Generic placeholder image

Current Reviews in Clinical and Experimental Pharmacology

Editor-in-Chief

ISSN (Print): 2772-4328
ISSN (Online): 2772-4336

Systematic Review Article

Systematic Review on Rocuronium Continuous Infusion for Deep Neuromuscular Blockade

Author(s): Mafalda Couto*, Jose G. Couto, Catarina S. Nunes, Sérgio Vide, Pedro Amorim and Joquim Mendes

Volume 16, Issue 1, 2021

Published on: 20 November, 2019

Page: [64 - 72] Pages: 9

DOI: 10.2174/1574884714666191120144331

Abstract

Background: Rocuronium is a muscle relaxant with increased use due to its binding relation with the reversal agent sugammadex. The purpose of this review entails the investigation of its use for the maintenance of Deep Neuromuscular Block (NMB) via continuous infusion.

Methods: Based on PRISMA systematic search guidelines, databases included PubMed, ISI Web of Science, Cochrane Library and Google Scholar. This comprehensive search addresses surgical patients under deep muscle relaxation via continuous rocuronium infusion. The main indicators were the rocuronium administration, NMB monitoring approaches and effects in order to maintain the deep level of relaxation, as well as reversal time after a standard dose of sugammadex.

Results: Despite the variance in approaches found in the literature, findings show the overall maintenance of deep NMB requires approximately 0.758 mg.kg-1h-1 of rocuronium (according to the PTC target of 0-10, 0-5 and 1-2, mean estimates are 0.445, 0.65 and 0.833 mg.kg-1h-1 respectively), suggesting that a lower range and a smaller maximum of PTC response require higher amount of rocuronium for its maintenance. The standard dose of sugammadex (4 mg/kg), administered at the end of the surgery takes longer [2.85 (1.17) min] than when they are administered after moderate NMB recovery [1.68 (0.47) min].

Conclusion: Continuous infusion for deep NMB presents inherent advantages in terms of maintenance and stability of muscle relaxation. Monitoring and rocuronium administration approaches are fundamental and intrinsically connected to provide a stable and improved maintenance of deep NMB.

Keywords: Anesthesia, neuromuscular blockade, Post-tetanic count, continuous infusion, deep NMB, rocuronium.

Graphical Abstract
[1]
Mueller SW, Winn R, Macht M, Fish DN, Kiser TH, MacLaren R. Neuromuscular blockade resistance during therapeutic hypothermia. Ann Pharmacother 2011; 45(3)e15
[http://dx.doi.org/10.1345/aph.1P547] [PMID: 21386017]
[2]
Warr J, Thiboutot Z, Rose L, Mehta S, Burry LD. Current therapeutic uses, pharmacology, and clinical considerations of neuromuscular blocking agents for critically ill adults. Ann Pharmacother 2011; 45(9): 1116-26.
[http://dx.doi.org/10.1345/aph.1Q004] [PMID: 21828347]
[3]
Murray MJ, DeBlock H, Erstad B, et al. Clinical practice guidelines for sustained neuromuscular blockade in the adult critically Ill patient. Crit Care Med 2016; 44(11): 2079-103.
[http://dx.doi.org/10.1097/CCM.0000000000002027] [PMID: 27755068]
[4]
Viby-Mogensen J, Claudius C. Neuromuscular MonitoringMiller’s Anesth 8th ed Philadelphia, PA 2015; pp 1604-21.
[5]
Fagerlund MJ, Eriksson LI. Current concepts in neuromuscular transmission. Br J Anaesth 2009; 103(1): 108-14.
[http://dx.doi.org/10.1093/bja/aep150] [PMID: 19546202]
[6]
Cooper R, Mirakhur RK, Clarke RSJ, Boules Z. Comparison of intubating conditions after administration of Org 9246 (rocuronium) and suxamethonium. Br J Anaesth 1992; 69(3): 269-73.
[http://dx.doi.org/10.1093/bja/69.3.269] [PMID: 1389845]
[7]
Schultz P, Ibsen M, Østergaard D, Skovgaard LT. Onset and duration of action of rocuronium--from tracheal intubation, through intense block to complete recovery. Acta Anaesthesiol Scand 2001; 45(5): 612-7.
[http://dx.doi.org/10.1034/j.1399-6576.2001.045005612.x] [PMID: 11309014]
[8]
Khuenl-Brady KS, Sparr H. Clinical pharmacokinetics of rocuronium bromide. Clin Pharmacokinet 1996; 31(3): 174-83.
[http://dx.doi.org/10.2165/00003088-199631030-00002] [PMID: 8877248]
[9]
Wierda JMKH, Kleef UW, Lambalk LM, Kloppenburg WD, Agoston S. The pharmacodynamics and pharmacokinetics of Org 9426, a new non-depolarizing neuromuscular blocking agent, in patients anaesthetized with nitrous oxide, halothane and fentanyl. Can J Anaesth 1991; 38(4 Pt 1): 430-5.
[http://dx.doi.org/10.1007/BF03007578] [PMID: 1829656]
[10]
Cooper RA, Mirakhur RK, Maddineni VR. Neuromuscular effects of rocuronium bromide (Org 9426) during fentanyl and halothane anaesthesia. Anaesthesia 1993; 48(2): 103-5.
[http://dx.doi.org/10.1111/j.1365-2044.1993.tb06844.x] [PMID: 8460753]
[11]
Billard V, Mavoungou P. Computer-Controlled Infusion of Neuromuscular Blocking Agents Study Pract Intraven Anaesth. Dordrecht: Springer Netherlands 2000; pp. 159-72.
[12]
Cammu G, Boussemaere V, Foubert L, Hendrickx J, Coddens J, Deloof T. Large bolus dose vs. continuous infusion of cisatracurium during hypothermic cardiopulmonary bypass surgery. Eur J Anaesthesiol 2005; 22(1): 25-9.
[http://dx.doi.org/10.1097/00003643-200501000-00006] [PMID: 15816569]
[13]
Khuenl-Brady KS, Sparr H, Puhringer F, Agoston S. Rocuronium bromide in the ICU: Dose finding and pharmacokinetics. Eur J Anaesthesiol. England 1995; 11: 79-80..
[14]
Georgiev S, Vylcheva D, Mladenov B. Comparison of antagonisation with Sugammadex in Rocuronium blockade maintained by continuous infusion versus bolus regime. Eur J Anaesthesiol 2011; 134.
[http://dx.doi.org/10.1097/00003643-201106001-00427]
[15]
Hemmerling TM, Russo G, Bracco D. Neuromuscular blockade in cardiac surgery: An update for clinicians. Ann Card Anaesth India 2008; 11: 80-90.
[http://dx.doi.org/10.4103/0971-9784.41575]
[16]
Kim HS, Lee K-C, Lee DC, Jang J. Kim and YB. Comparison of recovery times from deep neuromuscular blockade between single bolus and continuous infusion of rocuronium. Anesth Pain Med. Anesth Pain Med 2009; 4: 336-40.
[17]
Murray MJ, Cowen J, DeBlock H, et al. Task Force of the American College of Critical Care Medicine (ACCM) of the Society of Critical Care Medicine (SCCM), American Society of Health-System Pharmacists, American College of Chest Physicians. Clinical practice guidelines for sustained neuromuscular blockade in the adult critically ill patient. Crit Care Med 2002; 30(1): 142-56.
[http://dx.doi.org/10.1097/00003246-200201000-00021] [PMID: 11902255]
[18]
Smetana KS, Roe NA, Doepker BA, Jones GM. Review of continuous infusion neuromuscular blocking agents in the adult intensive care unit. Crit Care Nurs Q 2017; 40(4): 323-43.
[http://dx.doi.org/10.1097/CNQ.0000000000000171] [PMID: 28834856]
[19]
Olkkola KT, Tammisto T. Quantifying the interaction of rocuronium (Org 9426) with etomidate, fentanyl, midazolam, propofol, thiopental, and isoflurane using closed-loop feedback control of rocuronium infusion. Anesth Analg 1994; 78(4): 691-6.
[http://dx.doi.org/10.1213/00000539-199404000-00013] [PMID: 8135387]
[20]
Sparr HJ, Khuenl-Brady KS, Eriksson LI. Pharmacodynamics and pharmacokinetics of rocuronium following continuous infusion in patients during intravenous anaesthesia. Eur J Anaesthesiol Suppl England 1994; 9: 63-5.
[21]
Booij LHDJ. Neuromuscular transmission and its pharmacological blockade. Part 3: Continuous infusion of relaxants and reversal and monitoring of relaxation. Pharm World Sci 1997; 19(1): 35-44.
[http://dx.doi.org/10.1023/A:1008645511543] [PMID: 9089751]
[22]
Hemmerling TM, Arbeid E, Wehbe M, Cyr S, Taddei R, Zaouter C. Evaluation of a novel closed-loop total intravenous anaesthesia drug delivery system: A randomized controlled trial. Br J Anaesth 2013; 110(6): 1031-9.
[http://dx.doi.org/10.1093/bja/aet001] [PMID: 23427212]
[23]
Butterworth J, Mackey D, Wasnick J. Morgan & Mikhail’s Clinical Anesthesiology. 5th edition.. McGraw-Hill Education, LLC 2013.
[24]
Hemmerling TM, Le N. Brief review: Neuromuscular monitoring: an update for the clinician Can J Anesth Can d’anesthésie. Springer-Verlag 2007.
[25]
Fuchs-Buder T, Claudius C, Skovgaard LT, Eriksson LI, Mirakhur RK, Viby-Mogensen J. 8th International Neuromuscular Meeting. Good clinical research practice in pharmacodynamic studies of neuromuscular blocking agents II: The Stockholm revision. Acta Anaesthesiol Scand 2007; 51(7): 789-808.
[http://dx.doi.org/10.1111/j.1399-6576.2007.01352.x] [PMID: 17635389]
[26]
Hakim D, Drolet P, Donati F, Fortier L-P. Performing post-tetanic count during rocuronium blockade has limited impact on subsequent twitch height or train-of-four responses. Can J Anaesth 2016; 63(7): 828-33.
[http://dx.doi.org/10.1007/s12630-016-0619-9] [PMID: 26920705]
[27]
Biro P, Paul G, Dahan A, Brull SJ. Proposal for a revised classification of the depth of neuromuscular block and suggestions for further development in neuromuscular monitoring. Anesth Analg 2019; 128(6): 1361-3.
[http://dx.doi.org/10.1213/ANE.0000000000004065] [PMID: 31094813]
[28]
Ledowski T. Muscle relaxation in laparoscopic surgery: What is the evidence for improved operating conditions and patient outcome? a brief review of the literature. Surg Laparosc Endosc Percutan Tech 2015; 25(4): 281-5.
[http://dx.doi.org/10.1097/SLE.0000000000000164] [PMID: 26121545]
[29]
Martini CH, Boon M, Bevers RF, Aarts LP, Dahan A. Evaluation of surgical conditions during laparoscopic surgery in patients with moderate vs. deep neuromuscular block. Br J Anaesth 2014; 112(3): 498-505.
[http://dx.doi.org/10.1093/bja/aet377] [PMID: 24240315]
[30]
Blobner M, Frick CG, Stäuble RB, et al. Neuromuscular blockade improves surgical conditions (NISCO). Surg Endosc 2015; 29(3): 627-36.
[http://dx.doi.org/10.1007/s00464-014-3711-7] [PMID: 25125097]
[31]
Park S-K, Son YG, Yoo S, Lim T, Kim WH, Kim J-T. Deep vs. moderate neuromuscular blockade during laparoscopic surgery: A systematic review and meta-analysis. Eur J Anaesthesiol 2018; 35(11): 867-75.
[http://dx.doi.org/10.1097/EJA.0000000000000884] [PMID: 30188357]
[32]
Boon M, Martini CH, Aarts LP, Bevers RF, Dahan A. Effect of variations in depth of neuromuscular blockade on rating of surgical conditions by surgeon and anesthesiologist in patients undergoing laparoscopic renal or prostatic surgery (BLISS trial): Study protocol for a randomized controlled trial. Trials 2013; 14: 63.
[http://dx.doi.org/10.1186/1745-6215-14-63] [PMID: 23452344]
[33]
Esteves S, Martins M, Barros F, et al. Incidence of postoperative residual neuromuscular blockade in the postanaesthesia care unit: an observational multicentre study in Portugal. Eur J Anaesthesiol 2013; 30(5): 243-9.
[http://dx.doi.org/10.1097/EJA.0b013e32835dccd7] [PMID: 23344123]
[34]
Hayes AH, Mirakhur RK, Breslin DS, Reid JE, McCourt KC. Postoperative residual block after intermediate-acting neuromuscular blocking drugs. Anaesthesia 2001; 56(4): 312-8.
[http://dx.doi.org/10.1046/j.1365-2044.2001.01921.x] [PMID: 11284816]
[35]
Bom A, Bradley M, Cameron K, et al. A novel concept of reversing neuromuscular block: Chemical encapsulation of rocuronium bromide by a cyclodextrin-based synthetic host. Angew Chem Int Ed Engl 2002; 41(2): 266-70.
[http://dx.doi.org/10.1002/1521-3757(20020118)114:2<275:AID-ANGE275>3.0.CO;2-A] [PMID: 12491405]
[36]
Yang LPH, Keam SJ. Sugammadex: A review of its use in anaesthetic practice. Drugs 2009; 69(7): 919-42.
[http://dx.doi.org/10.2165/00003495-200969070-00008] [PMID: 19441874]
[37]
Makri I, Papadima A, Lafioniati A, et al. Sugammadex, a promising reversal drug. A review of clinical trials. Rev Recent Clin Trials 2011; 6(3): 250-5.
[http://dx.doi.org/10.2174/157488711796575559] [PMID: 21682689]
[38]
Proost JH, Eriksson LI, Mirakhur RK, Roest G, Wierda JMKH. Urinary, biliary and faecal excretion of rocuronium in humans. Br J Anaesth 2000; 85(5): 717-23.
[http://dx.doi.org/10.1093/bja/85.5.717] [PMID: 11094587]
[39]
Bridion 100 mg/ml solution for injection Summary of Product Characteristics (SmPC) - (eMC). 2000.
[40]
Panhuizen IF, Gold SJA, Buerkle C, et al. Efficacy, safety and pharmacokinetics of sugammadex 4 mg kg-1 for reversal of deep neuromuscular blockade in patients with severe renal impairment. Br J Anaesth 2015; 114(5): 777-84.
[http://dx.doi.org/10.1093/bja/aet586] [PMID: 25829395]
[41]
Cammu G. Study on the optimisation of continuous infusions of neuromuscular blocking drugs during anaesthesia / Guy Cammu 2004.
[42]
Higgins JPTJulian, Higgins PT, Eds Cochrane Handbook for systematic reviews of interventions version Cochrane Collab. 2011.
[43]
Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 2005; 5: 13.
[http://dx.doi.org/10.1186/1471-2288-5-13] [PMID: 15840177]
[44]
Staehr-Rye AK, Rasmussen LS, Rosenberg J, et al. Surgical space conditions during low-pressure laparoscopic cholecystectomy with deep versus moderate neuromuscular blockade: A randomized clinical study. Anesth Analg 2014; 119(5): 1084-92.
[http://dx.doi.org/10.1213/ANE.0000000000000316] [PMID: 24977638]
[45]
Yoo Y-C, Kim NY, Shin S, et al. The intraocular pressure under deep versus moderate neuromuscular blockade during low-pressure robot assisted laparoscopic radical prostatectomy in a randomized trial. PLoS One 2015; 10(8)e0135412
[http://dx.doi.org/10.1371/journal.pone.0135412] [PMID: 26317357]
[46]
Madsen MV, Scheppan S, Mørk E, Kissmeyer P, Rosenberg J, Gätke MR. Influence of deep neuromuscular block on the surgeonś assessment of surgical conditions during laparotomy: A randomized controlled double blinded trial with rocuronium and sugammadex. Br J Anaesth 2017; 119(3): 435-42.
[http://dx.doi.org/10.1093/bja/aex241] [PMID: 28969327]
[47]
Baete S, Vercruysse G, Vander Laenen M, et al. The effect of deep versus moderate neuromuscular block on surgical conditions and postoperative respiratory function in bariatric laparoscopic surgery: A randomized, double blind clinical trial. Anesth Analg 2017; 124(5): 1469-75.
[http://dx.doi.org/10.1213/ANE.0000000000001801] [PMID: 28107276]
[48]
Kim MH, Lee KY, Lee K-Y, Min B-S, Yoo YC. Maintaining optimal surgical conditions with low insufflation pressures is possible with deep neuromuscular blockade during laparoscopic colorectal surgery: A prospective, randomized, double-blind, parallel-group clinical trial medicine (baltimore) United States 2016; 95: e2920
[49]
Bruintjes MH, van Helden EV, Braat AE, et al. Deep neuromuscular block to optimize surgical space conditions during laparoscopic surgery: A systematic review and meta-analysis. Br J Anaesth 2017; 118(6): 834-42.
[http://dx.doi.org/10.1093/bja/aex116] [PMID: 28575335]
[50]
Kim HJ, Lee K-Y, Kim MH, Kim H-I, Bai SJ. Effects of deep vs moderate neuromuscular block on the quality of recovery after robotic gastrectomy. Acta Anaesthesiol Scand 2019; 3(63): 306-13.
[http://dx.doi.org/10.1111/aas.13271]
[51]
Soto Mesa D, Fayad Fayad M, Pérez Arviza L, et al. Efficacy of different doses of sugammadex after continuous infusion of rocuronium. World J Clin Cases 2015; 3(4): 360-7.
[http://dx.doi.org/10.12998/wjcc.v3.i4.360] [PMID: 25879008]
[52]
Mekawy N, Fouad Ali EA. Improved recovery profiles in sinonasal surgery Sugammadex: Does it have a role? Egypt J Anaesth 2012; 28: 175-8.
[http://dx.doi.org/10.1016/j.egja.2011.12.007]
[53]
Yamamoto S, Yamamoto Y, Kitajima O, Maeda T, Suzuki T. Reversal of neuromuscular block with sugammadex: A comparison of the corrugator supercilii and adductor pollicis muscles in a randomized dose-response study. Acta Anaesthesiol Scand 2015; 59(7): 892-901.
[http://dx.doi.org/10.1111/aas.12549] [PMID: 25962400]
[54]
Van Brantegem E, Van Limmen J, De Baerdemaeker L, De Hert S. Reversal of a continuous deep neuromuscular blockade with sugammadex in morbidly obese patients: Lean body weight or total body weight as dosing scalar? Eur J Anaesthesiol 2014; 31: 151-2.
[http://dx.doi.org/10.1097/00003643-201406001-00429]
[55]
Lee HJ, Kim KS, Jeong JS, Kim KN, Lee BC. The influence of mild hypothermia on reversal of rocuronium-induced deep neuromuscular block with sugammadex. BMC Anesthesiol 2015; 15: 7.
[http://dx.doi.org/10.1186/1471-2253-15-7] [PMID: 25971394]
[56]
Rex C, Wagner S, Spies C, et al. Reversal of neuromuscular blockade by sugammadex after continuous infusion of rocuronium in patients randomized to sevoflurane or propofol maintenance anesthesia. Anesthesiology 2009; 111(1): 30-5.
[http://dx.doi.org/10.1097/ALN.0b013e3181a51cb0] [PMID: 19512873]
[57]
Nonaka T, Fujimoto M, Nishi M, Yamamoto T. The effect of rocuronium and sugammadex in hepatic tumor patients without preoperative hepatic impairment. Masui 2013; 62(3): 304-8.
[PMID: 23544332]
[58]
Saldien V, Vermeyen KM, Wuyts FL. Target-controlled infusion of rocuronium in infants, children, and adults: A comparison of the pharmacokinetic and pharmacodynamic relationship. Anesth Analg 2003; 97(1): 44-9.
[http://dx.doi.org/10.1213/01.ANE.0000066262.32103.60] [PMID: 12818941]
[59]
Staehr-Rye AK, Rasmussen LS, Rosenberg J, Juul P, Gätke MR. Optimized surgical space during low-pressure laparoscopy with deep neuromuscular blockade. Dan Med J 2013; 60(2): A4579.
[PMID: 23461992]
[60]
Drugs.com Rocuronium Bromide Injection-FDA prescribing information, side effects and uses [Accessed on July 1, 2020]..
[61]
Fuchs-Buder T. Neuromuscular monitoring in clinical practice and research. Neuromuscul Monit Clin Pract Res 2010.
[62]
Fabregat López J, Candia Arana CA, Castillo Monzón CG. Neuromuscular monitoring and its importance in neuromuscular blockade. Colomb J Anesthesiol 2012; 40: 293-303.
[http://dx.doi.org/10.1016/j.rcae.2012.05.001]
[63]
Abrishami A, Ho J, Wong J, Yin L, Chung F. Sugammadex, a selective reversal medication for preventing postoperative residual neuromuscular blockade Cochrane Database Syst Rev. John Wiley & Sons, Ltd. 2009.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy