Generic placeholder image

Current Gene Therapy

Editor-in-Chief

ISSN (Print): 1566-5232
ISSN (Online): 1875-5631

Editorial

The Emergence of Non-coding RNAs as Versatile and Efficient Therapeutic Tools

Author(s): Luis María Vaschetto

Volume 19, Issue 5, 2019

Page: [289 - 289] Pages: 1

DOI: 10.2174/156652321905191122154955

conference banner
Next »
[1]
Awan HM, Shah A, Rashid F, Shan G. Primate-specific long non-coding RNAs and microRNAs. Genomics Proteomics Bioinformatics 2017; 15(3): 187-95.
[2]
Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non‐coding RNAs: Regulators of disease. J Pathol 2010; 220(2): 126-39.
[3]
Li LC, Okino ST, Zhao H, et al. Small dsRNAs induce tran-scriptional activation in human cells. Proc Natl Acad Sci USA 2006; 103(46): 17337-42.
[4]
Vaschetto LM. Small activating RNAs as promising agents for biotechnological use. Curr Pharm Biotechnol 2018; 19(8): 602-3.
[5]
Javanmardi S, Aghamaali MR, Abolmaali SS, Mohammadi S, Tamaddon AM. miR-21, an oncogenic target miRNA for cancer therapy: Molecular mechanisms and recent advancements in chemo and radio-resistance. Curr Gene Ther 2016; 16(6): 375-89.
[6]
Sonea L, Buse M, Gulei D, et al. Decoding the emerging patterns exhibited in non-coding RNAs characteristic of lung cancer with regard to their clinical significance. Curr Genomics 2018; 19(4): 258-78.
[7]
Topuk S, Akyuva Y. Karaaslan, et al.Is it possible to treat osteosarcoma using oligonucleotides confined into controlled release drug delivery Systems? Curr Pharm Biotechnol 2017; 18(6): 516-22.
[8]
Thakral S, Ghoshal K. miR-122 is a unique molecule with great potential in diagnosis, prognosis of liver disease, and therapy both as miRNA mimic and antimir. Curr Gene Ther 2015; 15(2): 142-50.
[9]
Ridolfi B, Abdel-Haq H. Neurodegenerative disorders treatment: The microRNA role. Curr Gene Ther 2017; 17(5): 327-63.
[10]
Badrealam KF, Zubair S, Owais M. SiRNA nanotherapeutics the panacea of diseases? Curr Gene Ther 2015; 15(2): 201-14.
[11]
Zhang C, Gu Z, Shen L, Liu X, Lin H. A dual targeting drug delivery system for penetrating blood-brain barrier and selectively delivering siRNA to neurons for alzheimer’s disease treatment. Curr Pharm Biotechnol 2017; 18(14): 1124-31.
[12]
Fang S, Pan J, Zhou C, et al. Circular RNAs serve as novel biomarkers and therapeutic targets in cancers. Curr Gene Ther 2019; 19(2): 125-33.
[13]
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013; 495(7441): 333-8.
[14]
Chen L, Huang C, Wang X, Shan G. Circular RNAs in eukaryotic cells. Curr Genomics 2015; 16(5): 312-8.
[15]
Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013; 19(2): 141-57.
[16]
Peng N, Shi L, Zhang Q, et al. Microarray profiling of circular RNAs in human papillary thyroid carcinoma. PloS One 2017; 12(3): e0170287.
[17]
Chen BJ, Byrne FL, Takenaka K, et al. Analysis of the circular RNA transcriptome in endometrial cancer. Oncotarget 2017; 9(5): 5786-96.

© 2024 Bentham Science Publishers | Privacy Policy