Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

The Azoles in Pharmacochemistry: Perspectives on the Synthesis of New Compounds and Chemoinformatic Contributions

Author(s): Jéssika de Oliveira Viana, Alex France Messias Monteiro, José Maria Barbosa Filho, Luciana Scotti* and Marcus Tullius Scotti

Volume 25, Issue 44, 2019

Page: [4702 - 4716] Pages: 15

DOI: 10.2174/1381612825666191125090700

Price: $65

Abstract

Due to their versatile biological activity, Azoles are widely studied in pharmacochemistry. It is possible to use them in many applications and in studies aimed at discovering antiparasitic, antineoplastic, antiviral, antimicrobial compounds; and in the production of materials for treatment of varied pathologies. Based on their biological activity, our review presents several studies that involve this class of organic compounds. A bibliographic survey of this type can effectively contribute to pharmaceutical sciences, stimulating the discovery of new compounds, and structural improvements to biological profiles of interest. In this review, articles are discussed involving the synthesis of new compounds and chemoinformatic contributions. Current applications of azoles in both the pharmaceutical and agri-business sectors are well known, yet as this research highlights, azole compounds can also bring important contributions to the fight against many diseases. Among the heterocyclics, azoles are increasingly studied by research groups around the world for application against tuberculosis, HIV, fungal and bacterial infections; and against parasites such as leishmaniasis and trypanosomiasis. Our hope is that this work will help arouse the interest of research groups planning to develop new bioactives to fight against these and other diseases.

Keywords: Azoles, indazoles, triazoles, benzothiazole, benzimidazole, pharmacochemistry.

[1]
Hopkinson MN, Richter C, Schedler M, Glorius F. An overview of N-heterocyclic carbenes. Nature 2014; 510(7506): 485-96.
[http://dx.doi.org/10.1038/nature13384] [PMID: 24965649]
[2]
Selvam TP, James CR, Dniandev PV, Valzita SK. A mini review of pyrimidine and fuse pyrimidine marketed drugs Res Pharm 2012; 2: 1-9.
[3]
Shankar R, Chakravarti B, Singh US, et al. Synthesis and biological evaluation of 3,4,6-triaryl-2-pyranones as a potential new class of anti-breast cancer agents. Bioorg Med Chem 2009; 17(11): 3847-56.
[http://dx.doi.org/10.1016/j.bmc.2009.04.032] [PMID: 19423356]
[4]
Welsch ME, Snyder SA, Stockwell BR. Privileged scaffolds for library design and drug discovery. Curr Opin Chem Biol 2010; 14(3): 347-61.
[http://dx.doi.org/10.1016/j.cbpa.2010.02.018] [PMID: 20303320]
[5]
Netto AVG, Frem RCG, Mauro AE. Supramolecular chemistry of pyrazolyl complexes. Quim Nova 2008; 31(5): 1208-17.
[6]
Singh US, Shankar R, Kumar A, et al. Synthesis and biological evaluation of indolyl bisphosphonates as anti-bone resorptive and anti-leishmanial agents. Bioorg Med Chem 2008; 16(18): 8482-91.
[http://dx.doi.org/10.1016/j.bmc.2008.08.024] [PMID: 18752963]
[7]
Foroumadi A, Emami S, Pournourmohammadi S, Kharazmi A, Shafiee A. Synthesis and in vitro leishmanicidal activity of 2-(1-methyl-5-nitro-1H-imidazol-2-yl)-5-substituted-1,3,4-thiadiazole derivatives. Eur J Med Chem 2005; 40(12): 1346-50.
[http://dx.doi.org/10.1016/j.ejmech.2005.07.002] [PMID: 16095763]
[8]
Maertens JA. History of the development of azole derivatives. Clin Microbiol Infect 2004; 10(Suppl. 1): 1-10.
[http://dx.doi.org/10.1111/j.1470-9465.2004.00841.x] [PMID: 14748798]
[9]
Kelemen H, Orgovan G, Szekely-Szentmiklosi B. The pharmaceutical chemistry of azole antifungals. Acta Pharm Hung 2016; 86(3): 85-98.
[PMID: 29489080]
[10]
Shrivastava A, Chakraborty AK, Upmanyu N. Recent progress in chemistry and biology of indazole and its derivatives: a brief review. Austin J Anal Pharm Chem 2016; 3(4): 1076.
[11]
Sidhu JS, Singla R. Mayank, Jaitak V. Indole derivatives as anticancer agents for breast cancer therapy: a review. Anticancer Agents Med Chem 2016; 16(2): 160-73.
[12]
Travelli C, Aprile S, Rahimian R, et al. Identification of novel triazole-based nicotinamide phosphoribosyltransferase (NAMPT) inhibitors endowed with antiproliferative and antiinflammatory activity. J Med Chem 2017; 60(5): 1768-92.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01392] [PMID: 28165742]
[13]
Ebert C, Elguero J, Musumarra G. Effects of the heteroaromatic moiety on spectroscopic properties, pKa and reactivity of azoles: a chemometric study. J Phys Org Chem 1990; 3(10): 651-8.
[http://dx.doi.org/10.1002/poc.610031006]
[14]
Schmidt A, Beutler A, Snovydovych B. Recent advances in the chemistry of indazoles. Eur J Org Chem 2008; 24: 4073-95.
[http://dx.doi.org/10.1002/ejoc.200800227]
[15]
Cerecetto H, Gerpe A, González M, Arán VJ, de Ocáriz CO. Pharmacological properties of indazole derivatives: recent developments. Mini Rev Med Chem 2005; 5(10): 869-78.
[http://dx.doi.org/10.2174/138955705774329564] [PMID: 16250831]
[16]
Gaikwad DD, Chapolikar AD, Devkate CG, et al. Synthesis of indazole motifs and their medicinal importance: an overview. Eur J Med Chem 2015; 90: 707-31.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.029] [PMID: 25506810]
[17]
Angapelly S, Ramya PS. SunithaRani R, Kumar CG, Kamal A, Arifuddin M. Ultrasound assisted, VOSO4 catalyzed synthesis of 4-thiazolidinones: Antimicrobial evaluation of indazole-4-thiazolidinone derivatives. Tetrahedron Lett 2017; 58(49): 4632-7.
[http://dx.doi.org/10.1016/j.tetlet.2017.10.070]
[18]
Gautam D, Chaudhary RP. Synthesis, structure and antimicrobial evaluation of new 3,3a,4,5-tetrahydro-2H-benzo[g]indazol-2-yl-thiazol-4(5H)-ones. Spectrochim Acta A Mol Biomol Spectrosc 2015; 135: 219-26.
[http://dx.doi.org/10.1016/j.saa.2014.06.134] [PMID: 25064506]
[19]
Ghelani SM, Khunt HR, Naliapara YT. Design, synthesis, characterization, and antimicrobial screening of novel indazole bearing oxadiazole derivatives. J Heterocycl Chem 2017; 54(1): 65-70.
[http://dx.doi.org/10.1002/jhet.2540]
[20]
Villanueva JP, Mulia LY, Sánchez IS, et al. Synthesis and biological evaluation of 2H-indazole derivatives: towards antimicrobial and anti-inflammatory dual agents. Molecules 2017; 22(11): 1864.
[21]
Maheta JG, Gol RM, Barot VM. Synthesis of novel (2H)indazole scaffold as an antimicrobial and anti-tubercular agent. Chem Bio Interface 2016; 6: 1.
[22]
Napoleon AA, Khan FRN, Jeong ED, Chung EH. Potential anti-tubercular agents: hexahydro-3-phenyl indazol-2-yl(pyridin-4-yl)methanones from anti-tubercular drug isoniazid and bis(substituted-benzylidene)cycloalkanones. Chin Chem Lett 2015; 26(5): 567-71.
[http://dx.doi.org/10.1016/j.cclet.2015.01.008]
[23]
Haile PA, Votta BJ, Marquis RW, et al. The identification and pharmacological characterization of 6-(tert-Butylsulfonyl)-N-(5-fluoro-1H-indazol-3-yl)quinolin-4-amine (GSK583), a highly potent and selective inhibitor of RIP2 kinase. J Med Chem 2016; 59(10): 4867-80.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00211] [PMID: 27109867]
[24]
Reddy AV, Gogireddy S, Dubey PK, Reddy M. Design, synthesis and characterization of 1 H-pyridin-4-yl-3, 5-disubstituted indazoles and their anti-inflammatory and analgesic activity. J Chem Sci 2015; 127(3): 433-8.
[http://dx.doi.org/10.1007/s12039-015-0792-3]
[25]
Chen T, Sorna V, Choi S, et al. Fragment-based design, synthesis, biological evaluation, and SAR of 1H-benzo[d]imidazol-2-yl)-1H-indazol derivatives as potent PDK1 inhibitors. Bioorg Med Chem Lett 2017; 27(24): 5473-80.
[http://dx.doi.org/10.1016/j.bmcl.2017.10.041] [PMID: 29150397]
[26]
Cui J, Peng X, Gao D, Dai Y, Ai J, Li Y. Optimization of 1H-indazol-3-amine derivatives as potent fibroblast growth factor receptor inhibitors. Bioorg Med Chem Lett 2017; 27(16): 3782-6.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.068] [PMID: 28687204]
[27]
Laufer R, Ng G, Liu Y, et al. Discovery of inhibitors of the mitotic kinase TTK based on N-(3-(3-sulfamoylphenyl)-1H-indazol-5-yl)-acetamides and carboxamides. Bioorg Med Chem 2014; 22(17): 4968-97.
[http://dx.doi.org/10.1016/j.bmc.2014.06.027] [PMID: 25043312]
[28]
Li SW, Liu Y, Sampson PB, et al. Design and optimization of (3-aryl-1H-indazol-6-yl)spiro[cyclopropane-1,3′-indolin]-2′-ones as potent PLK4 inhibitors with oral antitumor efficacy. Bioorg Med Chem Lett 2016; 26(19): 4625-30.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.063] [PMID: 27592744]
[29]
Liu Z, Lei Q, Wei W, et al. Synthesis and biological evaluation of (E)-4-(3-arylvinyl-1 H-indazol-6-yl)pyrimidin-2-amine derivatives as PLK4 inhibitors for the treatment of breast cancer. RSC Advances 2017; 7(44): 27737-46.
[http://dx.doi.org/10.1039/C7RA02518A]
[30]
Rudavatha D, Sreenivasulub R, Pinapatia SR, Raju RR. Synthesis and anticancer evaluation of indazole-aryl hydrazide-hydrazone derivatives. J Indian Chem Soc 2018; 95(4): 433-8.
[31]
Sudhapriya N, Balachandran C, Awale S, Perumal PT. Sn(ii)-mediated facile approach for the synthesis of 2-aryl-2 H-indazole-3-phosphonates and their anticancer activities. New J Chem 2017; 41(13): 5582-94.
[http://dx.doi.org/10.1039/C7NJ00843K]
[32]
Sun Y, Shan Y, Li C, et al. Discovery of novel anti-angiogenesis agents. Part 8: Diaryl thiourea bearing 1H-indazole-3-amine as multi-target RTKs inhibitors. Eur J Med Chem 2017; 141: 373-85.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.008] [PMID: 29032031]
[33]
Elsayed NMY, Serya RAT, Tolba MF, et al. Design, synthesis, biological evaluation and dynamics simulation of indazole derivatives with antiangiogenic and antiproliferative anticancer activity. Bioorg Chem 2019; 82: 340-59.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.071] [PMID: 30428414]
[34]
Cheng MF, Ou LC, Chen SC, et al. Discovery, structure-activity relationship studies, and anti-nociceptive effects of 1-phenyl-3,6,6-trimethyl-1,5,6,7-tetrahydro-4H-indazol-4-one as novel opioid receptor agonists. Bioorg Med Chem 2014; 22(17): 4694-703.
[http://dx.doi.org/10.1016/j.bmc.2014.07.012] [PMID: 25087049]
[35]
Chao PK, Ueng SH, Ou LC, et al. 1-(2, 4-Dibromophenyl)-3, 6, 6-trimethyl-1, 5, 6, 7-tetrahydro-4H-indazol-4-oneA novel opioid receptor agonist with less accompanying gastrointestinal dysfunction than morphine. J Amer Soc Anesthes 2017; 126(5): 952-66.
[36]
Wang H, Hesek D, Lee M, et al. The natural product essramycin and three of its isomers are devoid of antibacterial activity. J Nat Prod 2016; 79(4): 1219-22.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00057] [PMID: 27049333]
[37]
Kamal A, Syed MAH, Mohammed SM. Therapeutic potential of benzothiazoles: a patent review (2010 - 2014). Expert Opin Ther Pat 2015; 25(3): 335-49.
[http://dx.doi.org/10.1517/13543776.2014.999764] [PMID: 25579497]
[38]
Cassani S, Kovarich S, Papa E, Roy PP, van der Wal L, Gramatica P. Daphnia and fish toxicity of (benzo)triazoles: validated QSAR models, and interspecies quantitative activity-activity modelling. J Hazard Mater 2013; 258-259: 50-60.
[http://dx.doi.org/10.1016/j.jhazmat.2013.04.025] [PMID: 23702385]
[39]
Bekircan O, Menteşe E, Ülker S, Kucuk C. Synthesis of some new 1,2,4-triazole derivatives starting from 3-(4-chlorophenyl)-5-(4-methoxybenzyl)-4H-1,2,4-triazol with anti-lipase and anti-urease activities. Arch Pharm (Weinheim) 2014; 347(6): 387-97.
[http://dx.doi.org/10.1002/ardp.201300344] [PMID: 24532369]
[40]
Praveena KSS, Murthy NYS, Pal S. Syntheses and biological activities of 1, 4-Disubstituted-1, 2, 3-triazoles. ChemInform 2015; 47(13)
[41]
Haider S, Alam MS, Hamid H. 1,2,3-Triazoles: scaffold with medicinal significance. Inflamm Cell Signal 2014; 95: 1-12.
[42]
Zou Y, Yu S, Li R, et al. Synthesis, antifungal activities and molecular docking studies of novel 2-(2,4-difluorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propyl dithiocarbamates. Eur J Med Chem 2014; 74: 366-74.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.009] [PMID: 24487187]
[43]
Obot IB, Johnson AS. Ab initio, DFT and TD-DFT electronic absorption spectra investigations on 3,5-Diamino-1,2,4-triazole. Comput Chem 2012; 43: 6658-61.
[44]
Alves RMA, Mota S, Barata C, et al. Carboxylic acid transportes Jen1 and Jen2 affect Candida albicans biofilms’ formation and susceptibility to fluconazole. Portugal: Departamento de Biologia, Universidade do Minho 2016.
[45]
Miceli MH, Kauffman CA. Isavuconazole: a new broad-spectrum triazole antifungal agent. Clin Infect Dis 2015; 61(10): 1558-65.
[http://dx.doi.org/10.1093/cid/civ571] [PMID: 26179012]
[46]
Zhanel GG, Chung P, Adam H, et al. Ceftolozane/tazobactam: a novel cephalosporin/β-lactamase inhibitor combination with activity against multidrug-resistant gram-negative bacilli. Drugs 2014; 74(1): 31-51.
[http://dx.doi.org/10.1007/s40265-013-0168-2] [PMID: 24352909]
[47]
Ashok D, Ravi S, Lakshmi BV, Ganesh A, Adam S. Microwave assisted synthesis of (E)-1-(2-((1-benzyl-1H-1, 2, 3-triazol-4-yl)methoxy)phenyl)-3-(9-ethyl-9H-carbazol-3-yl)prop-2-en-1-ones and their antimicrobial activity. Russ J Bioorganic Chem 2016; 42(3): 323-31.
[http://dx.doi.org/10.1134/S1068162016030043]
[48]
Jadhav RP, Raundal HN, Patil AA, Bobade VD. Synthesis and biological evaluation of a series of 1, 4-disubstituted 1, 2, 3-triazole derivatives as possible antimicrobial agents. J Saudi Chem Soc 2017; 21(2): 152-9.
[http://dx.doi.org/10.1016/j.jscs.2015.03.003]
[49]
Naidu KM, Srinivasarao S, Agnieszka N, Ewa AK, Kumar MMK, Chandra Sekhar KV. Seeking potent anti-tubercular agents: Design, synthesis, anti-tubercular activity and docking study of various ((triazoles/indole)-piperazin-1-yl/1,4-diazepan-1-yl)benzo[d]isoxazole derivatives. Bioorg Med Chem Lett 2016; 26(9): 2245-50.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.059] [PMID: 27020525]
[50]
Seelam N, Shrivastava SP, Prasanthi S, Gupta S. Synthesis and in vitro study of some fused 1, 2, 4-triazole derivatives as antimycobacterial agents. J Saudi Chem Soc 2016; 20(4): 411-8.
[http://dx.doi.org/10.1016/j.jscs.2012.11.011]
[51]
Tan W, Li Q, Wang H, et al. Synthesis, characterization, and antibacterial property of novel starch derivatives with 1,2,3-triazole. Carbohydr Polym 2016; 142: 1-7.
[http://dx.doi.org/10.1016/j.carbpol.2016.01.007] [PMID: 26917366]
[52]
Gençer HK, Çevik UA, Levent S, et al. New benzimidazole-1, 2, 4-triazole hybrid compounds: synthesis, anticandidal activity and cytotoxicity evaluation. Molecules 2017; 22(4): Pii: 507.
[53]
Li Q, Tan W, Zhang C, Gu G, Guo Z. Synthesis of water soluble chitosan derivatives with halogeno-1,2,3-triazole and their antifungal activity. Int J Biol Macromol 2016; 91: 623-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.006] [PMID: 27267573]
[54]
Zhai ZW, Shi YX, Yang MY, et al. Microwave assisted synthesis and antifungal activity of some novel thioethers containing 1, 2, 4-triazolo[4, 3-a]pyridine moiety. Lett Drug Des Discov 2016; 13(6): 521-5.
[http://dx.doi.org/10.2174/157018081306160618181757]
[55]
Alexandrova LA, Efremenkova OV, Andronova VL, et al. 5-(4-alkyl-1, 2, 3-triazol-1-yl)methyl derivatives of 2′-deoxyuridine as inhibitors of viral and bacterial growth. Russ J Bioorganic Chem 2016; 42(6): 677-84.
[http://dx.doi.org/10.1134/S1068162016050022]
[56]
Caraballo R, Saleeb M, Bauer J, et al. Triazole linker-based trivalent sialic acid inhibitors of adenovirus type 37 infection of human corneal epithelial cells. Org Biomol Chem 2015; 13(35): 9194-205.
[http://dx.doi.org/10.1039/C5OB01025J] [PMID: 26177934]
[57]
Vernekar SKV, Qiu L, Zhang J, et al. 5′-Silylated 3′-1, 2, 3-triazolyl thymidine analogs as inhibitors of west nile virus and dengue virus. J Med Chem 2015; 58(9): 4016-28.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00327] [PMID: 25909386]
[58]
Ouahrouch A, Taourirte M, Schols D, et al. Design, synthesis, and antiviral activity of novel ribonucleosides of 1,2,3-triazolylbenzyl-aminophosphonates. Arch Pharm (Weinheim) 2016; 349(1): 30-41.
[http://dx.doi.org/10.1002/ardp.201500292] [PMID: 26575425]
[59]
Karrouchi K, Chemlal L, Taoufik J, et al. Synthesis, antioxidant and analgesic activities of Schiff bases of 4-amino-1, 2, 4-triazole derivatives containing a pyrazole moiety. Ann Pharm Fr 2016; 74(6): 431-8.
[http://dx.doi.org/10.1016/j.pharma.2016.03.005]
[60]
Bahia SBB, Reis WJ, Jardim GA, et al. Molecular hybridization as a powerful tool towards multitarget quinoidal systems: synthesis, trypanocidal and antitumor activities of naphthoquinone-based 5-iodo-1, 4-disubstituted-, 1, 4-and 1, 5-disubstituted-1, 2, 3-triazoles. MedChemComm 2016; 7(8): 1555-63.
[http://dx.doi.org/10.1039/C6MD00216A]
[61]
Chen X, Shi YM, Huang C, Xia S, Yang LJ, Yang XD. Novel dibenzo[b,d]furan-1H-1,2,4-triazole derivatives: synthesis and antitumor activity. Anticancer Agents Med Chem 2016; 16(3): 377-86.
[http://dx.doi.org/10.2174/1871520615666150817115913] [PMID: 26278547]
[62]
Feng D, Wu Y, Wang H, et al. Synthesis and antiproliferative activity of 2-aryl-4-(3, 4, 5-trimethoxybenzoyl)-1, 2, 3-triazol derivatives as microtubule-destabilizing agents. RSC Advances 2017; 7(46): 29103-11.
[http://dx.doi.org/10.1039/C7RA02720F]
[63]
Kraljević TG, Harej A, Sedić M, et al. Synthesis, in vitro anticancer and antibacterial activities and in silico studies of new 4-substituted 1,2,3-triazole-coumarin hybrids. Eur J Med Chem 2016; 124: 794-808.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.062] [PMID: 27639370]
[64]
Li BL, Li B, Zhang RL, et al. Synthesis and antiproliferative evaluation of novel 1,2,4-triazole derivatives incorporating benzisoselenazolone scaffold. Bioorg Med Chem Lett 2016; 26(4): 1279-81.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.017] [PMID: 26786698]
[65]
Mioc M, Soica C, Bercean V, et al. Design, synthesis and pharmaco-toxicological assessment of 5-mercapto-1,2,4-triazole derivatives with antibacterial and antiproliferative activity. Int J Oncol 2017; 50(4): 1175-83.
[http://dx.doi.org/10.3892/ijo.2017.3912] [PMID: 28350123]
[66]
Narsimha S, Satheesh Kumar N, Kumara Swamy B, Vasudeva Reddy N, Althaf Hussain SK, Srinivasa Rao M. Indole-2-carboxylic acid derived mono and bis 1,4-disubstituted 1,2,3-triazoles: synthesis, characterization and evaluation of anticancer, antibacterial, and DNA-cleavage activities. Bioorg Med Chem Lett 2016; 26(6): 1639-44.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.055] [PMID: 26873415]
[67]
Zhao PL, Chen P, Li Q, et al. Design, synthesis and biological evaluation of novel 3-alkylsulfanyl-4-amino-1,2,4-triazole derivatives. Bioorg Med Chem Lett 2016; 26(15): 3679-83.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.086] [PMID: 27287368]
[68]
Sarıkaya G, Çoban G, Parlar S, et al. Multifunctional cholinesterase inhibitors for Alzheimer’s disease: synthesis, biological evaluations, and docking studies of o/p-propoxyphenylsubstituted-1H-benzimidazole derivatives. Arch Pharm (Weinheim) 2018; 351(8) 1800076
[http://dx.doi.org/10.1002/ardp.201800076] [PMID: 29984517]
[69]
Unsal-Tan O, Ozadali-Sari K, Ayazgok B, Küçükkılınç TT, Balkan A. Novel 2-Arylbenzimidazole derivatives as multi-targeting agents to treat Alzheimer’s disease. Med Chem Res 2017; 26(7): 1506-15.
[http://dx.doi.org/10.1007/s00044-017-1874-1]
[70]
Kim T, Yang HY, Park BG, et al. Discovery of benzimidazole derivatives as modulators of mitochondrial function: a potential treatment for Alzheimer’s disease. Eur J Med Chem 2017; 125: 1172-92.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.017] [PMID: 27855359]
[71]
Tarazi H, Odeh RA, Al-Qawasmeh R, Yousef IA, Voelter W, Al-Tel TH. Design, synthesis and SAR analysis of potent BACE1 inhibitors: possible lead drug candidates for Alzheimer’s disease. Eur J Med Chem 2017; 125: 1213-24.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.021] [PMID: 27871037]
[72]
Singla P, Luxami V, Singh R, Tandon V, Paul K. Novel pyrazolo[3,4-d]pyrimidine with 4-(1H-benzimidazol-2-yl)-phenylamine as broad spectrum anticancer agents: synthesis, cell based assay, topoisomerase inhibition, DNA intercalation and bovine serum albumin studies. Eur J Med Chem 2017; 126: 24-35.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.093] [PMID: 27744184]
[73]
Cheong JE, Zaffagni M, Chung I, et al. Synthesis and anticancer activity of novel water soluble benzimidazole carbamates. Eur J Med Chem 2018; 144: 372-85.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.037] [PMID: 29288939]
[74]
Pellei M, Gandin V, Marzano C, Marinelli M, Del Bello F, Santini C. The first water-soluble copper (I) complexes bearing sulfonated imidazole-and benzimidazole-derived N-heterocyclic carbenes: synthesis and anticancer studies. Appl Organomet Chem 2018; 32(3)e4185
[http://dx.doi.org/10.1002/aoc.4185]
[75]
Luo B, Li D, Zhang A-L, Gao J-M. Synthesis, antifungal activities and molecular docking studies of benzoxazole and benzothiazole derivatives. Molecules 2018; 23(10): 2457.
[http://dx.doi.org/10.3390/molecules23102457] [PMID: 30257495]
[76]
Sharma AK, Sharma R, Gangwal A. Antifungal activities and characterization of some new environmentally safe Cu (ii) surfactants substituted 2-Amino-6-Methyl Benzothiazole. Open Pharm Sci J 2018; 5(1): 1-11.
[http://dx.doi.org/10.2174/1874844901805010001]
[77]
Mathur N, Jain N, Sharma AK. Biocidal activities of substituted benzothiazole of copper surfactants over candida albicans & trichoderma harziamunon on muller hinton agar. Open Pharm Sci J 2018; 5(1): 24-35.
[http://dx.doi.org/10.2174/1874844901805010024]
[78]
Kumawat P, Sharma R, Sharma N. Synthesis and analysis of copper neem (azadirechta indica) soap-nitro and ethoxy benzothiazole complexes for anti-bacterial activity related with skin diseases. J Adv Pharm Sci Tech 2018; 1(4): 34-46.
[79]
Zhu W, Lao C, Luo S, et al. Mechanical and antibacterial properties of benzothiazole-based dental resin materials. J Biomater Sci Polym Ed 2018; 29(6): 635-45.
[http://dx.doi.org/10.1080/09205063.2018.1429861] [PMID: 29343187]
[80]
Maddili SK, Li Z-Z, Kannekanti VK, et al. Azoalkyl ether imidazo[2,1-b]benzothiazoles as potentially antimicrobial agents with novel structural skeleton. Bioorg Med Chem Lett 2018; 28(14): 2426-31.
[http://dx.doi.org/10.1016/j.bmcl.2018.06.016] [PMID: 29929884]
[81]
Haroun M, Tratrat C, Kositsi K, et al. New benzothiazole-based thiazolidinones as potent antimicrobial agents. Design, synthesis and biological evaluation. Curr Top Med Chem 2018; 18(1): 75-87.
[http://dx.doi.org/10.2174/1568026618666180206101814] [PMID: 29412109]
[82]
Singh M, Singh SK, Gangwar M, Sellamuthu S, Nath G, Singh SK. Design, synthesis and mode of action of some new 2-(4′-aminophenyl)benzothiazole derivatives as potent antimicrobial agents. Lett Drug Des Discov 2016; 13(5): 429-37.
[http://dx.doi.org/10.2174/1570180812666150821003220]
[83]
Linciano P, Pozzi C, Iacono LD, et al. Enhancement of benzothiazoles as pteridine reductase-1(PTR1) inhibitors for the treatment of trypanosomatidic infections. J Med Chem 2019; 62(8): 3989-4012.
[http://dx.doi.org/10.1021/acs.jmedchem.8b02021] [PMID: 30908048]
[84]
Sánchez-Salgado JC, Bilbao-Ramos P, Dea-Ayuela MA, et al. Systematic search for benzimidazole compounds and derivatives with antileishmanial effects. Mol Divers 2018; 22(4): 779-90.
[http://dx.doi.org/10.1007/s11030-018-9830-7] [PMID: 29748853]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy