Abstract
Allenes represent an extremely important class of organic molecules, which, as a result of their twisted orthogonal π-systems can possess axial chirality. A wide array of methods for allene synthesis have been reported, such as the substitution of propargylic electrophiles, isomerization of alkynes and sigmatropic rearrangement. An alternative approach for the synthesis of allenes is 1,2-elimination of an appropriately substituted precursor. This mini-review highlights recent examples of 1,2-elimination processes, which target allenes including both polar and radical processes. The main focus is upon how control over the stereospecificity (e.g. syn- or anti-) of the 1,2-elimination process can enable the synthesis of enantioenriched axially chiral allenes. Recent developments in this field are presented including both enantiospecific and catalytic asymmetric methods.
Keywords: Allenes, cumulenes, elimination, stereospecific, enantiospecific, axial chirality.
(b) Hoffmann-Röder, A.; Krause, N. Synthesis and properties of allenic natural products and pharmaceuticals. Angew. Chem. Int. Ed. Engl., 2004, 43(10), 1196-1216.
[http://dx.doi.org/10.1002/anie.200300628] [PMID: 14991780]
(c) Rivera-Fuentes, P.; Diederich, F. Allenes in molecular materials. Angew. Chem. Int. Ed. Engl., 2012, 51(12), 2818-2828.
[http://dx.doi.org/10.1002/anie.201108001] [PMID: 22308109]
[http://dx.doi.org/10.1016/j.tet.2004.09.094]
(b) Yang, M.; Yokokawa, N.; Ohmiya, H.; Sawamura, M. Synthesis of conjugated allenes through copper-catalyzed γ-selective and stereospecific coupling between propargylic phos-phates and aryl- or alkenylboronates. Org. Lett., 2012, 14(3), 816-819.
[http://dx.doi.org/10.1021/ol2033465] [PMID: 22256782]
(c) Partridge, B.M.; Chausset-Boissarie, L.; Burns, M.; Pulis, A.P.; Aggarwal, V.K. Enan-tioselective synthesis and cross-coupling of tertiary propargylic boronic es-ters using lithiation-borylation of propargylic carbamates. Angew. Chem. Int. Ed. Engl., 2012, 51(47), 11795-11799.
[http://dx.doi.org/10.1002/anie.201203198] [PMID: 23076714]
[http://dx.doi.org/10.2174/138527212800840973]
[http://dx.doi.org/10.1002/tcr.201800023] [PMID: 29808531]
(b) Chu, W-D.; Zhang, L.; Zhang, Z.; Zhou, Q.; Mo, F.; Zhang, Y.; Wang, J. Enantioselective synthesis of trisubstituted allenes via Cu(I)-catalyzed coupling of di-azoalkanes with terminal alkynes. J. Am. Chem. Soc., 2016, 138(44), 14558-14561.
[http://dx.doi.org/10.1021/jacs.6b09674] [PMID: 27788320]
[http://dx.doi.org/10.1039/C2CS35311C] [PMID: 23034723]
(b) Myers, A.G.; Zheng, B. New and stereospecific synthesis of allenes in a single step from propargylic alcohols. J. Am. Chem. Soc., 1996, 118(18), 4492-4493.
[http://dx.doi.org/10.1021/ja960443w]
(c) Tang, X.; Zhu, C.; Cao, T.; Kuang, J.; Lin, W.; Ni, S.; Zhang, J.; Ma, S. Cadmium iodide-mediated al-lenylation of terminal alkynes with ketones. Nat. Commun., 2013, 4, 2450.
[http://dx.doi.org/10.1038/ncomms3450] [PMID: 24042852]
[http://dx.doi.org/10.1055/s-2007-965963]
(b) Yu, S.; Ma, S. How easy are the syntheses of allenes? Chem. Commun. (Camb.), 2011, 47(19), 5384-5418.
[http://dx.doi.org/10.1039/c0cc05640e] [PMID: 21409186]
(c) Neff, R.K.; Frantz, D.E. Recent Advances in the catalytic syntheses of allenes: a critical assessment. ACS Catal., 2014, 4(2), 519-528.
[http://dx.doi.org/10.1021/cs401007m]
(d) Ye, J.; Ma, S. Conquering three-carbon axial chirality of allenes. Org. Chem. Front., 2014, 1(10), 1210-1224.
[http://dx.doi.org/10.1039/C4QO00208C]
(e) Chu, W-D.; Zhang, Y.; Wang, J. Recent advances in catalytic asymmetric synthesis of allenes. Catal. Sci. Technol., 2017, 7(20), 4570-4579.
[http://dx.doi.org/10.1039/C7CY01319A]
[http://dx.doi.org/10.1016/S0040-4039(01)81916-X]
(b) Stang, P.J.; Har-grove, R.J. Vinyl triflates in synthesis. ii. 1,1-di-, tri-, tetrasubstituted and deuterio allenes from ketones via vinyl triflates. J. Org. Chem., 1975, 40(5), 657-658.
[http://dx.doi.org/10.1021/jo00893a026]
(c) Witt, O.; Mauser, H.; Friedl, T.; Wilhelm, D.; Clark, T. Reactions of the lithium salts of the tribenzylidene-methane dianion, diphenylacetone dianion, and related compounds. J. Org. Chem., 1998, 63(4), 959-967.
[http://dx.doi.org/10.1021/jo971113c]
(d) Langer, P.; Döring, M.; Seyferth, D.; Görls, H. Direct transformation of silyl enol ethers into functionalized al-lenes. Chemistry, 2001, 7(3), 573-584.
[http://dx.doi.org/10.1002/1521-3765(20010202)7:3<573:AID-CHEM573>3.0.CO;2-I] [PMID: 11261654]
[http://dx.doi.org/10.1021/jo9610265] [PMID: 11667439]
[http://dx.doi.org/10.1055/s-1981-29624]
(b) Ma, S.; Li, L.; Xie, H. Hydro-halogenation reaction of 1,2-allenyl ketones revisited. efficient and highly stereoselective synthesis of β, γ-unsaturated β-haloketones. J. Org. Chem., 1999, 64(14), 5325-5328.
[http://dx.doi.org/10.1021/jo9903205]
(c) Ma, S.; Yu, S.; Yin, S. Studies on K2CO3-catalyzed 1,4-addition of 1,2-allenic ketones with diethyl malonate: controlled selective synthesis of β, γ-unsaturated enones and α-pyrones. J. Org. Chem., 2003, 68(23), 8996-9002.
[http://dx.doi.org/10.1021/jo034633i] [PMID: 14604373]
[http://dx.doi.org/10.1021/jo302253c] [PMID: 23198987]
[http://dx.doi.org/10.1039/c39920000046]
(b) Komatsu, N.; Murakami, T.; Nishibayashi, Y.; Sugita, T.; Uemura, S. Asymmetric selenoxide elimina-tion leading to chiral allenic sulfones. J. Org. Chem., 1993, 58(14), 3697-3702.
[http://dx.doi.org/10.1021/jo00066a023]
[http://dx.doi.org/10.1016/S0040-4039(00)76844-4]
(b) Nishibayashi, Y.; Singh, J.D.; Fukuzawa, S.; Uemura, S. Synthesis of [R,S;R,S]- and [S,R;S,R]-bis[2-[1-(dimethylamino)ethyl]ferrocenyl] diselenides and their application to asymmetric selenoxide elimination and [2,3]-sigmatropic rear-rangement. J. Org. Chem., 1995, 60(13), 4114-4120.
[http://dx.doi.org/10.1021/jo00118a031]
[http://dx.doi.org/10.1016/j.tet.2009.08.082]
[http://dx.doi.org/10.1021/ja401606e] [PMID: 23488914]
[http://dx.doi.org/10.1021/acs.orglett.7b02736] [PMID: 28953409]
[http://dx.doi.org/10.1021/om00113a006]
(b) Pivsa-Art, S.; Satoh, T.; Miura, M.; Nomura, M. Palladium-catalyzed reaction of aryl bromides with dialkylacetylenes to produce allenic com-pounds. Chem. Lett., 1997, 26(8), 823-824.
[http://dx.doi.org/10.1246/cl.1997.823]
(c) Chapman, L.M.; Adams, B.; Kliman, L.T.; Makriyannis, A.; Hamblett, C.L. Intramolecular Heck reactions of aryl chlorides with alkynes. Tetrahedron Lett., 2010, 51(11), 1517-1522.
[http://dx.doi.org/10.1016/j.tetlet.2010.01.050]
[http://dx.doi.org/10.1002/chem.201403213] [PMID: 25168845]
[http://dx.doi.org/10.1021/jacs.8b11759] [PMID: 30521312]
[http://dx.doi.org/10.1021/jo961073x]
(b) Wang, K.K.; Zhang, H-R.; Petersen, J.L. Thermolysis of benzoenyne-allenes to form biradicals and sub-sequent intramolecular trapping with a tetraarylallene to generate two tri-arylmethyl radical centers. J. Org. Chem., 1999, 64(5), 1650-1656.
[http://dx.doi.org/10.1021/jo982326k] [PMID: 11674232]
[http://dx.doi.org/10.1016/S0040-4020(01)01089-4]
(b) Nagaoka, Y.; Tomioka, K. Baylis-Hillman-type carbon-carbon bond formation of alkenyl-phosphonates by the action of lithium diisopropylamide. J. Org. Chem., 1998, 63(19), 6428-6429.
[http://dx.doi.org/10.1021/jo981028k]
[http://dx.doi.org/10.1016/S0040-4039(01)90474-5]
[http://dx.doi.org/10.1016/S0040-4039(03)01410-2]
[http://dx.doi.org/10.1039/B304527G]
[http://dx.doi.org/10.1021/jo051178c] [PMID: 16238310]
[http://dx.doi.org/10.1021/jo961000d] [PMID: 11671598]
[http://dx.doi.org/10.1002/ejoc.201000483]
[http://dx.doi.org/10.5012/bkcs.2013.34.3.719]
[http://dx.doi.org/10.1039/b104436m]
[http://dx.doi.org/10.1021/ja01468a042]
(b) Bestmann, H.J.; Hartung, H. Neue synthese von allencarbonsäureestern. Angew. Chem., 1963, 75(6), 297-297.
[http://dx.doi.org/10.1002/ange.19630750613]
(c) Liu, W-B.; He, H.; Dai, L-X.; You, S-L. A one-pot palladium-catalyzed allylic alkylation and Wittig reaction of phosphorus ylides. Chemistry, 2010, 16(25), 7376-7379.
[http://dx.doi.org/10.1002/chem.201000316] [PMID: 20486236]
(d) Zhang, K.; Lu, L-Q.; Yao, S.; Chen, J-R.; Shi, D-Q.; Xiao, W-J. Enantioconvergent copper catalysis: in situ generation of the chiral phosphorus ylide and its wit-tig reactions. J. Am. Chem. Soc., 2017, 139(36), 12847-12854.
[http://dx.doi.org/10.1021/jacs.7b08207] [PMID: 28825817]
(e) Pierrot, D.; Presset, M.; Rodriguez, J.; Bonne, D.; Coquerel, Y. Normal, abnormal, and cascade wittig olefinations of α-oxoketenes. Chemistry, 2018, 24(43), 11110-11118.
[http://dx.doi.org/10.1002/chem.201801533] [PMID: 29968938]
[http://dx.doi.org/10.1055/s-0034-1378803]
[http://dx.doi.org/10.1021/acs.joc.6b01679] [PMID: 27606692]
[http://dx.doi.org/10.1016/S0040-4039(00)90468-4]
(b) Jürgen, H. Best-mann; Tömösközi, I. Reaktionen mit alkylidenephosphoranen-xviii: ki-netische racematspaltungen durch umsetzung von alkylidenphosphoranen mit optisch aktiven säurechloriden. Tetrahedron, 1968, 24(8), 3299-3319.
[http://dx.doi.org/10.1016/0040-4020(80)85051-4]
(b) Musierowicz, S.; Wróblewski, A.; Krawczyk, H. Stereochemistry of P-chiral phosphinylacetic acid esters i asymmetric synthesis of substituted alkadiene-1,2-carboxylic-1 and δ-chiral α, β-unsaturated carboxylic acid esters. Tetrahedron Lett., 1975, 16(7), 437-440.
[http://dx.doi.org/10.1016/S0040-4039(00)71887-9]
[http://dx.doi.org/10.1016/0040-4039(96)00672-7]
[http://dx.doi.org/10.1016/S0957-4166(01)00114-8]
[http://dx.doi.org/10.1016/S0040-4039(03)01585-5]
(b) Pinho e Melo, T.M.V.D.; Cardoso, A.L.; Gonsalves, A.M. d’A R.; Pessoa, J. C.; Paixão, J.A.; Beja, A.M. Novel asymmetric wittig reaction: synthesis of chiral allenic esters. Eur. J. Org. Chem., 2004, 2004(23), 4830-4839.
[http://dx.doi.org/10.1039/b603659g] [PMID: 16832510]
(b) Li, C-Y.; Zhu, B-H.; Ye, L-W.; Jing, Q.; Sun, X-L.; Tang, Y.; Shen, Q. Olefination of ketenes for the enantioselective synthesis of allenes via an ylide route. Tetrahedron, 2007, 63(33), 8046-8053.
[http://dx.doi.org/10.1016/j.tet.2007.05.053]
[http://dx.doi.org/10.1021/ja068642v] [PMID: 17283983]
[http://dx.doi.org/10.1021/ja910825g] [PMID: 20201522]
[http://dx.doi.org/10.1016/S0040-4039(01)82165-1]
(b) Chan, T.H.; Mycha-jlowskij, W.; Ong, B.S.; Harpp, D.N. Synthesis of alkenes from carbonyl compounds and carbanions alpha to silicon 6. Synthesis of Terminal Allenes and Allyl Chlorides. J. Org. Chem., 1978, 43(8), 1526-1532.
[http://dx.doi.org/10.1016/S0040-4039(01)00252-0]
[http://dx.doi.org/10.1016/S0040-4039(00)80295-6]
[http://dx.doi.org/10.1021/jo960778w]
[http://dx.doi.org/10.1038/s41557-018-0080-1] [PMID: 30061614]
[http://dx.doi.org/10.1002/anie.198706901]
(b) Quintana, I.; Peña, D.; Pérez, D.; Guitián, E. Generation and reactivity of 1,2-cyclohexadiene under mild reaction conditions. Eur. J. Org. Chem., 2009, 32, 5519-5524.
[http://dx.doi.org/10.1002/ejoc.200900631]
(c) Barber, J.S.; Styduhar, E.D.; Pham, H.V.; McMahon, T.C.; Houk, K.N.; Garg, N.K. Nitrone Cycloaddi-tions of 1,2-Cyclohexadiene. J. Am. Chem. Soc., 2016, 138(8), 2512-2515.
[http://dx.doi.org/10.1021/jacs.5b13304] [PMID: 26854652]
[http://dx.doi.org/10.1016/S0040-4039(00)61198-X]
[http://dx.doi.org/10.1039/b101801i]
(b) McGrath, M.J.; Fletcher, M.T.; König, W.A.; Moore, C.J.; Cribb, B.W.; Allsopp, P.G.; Kitching, W. A suite of novel allenes from Australian melolonthine scarab beetles. Structure, synthesis, and stereochemistry. J. Org. Chem., 2003, 68(10), 3739-3748.
[http://dx.doi.org/10.1021/jo026213j] [PMID: 12737550]
[http://dx.doi.org/10.1021/ol802401a] [PMID: 19053724]
[http://dx.doi.org/10.1016/S0040-4039(00)73102-9]
[http://dx.doi.org/10.1081/SCC-120015556]
[http://dx.doi.org/10.1002/aoc.1186]
[http://dx.doi.org/10.1016/S0040-4039(00)96199-9]
[http://dx.doi.org/10.1039/p19920000747]
[http://dx.doi.org/10.1002/chem.201402353] [PMID: 25077980]
[http://dx.doi.org/10.1002/anie.200705976] [PMID: 18330881]
[http://dx.doi.org/10.1002/anie.201804446] [PMID: 29719111]
[http://dx.doi.org/10.1002/anie.201610387] [PMID: 27958668]
[http://dx.doi.org/10.1039/b508820h] [PMID: 16186920]
[http://dx.doi.org/10.1021/ja00354a057]
[http://dx.doi.org/10.1021/ja00395a074]
[http://dx.doi.org/10.1021/jo9620876]
[http://dx.doi.org/10.1002/chem.200601326] [PMID: 17072934]
[http://dx.doi.org/10.1021/om00013a020]
[http://dx.doi.org/10.1016/j.jorganchem.2007.12.003]
[http://dx.doi.org/10.1021/ja8035527] [PMID: 18652467]
[http://dx.doi.org/10.1016/S0040-4039(02)00103-X]
[http://dx.doi.org/10.1016/j.tetlet.2009.08.102]
[http://dx.doi.org/10.1016/j.tet.2009.02.019]
[http://dx.doi.org/10.1055/s-0032-1317507]
[http://dx.doi.org/10.1002/chem.201802536] [PMID: 29984536]
[http://dx.doi.org/10.1016/S0040-4039(99)01666-4]
(b) Satoh, T.; Hanaki, N.; Kuramochi, Y.; Inoue, Y.; Hosoya, K.; Sakai, K. A new method for syn-thesis of allenes, including an optically active form, from aldehydes and alkenyl aryl sulfoxides by sulfoxide-metal exchange as the key reaction and an application to a total synthesis of male bean weevil sex attractant. Tetrahedron, 2002, 58(13), 2533-2549.
[http://dx.doi.org/10.1016/S0040-4020(02)00151-5]
[http://dx.doi.org/10.1002/cjoc.201090277]
[http://dx.doi.org/10.1039/c0ob00151a] [PMID: 20725668]
[http://dx.doi.org/10.1002/cber.19841170515]
(b) Gabbutt, C.D.; Hep-worth, J.D.; Heron, B.M.; Rahman, M.M. Allenes from 3-bromo-2H-1-benzopyrans. J. Chem. Soc., Perkin Trans. 1, 1994, 13, 1733-1737.
[http://dx.doi.org/10.1039/p19940001733]
[http://dx.doi.org/10.1039/C39850000203]
[http://dx.doi.org/10.1021/ol9016673] [PMID: 19708707]
[http://dx.doi.org/10.1002/anie.201302740] [PMID: 23776151]
[http://dx.doi.org/10.1021/jo060909l] [PMID: 16872213]
[http://dx.doi.org/10.1248/cpb.48.1395] [PMID: 10993250]
[http://dx.doi.org/10.1021/ol401771a] [PMID: 23841678]
[http://dx.doi.org/10.1021/jo2015104] [PMID: 21895004]
[http://dx.doi.org/10.1021/ol006276t] [PMID: 10964381]
(b) Varghese, J.P.; Zouev, I.; Aufauvre, L.; Knochel, P.; Marek, I. Carbocupration/zinc carbenoid homologation and β-elimination reactions for a new synthesis of allenes − application to the enantioselective synthesis of chiral allenes by deracemization of sp3-organometallic derivatives. Eur. J. Org. Chem., 2002, 24, 4151-4158.
[http://dx.doi.org/10.1002/1099-0690(200212)2002:24<4151:AID-EJOC4151>3.0.CO;2-S]
[http://dx.doi.org/10.1016/S0040-4039(00)00790-5]
[http://dx.doi.org/10.1021/jo016320y] [PMID: 11846687]
[http://dx.doi.org/10.1021/ja00403a065]
[http://dx.doi.org/10.1016/S0040-4039(00)61252-2]
[http://dx.doi.org/10.1016/S0022-328X(00)95121-0]
[http://dx.doi.org/10.1021/jo00054a011]
[http://dx.doi.org/10.1016/j.tet.2009.10.112]
[http://dx.doi.org/10.1021/ol020202v] [PMID: 12583728]
[http://dx.doi.org/10.1021/ja906189h] [PMID: 19737015]
(b) Xu, D.; Drahl, M.A.; Williams, L.J. Toward an integrated route to the vernonia al-lenes and related sesquiterpenoids. Beilstein J. Org. Chem., 2011, 7(1), 937-943.
[http://dx.doi.org/10.3762/bjoc.7.104] [PMID: 21804888]
[http://dx.doi.org/10.1002/anie.201004795] [PMID: 20927794]
[http://dx.doi.org/10.1016/S0040-4039(99)00547-X]
(b) Mouriès, V.; Delouvrié, B.; Lacôte, E.; Fensterbank, L.; Malacria, M. Radical β-elimination of a sulfinyl group to afford allenes. Eur. J. Org. Chem., 2002, 11, 1776-1787.
[http://dx.doi.org/10.1002/1099-0690(200206)2002:11<1776:AID-EJOC1776>3.0.CO;2-6]
[http://dx.doi.org/10.1016/j.tetlet.2005.10.166]