma.200801393] [PMID: 19606281]
[56]
He, C.; Hu, Y.; Yin, L.; Tang, C.; Yin, C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials, 2010, 31(13), 3657-3666.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.065] [PMID: 20138662]
[57]
Jiang, Y.; Huo, S.; Mizuhara, T.; Das, R.; Lee, Y.W.; Hou, S.; Moyano, D.F.; Duncan, B.; Liang, X.J.; Rotello, V.M. The interplay of size and surface functionality on the cellular uptake of sub-10 nm gold nanoparticles. ACS Nano, 2015, 9(10), 9986-9993.
[http://dx.doi.org/10.1021/acsnano.5b03521] [PMID: 26435075]
[58]
Liu, X.; Huang, N.; Li, H.; Jin, Q.; Ji, J. Surface and size effects on cell interaction of gold nanoparticles with both phagocytic and nonphagocytic cells. Langmuir, 2013, 29(29), 9138-9148.
[http://dx.doi.org/10.1021/la401556k] [PMID: 23815604]
[59]
Huang, H.W.; Chen, F.Y.; Lee, M.T. Molecular mechanism of peptide-induced pores in membranes. Phys. Rev. Lett., 2004, 92(19)198304
[http://dx.doi.org/10.1103/PhysRevLett.92.198304] [PMID: 15169456]
[60]
Moreira, C.; Oliveira, H.; Pires, L.R.; Simões, S.; Barbosa, M.A.; Pêgo, A.P. Improving chitosan-mediated gene transfer by the introduction of intracellular buffering moieties into the chitosan backbone. Acta Biomater., 2009, 5(8), 2995-3006.
[http://dx.doi.org/10.1016/j.actbio.2009.04.021] [PMID: 19427930]
[61]
Varkouhi, A.K.; Scholte, M.; Storm, G.; Haisma, H.J. Endosomal escape pathways for delivery of biologicals. J. Control. Release, 2011, 151(3), 220-228.
[http://dx.doi.org/10.1016/j.jconrel.2010.11.004] [PMID: 21078351]
[62]
Bandelt, H.J.; Macaulay, V.; Richards, M. Human Mitochondrial DNA and the Evolution of Homo sapiens; Springer Nature, 2006.
[63]
Friedman, J.R.; Nunnari, J. Mitochondrial form and function. Nature, 2014, 505(7483), 335-343.
[http://dx.doi.org/10.1038/nature12985] [PMID: 24429632]
[64]
Kang, Y.C.; Son, M.; Kang, S.; Im, S.; Piao, Y.; Lim, K.S.; Song, M.Y.; Park, K.S.; Kim, Y.H.; Pak, Y.K. Cell-penetrating artificial mitochondria-targeting peptide-conjugated metallothionein 1A alleviates mitochondrial damage in Parkinson’s disease models. Exp. Mol. Med., 2018, 50(8), 105.
[http://dx.doi.org/10.1038/s12276-018-0124-z] [PMID: 30120245]
[65]
Omura, T. Mitochondria-targeting sequence, a multi-role sorting sequence recognized at all steps of protein import into mitochondria. J. Biochem., 1998, 123(6), 1010-1016.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022036] [PMID: 9603986]
[66]
Kim, G.H.; Won, J.E.; Byeon, Y.; Kim, M.G.; Wi, T.I.; Lee, J.M.; Park, Y.Y.; Lee, J.W.; Kang, T.H.; Jung, I.D.; Shin, B.C.; Ahn, H.J.; Lee, Y.J.; Sood, A.K.; Han, H.D.; Park, Y.M. Selective delivery of PLXDC1 small interfering RNA to endothelial cells for anti-angiogenesis tumor therapy using CD44-targeted chitosan nanoparticles for epithelial ovarian cancer. Drug Deliv., 2018, 25(1), 1394-1402.
[http://dx.doi.org/10.1080/10717544.2018.1480672] [PMID: 29890852]
[67]
Howell, N. Leber hereditary optic neuropathy: mitochondrial mutations and degeneration of the optic nerve. Vision Res., 1997, 37(24), 3495-3507.
[http://dx.doi.org/10.1016/S0042-6989(96)00167-8] [PMID: 9425526]
[68]
Wallace, D.C.; Singh, G.; Lott, M.T.; Hodge, J.A.; Schurr, T.G.; Lezza, A.M.; Elsas, L.J., II; Nikoskelainen, E.K. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science, 1988, 242(4884), 1427-1430.
[http://dx.doi.org/10.1126/science.3201231] [PMID: 3201231]
[69]
Yu, H.; Koilkonda, R.D.; Chou, T-H.; Porciatti, V.; Ozdemir, S.S.; Chiodo, V.; Boye, S.L.; Boye, S.E.; Hauswirth, W.W.; Lewin, A.S.; Guy, J. Gene delivery to mitochondria by targeting modified adenoassociated virus suppresses Leber’s hereditary optic neuropathy in a mouse model. Proc. Natl. Acad. Sci. USA, 2012, 109(20), E1238-E1247.
[http://dx.doi.org/10.1073/pnas.1119577109] [PMID: 22523243]
[70]
Yousif, L.F.; Stewart, K.M.; Horton, K.L.; Kelley, S.O. Mitochondria-penetrating peptides: sequence effects and model cargo transport. ChemBioChem, 2009, 10(12), 2081-2088.
[http://dx.doi.org/10.1002/cbic.200900017] [PMID: 19670199]
[71]
Zhao, T.; Liu, X.; Singh, S.; Liu, X.; Zhang, Y.; Sawada, J.; Komatsu, M.; Belfield, K.D. Mitochondria penetrating peptide conjugated TAMRA for live-cell long-term tracking. Bioconjug. Chem., 2019, 30(9), 2312-2316.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00465] [PMID: 31433175]
[72]
Horton, K.L.; Stewart, K.M.; Fonseca, S.B.; Guo, Q.; Kelley, S.O. Mitochondria-penetrating peptides. Chem. Biol., 2008, 15(4), 375-382.
[http://dx.doi.org/10.1016/j.chembiol.2008.03.015] [PMID: 18420144]
[73]
Derossi, D.; Joliot, A.H.; Chassaing, G.; Prochiantz, A. The third helix of the antennapedia homeodomain translocates through biological membranes. J. Biol. Chem., 1994, 269(14), 10444-10450.
[PMID: 8144628]
[74]
Pujals, S.; Giralt, E. Proline-rich, amphipathic cell-penetrating peptides. Adv. Drug Deliv. Rev., 2008, 60(4-5), 473-484.
[http://dx.doi.org/10.1016/j.addr.2007.09.012] [PMID: 18187229]
[75]
Rhee, M.; Davis, P. Mechanism of uptake of C105Y, a novel cell-penetrating peptide. J. Biol. Chem., 2006, 281(2), 1233-1240.
[http://dx.doi.org/10.1074/jbc.M509813200] [PMID: 16272160]
[76]
Zhao, K.; Zhao, G.M.; Wu, D.; Soong, Y.; Birk, A.V.; Schiller, P.W.; Szeto, H.H. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death and reperfusion injury. J. Biol. Chem., 2004, 279(33), 34682-34690.
[http://dx.doi.org/10.1074/jbc.M402999200] [PMID: 15178689]
[77]
Reddy, P.H.; Manczak, M.; Kandimalla, R. Mitochondria-targeted small molecule SS31: a potential candidate for the treatment of Alzheimer’s disease. Hum. Mol. Genet., 2017, 26(8), 1483-1496.
[http://dx.doi.org/10.1093/hmg/ddx052] [PMID: 28186562]
[78]
Okamura, D.M.; Pennathur, S.; Pasichnyk, K.; López-Guisa, J.M.; Collins, S.; Febbraio, M.; Heinecke, J.; Eddy, A.A. CD36 regulates oxidative stress and inflammation in hypercholesterolemic CKD. J. Am. Soc. Nephrol., 2009, 20(3), 495-505.
[http://dx.doi.org/10.1681/ASN.2008010009] [PMID: 19211715]
[79]
Hou, Y.; Shi, Y.; Han, B.; Liu, X.; Qiao, X.; Qi, Y.; Wang, L. The antioxidant peptide SS31 prevents oxidative stress, downregulates CD36 and improves renal function in diabetic nephropathy. Nephrol. Dial. Transplant., 2018, 33(11), 1908-1918.
[http://dx.doi.org/10.1093/ndt/gfy021] [PMID: 30388276]
[80]
Sun, Y.; Zhan, A.; Zhou, S.; Kuang, X.; Shen, H.; Liu, H.; Xu, Y. A novel mitochondria-targeting tetrapeptide for subcellular delivery of nanoparticles. Chin. Chem. Lett., 2019, 30(7), 1435-1439.
[http://dx.doi.org/10.1016/j.cclet.2019.05.001]
[81]
Liberman, E.A.; Topaly, V.P.; Tsofina, L.M.; Jasaitis, A.A.; Skulachev, V.P. Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature, 1969, 222(5198), 1076-1078.
[http://dx.doi.org/10.1038/2221076a0] [PMID: 5787094]
[82]
Ross, M.F.; Kelso, G.F.; Blaikie, F.H.; James, A.M.; Cochemé, H.M.; Filipovska, A.; Da Ros, T.; Hurd, T.R.; Smith, R.A.; Murphy, M.P. Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochemistry (Mosc.), 2005, 70(2), 222-230.
[http://dx.doi.org/10.1007/s10541-005-0104-5] [PMID: 15807662]
[83]
Murphy, M.P. Selective targeting of bioactive compounds to mitochondria. Trends Biotechnol., 1997, 15(8), 326-330.
[http://dx.doi.org/10.1016/S0167-7799(97)01068-8] [PMID: 9263481]
[84]
Honig, B.H.; Hubbell, W.L.; Flewelling, R.F. Electrostatic interactions in membranes and proteins. Annu. Rev. Biophys. Biophys. Chem., 1986, 15(1), 163-193.
[http://dx.doi.org/10.1146/annurev.bb.15.060186.001115] [PMID: 2424473]
[85]
Gennis, R.B. Biomembranes: Molecular Structure and Function; Springer Science & Business Medias, 2013.
[86]
Flewelling, R.F.; Hubbell, W.L. The membrane dipole potential in a total membrane potential model. Applications to hydrophobic ion interactions with membranes. Biophys. J., 1986, 49(2), 541-552.
[http://dx.doi.org/10.1016/S0006-3495(86)83664-5] [PMID: 3955184]
[87]
Rin Jean, S.; Tulumello, D.V.; Wisnovsky, S.P.; Lei, E.K.; Pereira, M.P.; Kelley, S.O. Molecular vehicles for mitochondrial chemical biology and drug delivery. ACS Chem. Biol., 2014, 9(2), 323-333.
[http://dx.doi.org/10.1021/cb400821p] [PMID: 24410267]
[88]
Pathak, R.K.; Marrache, S.; Harn, D.A.; Dhar, S. Mito-DCA: a mitochondria targeted molecular scaffold for efficacious delivery of metabolic modulator dichloroacetate. ACS Chem. Biol., 2014, 9(5), 1178-1187.
[http://dx.doi.org/10.1021/cb400944y] [PMID: 24617941]
[89]
Cheng, G.; Zielonka, J.; McAllister, D.M.; Mackinnon, A.C., Jr; Joseph, J.; Dwinell, M.B.; Kalyanaraman, B. Mitochondria-targeted vitamin E analogs inhibit breast cancer cell energy metabolism and promote cell death. BMC Cancer, 2013, 13(1), 285.
[http://dx.doi.org/10.1186/1471-2407-13-285] [PMID: 23764021]
[90]
Yang, Y.; He, L.; Xu, K.; Lin, W. Development of a mitochondria-targeted fluorescent probe for the ratiometric visualization of sulfur dioxide in living cells and zebrafish. Anal. Methods, 2019, 11(31), 3931-3935.
[http://dx.doi.org/10.1039/C9AY01211G]
[91]
Marrache, S.; Dhar, S. The energy blocker inside the power house: mitochondria targeted delivery of 3-bromopyruvate. Chem. Sci. (Camb.), 2015, 6(3), 1832-1845.
[http://dx.doi.org/10.1039/C4SC01963F] [PMID: 25709804]
[92]
Jean, S.R.; Ahmed, M.; Lei, E.K.; Wisnovsky, S.P.; Kelley, S.O. Peptide-mediated delivery of chemical probes and therapeutics to mitochondria. Acc. Chem. Res., 2016, 49(9), 1893-1902.
[http://dx.doi.org/10.1021/acs.accounts.6b00277] [PMID: 27529125]
[93]
Cohen-Erez, I.; Rapaport, H. Negatively charged polypeptide-peptide nanoparticles showing efficient drug delivery to the mitochondria. Colloids Surf. B Biointerfaces, 2018, 162, 186-192.
[http://dx.doi.org/10.1016/j.colsurfb.2017.11.048] [PMID: 29190470]
[94]
Cohen-Erez, I.; Rapaport, H. Coassemblies of the anionic polypeptide γ-PGA and cationic β-sheet peptides for drug delivery to mitochondria. Biomacromolecules, 2015, 16(12), 3827-3835.
[http://dx.doi.org/10.1021/acs.biomac.5b01140] [PMID: 26505209]
[95]
Cohen‐Erez, I.; Harduf, N.; Rapaport, H. Oligonucleotide loaded polypeptide‐peptide nanoparticles towards mitochondrial‐targeted delivery. Polym. Adv. Technol., 2019, 30, 2506-2541.
[http://dx.doi.org/10.1002/pat.4707]
[96]
Yin, J.; Peng, M.; Lin, W. Visualization of mitochondrial viscosity in inflammation, fatty liver, and cancer living mice by a robust fluorescent probe. Anal. Chem., 2019, 91(13), 8415-8421.
[http://dx.doi.org/10.1021/acs.analchem.9b01293] [PMID: 31179692]
[97]
Gao, W.; Ma, Y.; Lin, W. A mitochondria-targeted and deep-red emission ratiometric fluorescent probe for real-time visualization of SO2 in living cells, zebrafish and living mice. Analyst (Lond.), 2019, 144(16), 4972-4977.
[http://dx.doi.org/10.1039/C9AN00973F] [PMID: 31322159]
[98]
Liu, Y.; Li, K.; Wu, M.Y.; Liu, Y.H.; Xie, Y.M.; Yu, X.Q. A mitochondria-targeted colorimetric and ratiometric fluorescent probe for biological SO2 derivatives in living cells. Chem. Commun. (Camb.), 2015, 51(50), 10236-10239.
[http://dx.doi.org/10.1039/C5CC03055B] [PMID: 26021301]
[99]
Shi, J.; Shu, W.; Tian, Y.; Wu, Y.; Jing, J.; Zhang, R.; Zhang, X. A real-time ratiometric fluorescent probe for imaging of SO 2 derivatives in mitochondria of living cells. RSC Advances, 2019, 9(39), 22348-22354.
[http://dx.doi.org/10.1039/C9RA03207J]
[100]
Ren, M.; Deng, B.; Zhou, K.; Kong, X.; Wang, J.Y.; Lin, W. Single fluorescent probe for dual-imaging viscosity and H2O2 in mitochondria with different fluorescence signals in living cells. Anal. Chem., 2017, 89(1), 552-555.
[http://dx.doi.org/10.1021/acs.analchem.6b04385] [PMID: 27958699]
[101]
Li, H.; Xin, C.; Zhang, G.; Han, X.; Qin, W.; Zhang, C.; Yu, C.; Jing, S.; Li, L.; Huang, W. Mitochondria-targeted two-photon fluorogenic probe for dual-imaging viscosity and H2O2 level in Parkinson’s disease models. J. Mater. Chem. B Mater. Biol. Med., 2019, 7, 4243-4251.
[http://dx.doi.org/10.1039/C9TB00576E]
[102]
Xu, J.; Zhang, Y.; Yu, H.; Gao, X.; Shao, S. Mitochondria-targeted fluorescent probe for imaging hydrogen peroxide in living cells. Anal. Chem., 2016, 88(2), 1455-1461.
[http://dx.doi.org/10.1021/acs.analchem.5b04424] [PMID: 26695451]
[103]
Zhang, X.; Ba, Q.; Gu, Z.; Guo, D.; Zhou, Y.; Xu, Y.; Wang, H.; Ye, D.; Liu, H. Fluorescent coumarin-artemisinin conjugates as mitochondria-targeting theranostic probes for enhanced anticancer activities. Chemistry, 2015, 21(48), 17415-17421.
[http://dx.doi.org/10.1002/chem.201502543] [PMID: 26458147]
[104]
Cai, G.; Yu, W.; Song, D.; Zhang, W.; Guo, J.; Zhu, J.; Ren, Y.; Kong, L. Discovery of fluorescent coumarin-benzo[b]thiophene 1,1-dioxide conjugates as mitochondria-targeting antitumor STAT3 inhibitors. Eur. J. Med. Chem., 2019, 174, 236-251.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.024] [PMID: 31048139]
[105]
Smith, R.A.; Hartley, R.C.; Murphy, M.P. Mitochondria-targeted small molecule therapeutics and probes. Antioxid. Redox Signal., 2011, 15(12), 3021-3038.
[http://dx.doi.org/10.1089/ars.2011.3969] [PMID: 21395490]
[106]
Guzman-Villanueva, D.; Mendiola, M.R.; Nguyen, H.X.; Weissig, V. Influence of triphenylphosphonium (TPP) cation hydrophobization with phospholipids on cellular toxicity and mitochondrial selectivity. SOJ Pharm. Pharm. Sci., 2015, 2(1), 1-9.
[http://dx.doi.org/10.15226/2374-6866/2/1/00121]
[107]
Battogtokh, G.; Gotov, O.; Kang, J.H.; Cho, J.; Jeong, T.H.; Chimed, G.; Ko, Y.T. Triphenylphosphine-docetaxel conjugate-incorporated albumin nanoparticles for cancer treatment. Nanomedicine (Lond.), 2018, 13(3), 325-338.
[http://dx.doi.org/10.2217/nnm-2017-0274] [PMID: 29338573]
[108]
Marrache, S.; Dhar, S. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc. Natl. Acad. Sci. USA, 2012, 109(40), 16288-16293.
[http://dx.doi.org/10.1073/pnas.1210096109] [PMID: 22991470]
[109]
Weissig, V. DQAsomes as the prototype of mitochondria-targeted pharmaceutical nanocarriers: preparation, characterization, and use. Methods Mol. Biol., 2015, 1265, 1-11.
[http://dx.doi.org/10.1007/978-1-4939-2288-8_1] [PMID: 25634263]
[110]
Bae, Y.; Jung, M.K.; Lee, S.; Song, S.J.; Mun, J.Y.; Green, E.S.; Han, J.; Ko, K.S.; Choi, J.S. Dequalinium-based functional nanosomes show increased mitochondria targeting and anticancer effect. Eur. J. Pharm. Biopharm., 2018, 124, 104-115.
[http://dx.doi.org/10.1016/j.ejpb.2017.12.013] [PMID: 29305141]
[111]
Bae, Y.; Jung, M.K.; Song, S.J.; Green, E.S.; Lee, S.; Park, H.S.; Jeong, S.H.; Han, J.; Mun, J.Y.; Ko, K.S.; Choi, J.S. Functional nanosome for enhanced mitochondria-targeted gene delivery and expression. Mitochondrion, 2017, 37, 27-40.
[http://dx.doi.org/10.1016/j.mito.2017.06.005] [PMID: 28669809]
[112]
Yang, Y.; He, L.; Xu, K.; Lin, W. Development of a mitochondria-targeted fluorescent probe for ratiometric visualization of sulfur dioxide in living cells and zebrafish. Anal. Methods, 2019, 11(31), 3931-3935.
[http://dx.doi.org/10.1039/C9AY01211G]
[113]
Wu, M.X.; Wei, X.; Wei, Y.F.; Sun, R.; Xu, Y.J.; Ge, J.F. A highly efficient fluorescent probe based on tetrahydroxanthylium-coumarin for detection bisulfite in mitochondria. Anal. Methods, 2019, 11(34), 4334-4340.
[http://dx.doi.org/10.1039/C9AY01355E]
[114]
Wisnovsky, S.P.; Wilson, J.J.; Radford, R.J.; Pereira, M.P.; Chan, M.R.; Laposa, R.R.; Lippard, S.J.; Kelley, S.O. Targeting mitochondrial DNA with a platinum-based anticancer agent. Chem. Biol., 2013, 20(11), 1323-1328.
[http://dx.doi.org/10.1016/j.chembiol.2013.08.010] [PMID: 24183971]
[115]
Chamberlain, G.R.; Tulumello, D.V.; Kelley, S.O. Targeted delivery of doxorubicin to mitochondria. ACS Chem. Biol., 2013, 8(7), 1389-1395.
[http://dx.doi.org/10.1021/cb400095v] [PMID: 23590228]
[116]
Wang, X.X.; Li, Y.B.; Yao, H.J.; Ju, R.J.; Zhang, Y.; Li, R.J.; Yu, Y.; Zhang, L.; Lu, W.L. The use of mitochondrial targeting resveratrol liposomes modified with a dequalinium polyethylene glycol-distearoylphosphatidyl ethanolamine conjugate to induce apoptosis in resistant lung cancer cells. Biomaterials, 2011, 32(24), 5673-5687.
[http://dx.doi.org/10.1016/j.biomaterials.2011.04.029] [PMID: 21550109]
[117]
Patel, N.R.; Hatziantoniou, S.; Georgopoulos, A.; Demetzos, C.; Torchilin, V.P.; Weissig, V.; D’Souza, G.G. Mitochondria-targeted liposomes improve the apoptotic and cytotoxic action of sclareol. J. Liposome Res., 2010, 20(3), 244-249.
[http://dx.doi.org/10.3109/08982100903347931] [PMID: 19883213]
[118]
Biswas, S.; Dodwadkar, N.S.; Piroyan, A.; Torchilin, V.P. Surface conjugation of triphenylphosphonium to target poly(amidoamine) dendrimers to mitochondria. Biomaterials, 2012, 33(18), 4773-4782.
[http://dx.doi.org/10.1016/j.biomaterials.2012.03.032] [PMID: 22469294]
[119]
Boddapati, S.V.; D’Souza, G.G.; Erdogan, S.; Torchilin, V.P.; Weissig, V. Organelle-targeted nanocarriers: specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo. Nano Lett., 2008, 8(8), 2559-2563.
[http://dx.doi.org/10.1021/nl801908y] [PMID: 18611058]
[120]
Zhang, Y.; Li, R.J.; Ying, X.; Tian, W.; Yao, H.J.; Men, Y.; Yu, Y.; Zhang, L.; Ju, R.J.; Wang, X.X.; Zhou, J.; Chen, J.X.; Li, N.; Lu, W.L. Targeting therapy with mitosomal daunorubicin plus amlodipine has the potential to circumvent intrinsic resistant breast cancer. Mol. Pharm., 2011, 8(1), 162-175.
[http://dx.doi.org/10.1021/mp100249x] [PMID: 21062083]
[121]
Zhang, L.; Yao, H.J.; Yu, Y.; Zhang, Y.; Li, R.J.; Ju, R.J.; Wang, X.X.; Sun, M.G.; Shi, J.F.; Lu, W-L. Mitochondrial targeting liposomes incorporating daunorubicin and quinacrine for treatment of relapsed breast cancer arising from cancer stem cells. Biomaterials, 2012, 33(2), 565-582.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.055] [PMID: 21983136]
[122]
Samuelson, L.E.; Dukes, M.J.; Hunt, C.R.; Casey, J.D.; Bornhop, D.J. TSPO targeted dendrimer imaging agent: synthesis, characterization, and cellular internalization. Bioconjug. Chem., 2009, 20(11), 2082-2089.
[http://dx.doi.org/10.1021/bc9002053] [PMID: 19863077]
[123]
Yusuf, M.; Khan, R.A.; Khan, M.; Ahmed, B. Plausible antioxidant biomechanics and anticonvulsant pharmacological activity of brain-targeted β-carotene nanoparticles. Int. J. Nanomedicine, 2012, 7, 4311-4321.
[http://dx.doi.org/ 10.2147/ijn.s34588] [PMID: 22915852]
[124]
Pucheu, S.; Boucher, F.; Sulpice, T.; Tresallet, N.; Bonhomme, Y.; Malfroy, B.; de Leiris, J. EUK-8 a synthetic catalytic scavenger of reactive oxygen species protects isolated iron-overloaded rat heart from functional and structural damage induced by ischemia/reperfusion. Cardiovasc. Drugs Ther., 1996, 10(3), 331-339.
[http://dx.doi.org/10.1007/BF02627957] [PMID: 8877076]
[125]
Cheng, J.; Kamiya, K.; Kodama, I. Carvedilol: molecular and cellular basis for its multifaceted therapeutic potential. Cardiovasc. Drug Rev., 2001, 19(2), 152-171.
[http://dx.doi.org/10.1111/j.1527-3466.2001.tb00061.x] [PMID: 11484068]
[126]
Niknahad, H.; Taghdiri, A.; Mohammadi-Bardbori, A.; Rezaeian Mehrabadi, A. Protective effect of captopril against doxorubicin-induced oxidative stress in isolated rat liver mitochondria. Iranian J. Pharm. Sci., 2010, 6(2), 91-98.
[127]
Silva, M.F.; Aires, C.C.; Luis, P.B.; Ruiter, J.P.; IJlst, L.; Duran, M.; Wanders, R.J.; de Almeida, I.T. Valproic acid metabolism and its effects on mitochondrial fatty acid oxidation: a review. J. Inherit. Metab. Dis., 2008, 31(2), 205-216.
[http://dx.doi.org/10.1007/s10545-008-0841-x] [PMID: 18392741]
[128]
Spiller, H.A.; Sawyer, T.S. Toxicology of oral antidiabetic medications. Amer J. Health Syst. Pharm., 2006, 63(10), 929-938.
[http://dx.doi.org/10.2146/ajhp050500] [PMID: 16675650]
[129]
Bindu, L.H.; Reddy, P.P. Genetics of aminoglycoside-induced and prelingual non-syndromic mitochondrial hearing impairment: a review. Int. J. Audiol., 2008, 47(11), 702-707.
[http://dx.doi.org/10.1080/14992020802215862] [PMID: 19031229]
[130]
Scruggs, E.R.; Dirks Naylor, A.J. Mechanisms of zidovudine-induced mitochondrial toxicity and myopathy. Pharmacology, 2008, 82(2), 83-88.
[http://dx.doi.org/10.1159/000134943] [PMID: 18504416]
[131]
Pinti, M.; Salomoni, P.; Cossarizza, A. Anti-HIV drugs and the mitochondria. Biochim. Biophys. Acta (BBA) -. Bioenergetics, 2006, 1757(5-6), 700-707.
[http://dx.doi.org/10.1016/j.bbabio.2006.05.001] [PMID: 16782042]
[132]
Fosslien, E. Review: mitochondrial medicine-cardiomyopathy caused by defective oxidative phosphorylation. Ann. Clin. Lab. Sci., 2003, 33(4), 371-395.
[PMID: 14584751]
[133]
Sullivan, L.B.; Chandel, N.S. Mitochondrial reactive oxygen species and cancer. Cancer Metab., 2014, 2(1), 17.
[http://dx.doi.org/10.1186/2049-3002-2-17] [PMID: 25671107]
[134]
Veenman, L.; Shandalov, Y.; Gavish, M. VDAC activation by the 18 kDa translocator protein (TSPO), implications for apoptosis. J. Bioenerg. Biomembr., 2008, 40(3), 199-205.
[http://dx.doi.org/10.1007/s10863-008-9142-1] [PMID: 18670869]
[135]
Wen, R.; Banik, B.; Pathak, R.K.; Kumar, A.; Kolishetti, N.; Dhar, S. Nanotechnology inspired tools for mitochondrial dysfunction related diseases Adv. Drug Deliv. Rev., 2016, 99(Pt A), 52-69.
[http://dx.doi.org/10.1016/j.addr.2015.12.024]
[136]
Zhang, Y.; Wei, J.; Xu, J.; Leong, W.S.; Liu, G.; Ji, T.; Cheng, Z.; Wang, J.; Lang, J.; Zhao, Y.; You, L.; Zhao, X.; Wei, T.; Anderson, G.J.; Qi, S.; Kong, J.; Nie, G.; Li, S. Suppression of tumor energy supply by liposomal nanoparticle-mediated inhibition of aerobic glycolysis. ACS Appl. Mater. Interfaces, 2018, 10(3), 2347-2353.
[http://dx.doi.org/10.1021/acsami.7b16685] [PMID: 29286239]
[137]
Gatliff, J.; East, D.A.; Singh, A.; Alvarez, M.S.; Frison, M.; Matic, I.; Ferraina, C.; Sampson, N.; Turkheimer, F.; Campanella, M. A role for TSPO in mitochondrial Ca2+ homeostasis and redox stress signaling. Cell Death Dis., 2017, 8(6)e2896
[http://dx.doi.org/10.1038/cddis.2017.186] [PMID: 28640253]
[138]
Yasin, N.; Veenman, L.; Singh, S.; Azrad, M.; Bode, J.; Vainshtein, A.; Caballero, B.; Marek, I.; Gavish, M. Classical and novel TSPO ligands for the mitochondrial TSPO can modulate nuclear gene expression: implications for mitochondrial retrograde signaling. Int. J. Mol. Sci., 2017, 18(4), 786.
[http://dx.doi.org/10.3390/ijms18040786] [PMID: 28387723]
[139]
Bhoola, N.H.; Mbita, Z.; Hull, R.; Dlamini, Z. Translocator protein (TSPO) as a potential biomarker in human cancers. Int. J. Mol. Sci., 2018, 19(8), 2176.
[http://dx.doi.org/10.3390/ijms19082176] [PMID: 30044440]
[140]
Yip, K.W.; Reed, J.C. Bcl-2 family proteins and cancer. Oncogene, 2008, 27(50), 6398-6406.
[http://dx.doi.org/10.1038/onc.2008.307] [PMID: 18955968]
[141]
Rahman, M.A.; Wang, P.; Zhao, Z.; Wang, D.; Nannapaneni, S.; Zhang, C.; Chen, Z.; Griffith, C.C.; Hurwitz, S.J.; Chen, Z.G.; Ke, Y.; Shin, D.M. Systemic delivery of Bc12-targeting siRNA by DNA nanoparticles suppresses cancer cell growth. Angew. Chem. Int. Ed. Engl., 2017, 56(50), 16023-16027.
[http://dx.doi.org/10.1002/anie.201709485] [PMID: 29076273]
[142]
Wu, X.; Zheng, Y.; Yang, D.; Chen, T.; Feng, B.; Weng, J.; Wang, J.; Zhang, K.; Zhang, X. A strategy using mesoporous polymer nanospheres as nanocarriers of Bcl-2 siRNA towards breast cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(3), 477-487.
[http://dx.doi.org/10.1039/C8TB02463D] [PMID: 32254735]
[143]
Sharma, A.; Soliman, G.M.; Al-Hajaj, N.; Sharma, R.; Maysinger, D.; Kakkar, A. Design and evaluation of multifunctional nanocarriers for selective delivery of coenzyme Q10 to mitochondria. Biomacromolecules, 2012, 13(1), 239-252.
[http://dx.doi.org/10.1021/bm201538j] [PMID: 22148549]
[144]
Hou, J.; Yu, X.; Shen, Y.; Shi, Y.; Su, C.; Zhao, L. Triphenyl phosphine-functionalized chitosan nanoparticles enhanced antitumor efficiency through targeted delivery of doxorubicin to mitochondria. Nanoscale Res. Lett., 2017, 12(1), 158.
[http://dx.doi.org/10.1186/s11671-017-1931-1] [PMID: 28249375]
[145]
Malhi, S.S.; Budhiraja, A.; Arora, S.; Chaudhari, K.R.; Nepali, K.; Kumar, R.; Sohi, H.; Murthy, R.S. Intracellular delivery of redox cycler-doxorubicin to the mitochondria of cancer cell by folate receptor targeted mitocancerotropic liposomes. Int. J. Pharm., 2012, 432(1-2), 63-74.
[http://dx.doi.org/10.1016/j.ijpharm.2012.04.030] [PMID: 22531856]
[146]
Xiong, H.; Du, S.; Ni, J.; Zhou, J.; Yao, J. Mitochondria and nuclei dual-targeted heterogeneous hydroxyapatite nanoparticles for enhancing therapeutic efficacy of doxorubicin. Biomaterials, 2016, 94, 70-83.
[http://dx.doi.org/10.1016/j.biomaterials.2016.04.004] [PMID: 27105438]
[147]
He, C.; Jiang, S.; Jin, H.; Chen, S.; Lin, G.; Yao, H.; Wang, X.; Mi, P.; Ji, Z.; Lin, Y.; Lin, Z.; Liu, G. Mitochondrial electron transport chain identified as a novel molecular target of SPIO nanoparticles mediated cancer-specific cytotoxicity. Biomaterials, 2016, 83, 102-114.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.010] [PMID: 26773667]
[148]
Qu, Q.; Ma, X.; Zhao, Y. Anticancer effect of α-tocopheryl succinate delivered by mitochondria-targeted mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces, 2016, 8(50), 34261-34269.
[http://dx.doi.org/10.1021/acsami.6b13974] [PMID: 27998109]
[149]
Tuo, J.; Xie, Y.; Song, J.; Chen, Y.; Guo, Q.; Liu, X.; Ni, X.; Xu, D.; Huang, H.; Yin, S.; Zhu, W.; Wu, J.; Hu, H. Development of a novel berberine-mediated mitochondria-targeting nano-platform for drug-resistant cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(42), 6856-6864.
[http://dx.doi.org/10.1039/C6TB01730D] [PMID: 32263579]
[150]
Chandarana, M.; Curtis, A.; Hoskins, C. The use of nanotechnology in cardiovascular disease. Appl. Nanosci., 2018, 8(7), 1607-1619.
[http://dx.doi.org/10.1007/s13204-018-0856-z]
[151]
Golia, E.; Limongelli, G.; Natale, F.; Fimiani, F.; Maddaloni, V.; Pariggiano, I.; Bianchi, R.; Crisci, M.; D’Acierno, L.; Giordano, R.; Di Palma, G.; Conte, M.; Golino, P.; Russo, M.G.; Calabrò, R.; Calabrò, P. Inflammation and cardiovascular disease: from pathogenesis to therapeutic target. Curr. Atheroscler. Rep., 2014, 16(9), 435.
[http://dx.doi.org/10.1007/s11883-014-0435-z] [PMID: 25037581]
[152]
Martín Giménez, V.M.; Kassuha, D.E.; Manucha, W. Nanomedicine applied to cardiovascular diseases: latest developments. Ther. Adv. Cardiovasc. Dis., 2017, 11(4), 133-142.
[http://dx.doi.org/10.1177/1753944717692293] [PMID: 28198204]
[153]
Shoshan-Barmatz, V.; Ben-Hail, D. VDAC, a multi-functional mitochondrial protein as a pharmacological target. Mitochondrion, 2012, 12(1), 24-34.
[http://dx.doi.org/10.1016/j.mito.2011.04.001] [PMID: 21530686]
[154]
Salnikov, V.; Lukyánenko, Y.O.; Frederick, C.A.; Lederer, W.J.; Lukyánenko, V. Probing the outer mitochondrial membrane in cardiac mitochondria with nanoparticles. Biophys. J., 2007, 92(3), 1058-1071.
[http://dx.doi.org/10.1529/biophysj.106.094318] [PMID: 17098804]
[155]
Skonieczna, M.; Cieslar-Pobuda, A.; Saenko, Y.; Foksinski, M.; Olinski, R.; Rzeszowska-Wolny, J.; Wiechec, E. The impact of DIDS-induced inhibition of voltage-dependent anion channels (VDAC) on cellular response of lymphoblastoid cells to ionizing radiation. Med. Chem., 2017, 13(5), 477-483.
[http://dx.doi.org/10.2174/1573406413666170421102353] [PMID: 28427245]
[156]
Nakano, Y.; Matoba, T.; Tokutome, M.; Funamoto, D.; Katsuki, S.; Ikeda, G.; Nagaoka, K.; Ishikita, A.; Nakano, K.; Koga, J.; Sunagawa, K.; Egashira, K. Nanoparticle-mediated delivery of irbesartan induces cardioprotection from myocardial ischemia-reperfusion injury by antagonizing monocyte-mediated inflammation. Sci. Rep., 2016, 6, 29601.
[http://dx.doi.org/10.1038/srep29601] [PMID: 27403534]
[157]
Cohen, M.V.; Downey, J.M. Adenosine: trigger and mediator of cardioprotection. Basic Res. Cardiol., 2008, 103(3), 203-215.
[http://dx.doi.org/10.1007/s00395-007-0687-7] [PMID: 17999026]
[158]
Galagudza, M.; Korolev, D.; Postnov, V.; Naumisheva, E.; Grigorova, Y.; Uskov, I.; Shlyakhto, E. Passive targeting of ischemic-reperfused myocardium with adenosine-loaded silica nanoparticles. Int. J. Nanomedicine, 2012, 7, 1671-1678.
[http://dx.doi.org/10.2147/IJN.S29511] [PMID: 22619519]
[159]
Zhang, N.; Li, C.; Zhou, D.; Ding, C.; Jin, Y.; Tian, Q.; Meng, X.; Pu, K.; Zhu, Y. Cyclic RGD functionalized liposomes encapsulating urokinase for thrombolysis. Acta Biomater., 2018, 70, 227-236.
[http://dx.doi.org/10.1016/j.actbio.2018.01.038] [PMID: 29412186]
[160]
Allijn, I.E.; Czarny, B.M.S.; Wang, X.; Chong, S.Y.; Weiler, M.; da Silva, A.E.; Metselaar, J.M.; Lam, C.S.P.; Pastorin, G.; de Kleijn, D.P.V.; Storm, G.; Wang, J.W.; Schiffelers, R.M. Liposome encapsulated berberine treatment attenuates cardiac dysfunction after myocardial infarction. J. Control. Release, 2017, 247, 127-133.
[http://dx.doi.org/10.1016/j.jconrel.2016.12.042] [PMID: 28065862]
[161]
Rosenfeldt, F.; Marasco, S.; Lyon, W.; Wowk, M.; Sheeran, F.; Bailey, M.; Esmore, D.; Davis, B.; Pick, A.; Rabinov, M.; Smith, J.; Nagley, P.; Pepe, S. Coenzyme Q10 therapy before cardiac surgery improves mitochondrial function and in vitro contractility of myocardial tissue. J. Thorac. Cardiovasc. Surg., 2005, 129(1), 25-32.
[http://dx.doi.org/10.1016/j.jtcvs.2004.03.034] [PMID: 15632821]
[162]
Swarnakar, N.K.; Jain, A.K.; Singh, R.P.; Godugu, C.; Das, M.; Jain, S. Oral bioavailability, therapeutic efficacy and reactive oxygen species scavenging properties of coenzyme Q10-loaded polymeric nanoparticles. Biomaterials, 2011, 32(28), 6860-6874.
[http://dx.doi.org/10.1016/j.biomaterials.2011.05.079] [PMID: 21704368]
[163]
Yamada, Y.; Nakamura, K.; Abe, J.; Hyodo, M.; Haga, S.; Ozaki, M.; Harashima, H. Mitochondrial delivery of coenzyme Q10 via systemic administration using a MITO-porter prevents ischemia/reperfusion injury in the mouse liver. J. Control. Release, 2015, 213, 86-95.
[http://dx.doi.org/10.1016/j.jconrel.2015.06.037] [PMID: 26160304]
[164]
Weyer, C.; Bogardus, C.; Mott, D.M.; Pratley, R.E. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J. Clin. Invest., 1999, 104(6), 787-794.
[http://dx.doi.org/10.1172/JCI7231] [PMID: 10491414]
[165]
Kaiser, A.B.; Zhang, N.; Van der Pluijm, W. Global prevalence of type 2 diabetes over the next ten years (2018- 2028). Am. Diabetes Assoc., 2018, 67(Suppl. 1)..
[http://dx.doi.org/10.2337/db18-202-LB]
[166]
Szendroedi, J.; Phielix, E.; Roden, M. The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nat. Rev. Endocrinol., 2011, 8(2), 92-103.
[http://dx.doi.org/10.1038/nrendo.2011.138] [PMID: 21912398]
[167]
Wu, H.; Yin, J.J.; Wamer, W.G.; Zeng, M.; Lo, Y.M. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides. Yao Wu Shi Pin Fen Xi, 2014, 22(1), 86-94.
[http://dx.doi.org/10.1016/j.jfda.2014.01.007] [PMID: 24673906]
[168]
West, I.C. Radicals and oxidative stress in diabetes. Diabet. Med., 2000, 17(3), 171-180.
[http://dx.doi.org/10.1046/j.1464-5491.2000.00259.x] [PMID: 10784220]
[169]
Joseph, A.M.; Joanisse, D.R.; Baillot, R.G.; Hood, D.A. Mitochondrial dysregulation in the pathogenesis of diabetes: potential for mitochondrial biogenesis-mediated interventions. Exp. Diabetes Res., 2011, 2012642038
[http://dx.doi.org/ 10.1155/2012/642038] [PMID: 22203837]
[170]
Wong, L.L.; McGinnis, J.F. Nanoceria as bona fide catalytic antioxidants in medicine: what we know and what we want to know…. Adv. Exp. Med. Biol., 2014, 801, 821-828.
[http://dx.doi.org/10.1007/978-1-4614-3209-8_103] [PMID: 24664776]
[171]
Wang, S.; Chen, W.; Liu, A.L.; Hong, L.; Deng, H.H.; Lin, X.H. Comparison of the peroxidase-like activity of unmodified, amino-modified, and citrate-capped gold nanoparticles. ChemPhysChem, 2012, 13(5), 1199-1204.
[http://dx.doi.org/10.1002/cphc.201100906] [PMID: 22383315]
[172]
Pedone, D.; Moglianetti, M.; De Luca, E.; Bardi, G.; Pompa, P.P. Platinum nanoparticles in nanobiomedicine. Chem. Soc. Rev., 2017, 46(16), 4951-4975.
[http://dx.doi.org/10.1039/C7CS00152E] [PMID: 28696452]
[173]
Selim, M.E.; Abd-Elhakim, Y.M.; Al-Ayadhi, L.Y. Pancreatic response to gold nanoparticles includes decrease of oxidative stress and inflammation in autistic diabetic model. Cell. Physiol. Biochem., 2015, 35(2), 586-600.
[http://dx.doi.org/10.1159/000369721] [PMID: 25612738]
[174]
Ahmed, H.H.; Abd El-Maksoud, M.D.; Abdel Moneim, A.E.; Aglan, H.A. Pre-clinical study for the antidiabetic potential of selenium nanoparticles. Biol. Trace Elem. Res., 2017, 177(2), 267-280.
[http://dx.doi.org/10.1007/s12011-016-0876-z] [PMID: 27785741]
[175]
Yang, K.; Kolanowski, J.L.; New, E.J. Mitochondrially targeted fluorescent redox sensors. Interface Focus, 2017, 7(2)20160105
[http://dx.doi.org/10.1098/rsfs.2016.0105] [PMID: 28382201]
[176]
Macdonald, R.; Barnes, K.; Hastings, C.; Mortiboys, H. Mitochondrial abnormalities in Parkinson’s disease and Alzheimer’s disease: can mitochondria be targeted therapeutically? Biochem. Soc. Trans., 2018, 46(4), 891-909.
[http://dx.doi.org/10.1042/BST20170501] [PMID: 30026371]
[177]
Hameed, S.; Hsiung, H. The role of mitochondria in aging, neurodegenerative disease, and future therapeutic options. BC. Med. J., 2011, 53(4), 188-192.
[178]
Doody, R.S.; Thomas, R.G.; Farlow, M.; Iwatsubo, T.; Vellas, B.; Joffe, S.; Kieburtz, K.; Raman, R.; Sun, X.; Aisen, P.S.; Siemers, E.; Liu-Seifert, H.; Mohs, R. Solanezumab Study Group. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N. Engl. J. Med., 2014, 370(4), 311-321.
[http://dx.doi.org/10.1056/NEJMoa1312889] [PMID: 24450890]
[179]
Savva, G.M.; Wharton, S.B.; Ince, P.G.; Forster, G.; Matthews, F.E.; Brayne, C. Medical research council cognitive function and ageing study. Age, neuropathology, and dementia. N. Engl. J. Med., 2009, 360(22), 2302-2309.
[http://dx.doi.org/10.1056/NEJMoa0806142] [PMID: 19474427]
[180]
Maurer, I.; Zierz, S.; Möller, H.J. A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiol. Aging, 2000, 21(3), 455-462.
[http://dx.doi.org/10.1016/S0197-4580(00)00112-3] [PMID: 10858595]
[181]
Lunnon, K.; Keohane, A.; Pidsley, R.; Newhouse, S.; Riddoch-Contreras, J.; Thubron, E.B.; Devall, M.; Soininen, H.; Kłoszewska, I.; Mecocci, P.; Tsolaki, M.; Vellas, B.; Schalkwyk, L.; Dobson, R.; Malik, A.N.; Powell, J.; Lovestone, S.; Hodges, A. AddNeuroMed Consortium. Mitochondrial genes are altered in blood early in Alzheimer’s disease. Neurobiol. Aging, 2017, 53, 36-47.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.12.029] [PMID: 28208064]
[182]
Kim, S.H.; Vlkolinsky, R.; Cairns, N.; Fountoulakis, M.; Lubec, G. The reduction of NADH ubiquinone oxidoreductase 24- and 75-kDa subunits in brains of patients with down syndrome and Alzheimer’s disease. Life Sci., 2001, 68(24), 2741-2750.
[http://dx.doi.org/10.1016/S0024-3205(01)01074-8] [PMID: 11400916]
[183]
Armand-Ugon, M.; Ansoleaga, B.; Berjaoui, S.; Ferrer, I. Reduced mitochondrial activity is early and steady in the entorhinal cortex but it is mainly unmodified in the frontal cortex in Alzheimer’s disease. Curr. Alzheimer Res., 2017, 14(12), 1327-1334.
[http://dx.doi.org/10.2174/1567205014666170505095921] [PMID: 28474567]
[184]
Wang, X.; Su, B.; Lee, H.G.; Li, X.; Perry, G.; Smith, M.A.; Zhu, X. Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J. Neurosci., 2009, 29(28), 9090-9103.
[http://dx.doi.org/10.1523/JNEUROSCI.1357-09.2009] [PMID: 19605646]
[185]
Manczak, M.; Calkins, M.J.; Reddy, P.H. Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: implications for neuronal damage. Hum. Mol. Genet., 2011, 20(13), 2495-2509.
[http://dx.doi.org/10.1093/hmg/ddr139] [PMID: 21459773]
[186]
Wang, X.; Su, B.; Fujioka, H.; Zhu, X. Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer’s disease patients. Am. J. Pathol., 2008, 173(2), 470-482.
[http://dx.doi.org/10.2353/ajpath.2008.071208] [PMID: 18599615]
[187]
Area-Gomez, E.; de Groof, A.J.; Boldogh, I.; Bird, T.D.; Gibson, G.E.; Koehler, C.M.; Yu, W.H.; Duff, K.E.; Yaffe, M.P.; Pon, L.A.; Schon, E.A. Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. Am. J. Pathol., 2009, 175(5), 1810-1816.
[http://dx.doi.org/10.2353/ajpath.2009.090219] [PMID: 19834068]
[188]
Zampese, E.; Fasolato, C.; Kipanyula, M.J.; Bortolozzi, M.; Pozzan, T.; Pizzo, P. Presenilin 2 modulates endoplasmic reticulum (ER)-mitochondria interactions and Ca2+ cross-talk. Proc. Natl. Acad. Sci. USA, 2011, 108(7), 2777-2782.
[http://dx.doi.org/10.1073/pnas.1100735108] [PMID: 21285369]
[189]
Gray, N.E.; Quinn, J.F. Alterations in mitochondrial number and function in Alzheimer’s disease fibroblasts. Metab. Brain Dis., 2015, 30(5), 1275-1278.
[http://dx.doi.org/10.1007/s11011-015-9667-z] [PMID: 25862550]
[190]
Contino, S.; Porporato, P.E.; Bird, M.; Marinangeli, C.; Opsomer, R.; Sonveaux, P.; Bontemps, F.; Dewachter, I.; Octave, J-N.; Bertrand, L.; Stanga, S.; Kienlen-Campard, P. Presenilin 2-dependent maintenance of mitochondrial oxidative capacity and morphology. Front. Physiol., 2017, 8, 796.
[http://dx.doi.org/10.3389/fphys.2017.00796] [PMID: 29085303]
[191]
Trushina, E.; Nemutlu, E.; Zhang, S.; Christensen, T.; Camp, J.; Mesa, J.; Siddiqui, A.; Tamura, Y.; Sesaki, H.; Wengenack, T.M.; Dzeja, P.P.; Poduslo, J.F. Defects in mitochondrial dynamics and metabolomic signatures of evolving energetic stress in mouse models of familial Alzheimer’s disease. PLoS One, 2012, 7(2)e32737
[http://dx.doi.org/10.1371/journal.pone.0032737] [PMID: 22393443]
[192]
Martín-Maestro, P.; Gargini, R.A.; Sproul, A.; García, E.; Antón, L.C.; Noggle, S.; Arancio, O.; Avila, J.; García-Escudero, V. Mitophagy failure in fibroblasts and iPSC-derived neurons of Alzheimer’s disease-associated presenilin 1 mutation. Front. Mol. Neurosci., 2017, 10, 291.
[http://dx.doi.org/10.3389/fnmol.2017.00291] [PMID: 28959184]
[193]
Wang, X.; Wang, W.; Li, L.; Perry, G.; Lee, H.G.; Zhu, X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim. Biophys. Acta, 2014, 1842(8), 1240-1247.
[http://dx.doi.org/10.1016/j.bbadis.2013.10.015] [PMID: 24189435]
[194]
Huang, W.J.; Zhang, X.; Chen, W.W. Role of oxidative stress in Alzheimer’s disease. Biomed. Rep., 2016, 4(5), 519-522.
[http://dx.doi.org/10.3892/br.2016.630] [PMID: 27123241]
[195]
Tönnies, E.; Trushina, E. Oxidative stress, synaptic dysfunction and Alzheimer’s disease. J. Alzheimers Dis., 2017, 57(4), 1105-1121.
[http://dx.doi.org/10.3233/JAD-161088] [PMID: 28059794]
[196]
Chen, Q.; Du, Y.; Zhang, K.; Liang, Z.; Li, J.; Yu, H.; Ren, R.; Feng, J.; Jin, Z.; Li, F.; Sun, J.; Zhou, M.; He, Q.; Sun, X.; Zhang, H.; Tian, M.; Ling, D. Tau-targeted multifunctional nanocomposite for combinational therapy of Alzheimer’s disease. ACS Nano, 2018, 12(2), 1321-1338.
[http://dx.doi.org/10.1021/acsnano.7b07625] [PMID: 29364648]
[197]
Kwon, H.J.; Cha, M.Y.; Kim, D.; Kim, D.K.; Soh, M.; Shin, K.; Hyeon, T.; Mook-Jung, I. Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer’s disease. ACS Nano, 2016, 10(2), 2860-2870.
[http://dx.doi.org/10.1021/acsnano.5b08045] [PMID: 26844592]
[198]
McManus, M.J.; Murphy, M.P.; Franklin, J.L. The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer’s disease. J. Neurosci., 2011, 31(44), 15703-15715.
[http://dx.doi.org/10.1523/JNEUROSCI.0552-11.2011] [PMID: 22049413]
[199]
Hewlings, S.J.; Kalman, D.S. Curcumin: a review of its effects on human health. Foods, 2017, 6(10), 92.
[http://dx.doi.org/10.3390/foods6100092] [PMID: 29065496]
[200]
Barbara, R.; Belletti, D.; Pederzoli, F.; Masoni, M.; Keller, J.; Ballestrazzi, A.; Vandelli, M.A.; Tosi, G.; Grabrucker, A.M. Novel Curcumin loaded nanoparticles engineered for blood-brain barrier crossing and able to disrupt Abeta aggregates. Int. J. Pharm., 2017, 526(1-2), 413-424.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.015] [PMID: 28495580]
[201]
Stutzmann, G.E.; Mattson, M.P. Endoplasmic reticulum Ca(2+) handling in excitable cells in health and disease. Pharmacol. Rev., 2011, 63(3), 700-727.
[http://dx.doi.org/10.1124/pr.110.003814] [PMID: 21737534]
[202]
Wong, L.R.; Ho, P.C. Role of serum albumin as a nanoparticulate carrier for nose-to-brain delivery of R-flurbiprofen: implications for the treatment of Alzheimer’s disease. J. Pharm. Pharmacol., 2018, 70(1), 59-69.
[http://dx.doi.org/10.1111/jphp.12836] [PMID: 29034965]
[203]
Hirosawa, S.; Arai, S.; Takeoka, S. A TEMPO-conjugated fluorescent probe for monitoring mitochondrial redox reactions. Chem. Commun. (Camb.), 2012, 48(40), 4845-4847.
[http://dx.doi.org/10.1039/c2cc30603d] [PMID: 22506265]
[204]
Kaur, A.; Jankowska, K.; Pilgrim, C.; Fraser, S.T.; New, E.J. Studies of hematopoietic cell differentiation with a ratiometric and reversible sensor of mitochondrial reactive oxygen species. Antioxid. Redox Signal., 2016, 24(13), 667-679.
[http://dx.doi.org/10.1089/ars.2015.6495] [PMID: 26865422]
[205]
Hu, J.J.; Wong, N.K.; Ye, S.; Chen, X.; Lu, M.Y.; Zhao, A.Q.; Guo, Y.; Ma, A.C.H.; Leung, A.Y.H.; Shen, J.; Yang, D. Fluorescent probe HKSOX-1 for imaging and detection of endogenous superoxide in live cells and in vivo. J. Am. Chem. Soc., 2015, 137(21), 6837-6843.
[http://dx.doi.org/10.1021/jacs.5b01881] [PMID: 25988218]
[206]
Qin, G.; Wu, M.; Wang, J.; Xu, Z.; Xia, J.; Sang, N. Sulfur dioxide contributes to the cardiac and mitochondrial dysfunction in rats. Toxicol. Sci., 2016, 151(2), 334-346.
[http://dx.doi.org/10.1093/toxsci/kfw048] [PMID: 26980303]
[207]
Sang, N.; Yun, Y.; Yao, G.Y.; Li, H.Y.; Guo, L.; Li, G.K. SO(2)-induced neurotoxicity is mediated by cyclooxygenases-2-derived prostaglandin E(2) and its downstream signaling pathway in rat hippocampal neurons. Toxicol. Sci., 2011, 124(2), 400-413.
[http://dx.doi.org/10.1093/toxsci/kfr224] [PMID: 21873648]
[208]
Li, J.; Meng, Z. The role of sulfur dioxide as an endogenous gaseous vasoactive factor in synergy with nitric oxide. Nitric Oxide, 2009, 20(3), 166-174.
[http://dx.doi.org/10.1016/j.niox.2008.12.003] [PMID: 19135162]
[209]
Li, K.; Li, L.L.; Zhou, Q.; Yu, K.K.; Kim, J.S.; Yu, X.Q. Reaction-based fluorescent probes for SO2 derivatives and their biological applications. Coord. Chem. Rev., 2019, 388, 310-333.
[http://dx.doi.org/10.1016/j.ccr.2019.03.001]
[210]
Paul, S.; Ghoshal, K.; Bhattacharyya, M.; Maiti, D.K. Detection of HSO3-: a rapid colorimetric and fluorimetric selective sensor for detecting biological SO2 in food and living cells. ACS Omega, 2017, 2(12), 8633-8639.
[http://dx.doi.org/10.1021/acsomega.7b01218] [PMID: 30023588]
[211]
Song, W.; Dong, B.; Kong, X.; Wang, C.; Zhang, N.; Lin, W. Development of a mitochondrial-targeted ratiometric probe for the detection of SO2 in living cells and zebrafishes. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 209, 196-201.
[http://dx.doi.org/10.1016/j.saa.2018.10.038] [PMID: 30390505]
[212]
Weitzman, S.A.; Gordon, L.I. Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis. Blood, 1990, 76(4), 655-663.
[http://dx.doi.org/10.1182/blood.V76.4.655.655] [PMID: 2200535]
[213]
Hammerschmidt, S.; Büchler, N.; Wahn, H. Tissue lipid peroxidation and reduced glutathione depletion in hypochlorite-induced lung injury. Chest, 2002, 121(2), 573-581.
[http://dx.doi.org/10.1378/chest.121.2.573] [PMID: 11834674]
[214]
Li, K.; Hou, J.T.; Yang, J.; Yu, X.Q. A tumor-specific and mitochondria-targeted fluorescent probe for real-time sensing of hypochlorite in living cells. Chem. Commun. (Camb.), 2017, 53(40), 5539-5541.
[http://dx.doi.org/ 10.1039/c7cc01679d] [PMID: 28466921]
[215]
Webster, K.A. Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species. Future Cardiol., 2012, 8(6), 863-884.
[http://dx.doi.org/10.2217/fca.12.58] [PMID: 23176689]
[216]
Grienberger, C.; Konnerth, A. Imaging calcium in neurons. Neuron, 2012, 73(5), 862-885.
[http://dx.doi.org/10.1016/j.neuron.2012.02.011] [PMID: 22405199]
[217]
Pendin, D.; Norante, R.; De Nadai, A.; Gherardi, G.; Vajente, N.; Basso, E.; Kaludercic, N.; Mammucari, C.; Paradisi, C.; Pozzan, T.; Mattarei, A. A synthetic fluorescent mitochondria-targeted sensor for ratiometric imaging of calcium in live cells. Angew. Chem. Int. Ed. Engl., 2019, 58(29), 9917-9922.
[http://dx.doi.org/10.1002/anie.201902272] [PMID: 31132197]
[218]
Wang, W.; Ning, J.Y.; Liu, J.T.; Miao, J.Y.; Zhao, B.X. A mitochondria-targeted ratiometric fluorescence sensor for the detection of hypochlorite in living cells. Dyes Pigments, 2019, 171107708
[http://dx.doi.org/10.1016/j.dyepig.2019.107708]
[219]
Santos, R.X.; Correia, S.C.; Zhu, X.; Smith, M.A.; Moreira, P.I.; Castellani, R.J.; Nunomura, A.; Perry, G. Mitochondrial DNA oxidative damage and repair in aging and Alzheimer’s disease. Antioxid. Redox Signal., 2013, 18(18), 2444-2457.
[http://dx.doi.org/10.1089/ars.2012.5039]
[220]
Mecocci, P.; Beal, M.F.; Cecchetti, R.; Polidori, M.C.; Cherubini, A.; Chionne, F.; Avellini, L.; Romano, G.; Senin, U. Mitochondrial membrane fluidity and oxidative damage to mitochondrial DNA in aged and AD human brain. Mol. Chem. Neuropathol., 1997, 31(1), 53-64.
[http://dx.doi.org/10.1007/BF02815160] [PMID: 9271005]
[221]
Steinmark, I.E.; James, A.L.; Chung, P.H.; Morton, P.E.; Parsons, M.; Dreiss, C.A.; Lorenz, C.D.; Yahioglu, G.; Suhling, K. Targeted fluorescence lifetime probes reveal responsive organelle viscosity and membrane fluidity. PLoS One, 2019, 14(2)e0211165
[http://dx.doi.org/10.1371/journal.pone.0211165] [PMID: 30763333]
[222]
Ma, Y.; Zhao, Y.; Guo, R.; Zhu, L.; Lin, W. A near-infrared emission fluorescent probe with multi-rotatable moieties for highly sensitive detection of mitochondrial viscosity in an inflammatory cell model. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(39), 6212-6216.
[http://dx.doi.org/10.1039/C8TB02083C] [PMID: 32254611]
[223]
Song, X.; Li, N.; Wang, C.; Xiao, Y. Targetable and fixable rotor for quantifying mitochondrial viscosity of living cells by fluorescence lifetime imaging. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(2), 360-368.
[http://dx.doi.org/10.1039/C6TB02524B] [PMID: 32263554]
[224]
Guo, R.; Ma, Y.; Tang, Y.; Xie, P.; Wang, Q.; Lin, W. A novel mitochondria-targeted near-infrared (NIR) probe for detection of viscosity changes in living cell, zebra fishes and living mice. Talanta, 2019, 204, 868-874.
[http://dx.doi.org/10.1016/j.talanta.2019.06.050] [PMID: 31357375]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy