Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

Review of Automated Computerized Methods for Brain Tumor Segmentation and Classification

Author(s): Umaira Nazar, Muhammad Attique Khan, Ikram Ullah Lali, Hong Lin*, Hashim Ali, Imran Ashraf and Junaid Tariq

Volume 16, Issue 7, 2020

Page: [823 - 834] Pages: 12

DOI: 10.2174/1573405615666191120110855

Price: $65

Abstract

Recently, medical imaging and machine learning gained significant attention in the early detection of brain tumor. Compound structure and tumor variations, such as change of size, make brain tumor segmentation and classification a challenging task. In this review, we survey existing work on brain tumor, their stages, survival rate of patients after each stage, and computerized diagnosis methods. We discuss existing image processing techniques with a special focus on preprocessing techniques and their importance for tumor enhancement, tumor segmentation, feature extraction and features reduction techniques. We also provide the corresponding mathematical modeling, classification, performance matrices, and finally important datasets. Last but not least, a detailed analysis of existing techniques is provided which is followed by future directions in this domain.

Keywords: Brain tumor, preprocessing, tumor segmentation, feature extraction, classification, future trends.

Graphical Abstract
[1]
Tian Z, Dey N, Ashour AS, McCauley P, Shi F. Morphological segmenting and neighborhood pixel-based locality preserving projection on brain fMRI dataset for semantic feature extraction: an affective computing study. Neural Comput Appl 2018; 30: 3733-48.
[http://dx.doi.org/10.1007/s00521-017-2955-2]
[2]
Galande A, Patil R. The art of medical image fusion: A survey. International Conference on Advances in Computing, Communications and Informatics (ICACCI) 2013 Aug 22-25 Mysore, India New Jersey: IEEE 2013.
[http://dx.doi.org/10.1109/ICACCI.2013.6637205]
[3]
Masood S, Sharif M, Yasmin M, Raza M, Mohsin S. Brain image compression: a brief survey. Res J Appl Sci Eng Technol 2013; 5: 49-59.
[http://dx.doi.org/10.19026/rjaset.5.5083]
[4]
Sharif M, Tanvir U, Munir EU, Khan MA, Yasmin M. Brain tumor segmentation and classification by improved binomial thresholding and multi-features selection. J Ambient Intell Humaniz Comput 2018; 2018: 1-20.
[http://dx.doi.org/10.1007/s12652-018-1075-x]
[5]
Jiang Y, Wang M. Image fusion with morphological component analysis. Inf Fusion 2014; 18: 107-18.
[http://dx.doi.org/10.1016/j.inffus.2013.06.001]
[6]
Nandeesh M, Meenakshi M. Image fusion algorithms for medical images-a comparison. Bonfring Int J Adv Image Process 2015; 5: 23-6.
[http://dx.doi.org/10.9756/BIJAIP.8051]
[7]
Verma OP, Kumar P, Hanmandlu M, Chhabra S. High dynamic range optimal fuzzy color image enhancement using artificial ant colony system. Appl Soft Comput 2012; 12: 394-404.
[http://dx.doi.org/10.1016/j.asoc.2011.08.033]
[8]
Kwok NM, Shi H, Ha QP, Fang G, Chen S, Jia X. Simultaneous image color correction and enhancement using particle swarm optimization. Eng Appl Artif Intell 2013; 26: 2356-71.
[http://dx.doi.org/10.1016/j.engappai.2013.07.023]
[9]
James AP, Dasarathy BV. Medical image fusion: A survey of the state of the art. Inf Fusion 2014; 19: 4-19.
[http://dx.doi.org/10.1016/j.inffus.2013.12.002]
[10]
Jagalingam P, Hegde AV. A review of quality metrics for fused image. Aquatic Procedia 2015; 4: 133-42.
[http://dx.doi.org/10.1016/j.aqpro.2015.02.019]
[11]
Pandey M, Bhatia M, Bansal A. An anatomization of noise removal techniques on medical images. International Conference on Innovation and Challenges in Cyber Security (ICICCS-INBUSH) 2016 Feb 3-5 Noida, India New Jersey: IEEE 2016.
[http://dx.doi.org/10.1109/ICICCS.2016.7542308]
[12]
Deya N. F Shib R, Vc Leukocyte nuclei segmentation using entropy function and chan-vese approach. Information Technology and Intelligent Transportation Systems 2018; pp. 255-64.
[13]
Rajinikanth, V;, Thanaraj, K. P;, Satapathy, S. C;, Fernandes S. L;, Dey, N. Shannon’s entropy and watershed algorithm based technique to inspect ischemic stroke wound Smart intelligent computing and applications. Berlin: Springer 2019; pp. 23-31.
[http://dx.doi.org/10.1007/978-981-13-1927-3_3]
[14]
Manic KS, Al Naimi IS, Hasoon FN, Rajinikanth V. Jaya algorithm-assisted evaluation of tooth elements using digital bitewing radiography images. Computational techniques for dental image analysis.Hershey: IGI Global 2019; pp. 107-28.
[15]
Wang Y, Chen Y, Yang N, Zheng L, Dey N, Ashour AS. Classification of mice hepatic granuloma microscopic images based on a deep convolutional neural network. Appl Soft Comput 2019; 74: 40-50.
[http://dx.doi.org/10.1016/j.asoc.2018.10.006]
[16]
Rajinikanth V, Satapathy SC, Dey N, Fernandes SL, Manic KS. Skin melanoma assessment using Kapur’s entropy and level set-a study with Bat algorithm. Smart Intell Comput Applic 2019; 2019: 193-202.
[http://dx.doi.org/10.1007/978-981-13-1921-1_19]
[17]
Manic KS, Hasoon FN, Al Shibli N, Satapathy SC, Rajinikanth V. An approach to examine brain tumor based on kapur’s entropy and chan–vese algorithm. Third international congress on information and communication technology. London: ICICT 2018 pp. 901-9
[http://dx.doi.org/10.1007/978-981-13-1165-9_81]
[18]
Rajinikanth V, Satapathy SC. Segmentation of ischemic stroke lesion in brain MRI based on social group optimization and Fuzzy-Tsallis entropy. Arab J Sci Eng 2018; 43: 4365-78.
[http://dx.doi.org/10.1007/s13369-017-3053-6]
[19]
Raja NSM, Fernandes S, Dey N, Satapathy SC, Rajinikanth V. Contrast enhanced medical MRI evaluation using Tsallis entropy and region growing segmentation. J Ambient Intell Humaniz Comput 2018; 2018: 1-12.
[http://dx.doi.org/10.1007/s12652-018-0854-8]
[20]
Razmjooy N, Somayeh MB, Soleymani F, Khotbesara MH. A computer-aided diagnosis system for malignant melanomas. Neural Comput Appl 2013; 23(7-8): 2059-71.
[http://dx.doi.org/10.1007/s00521-012-1149-1]
[21]
Khan MA, Lali IU, Rehman A, et al. Brain tumor detection and classification: A framework of marker-based watershed algorithm and multilevel priority features selection. Microsc Res Tech 2019; 82(6): 909-22.
[http://dx.doi.org/10.1002/jemt.23238] [PMID: 30801840]
[22]
Damodharan S, Raghavan D. Combining tissue segmentation and neural network for brain tumor detection. Int Arab J Inform Technol 2015; 12: 1-10.
[23]
Ariyo O, Zhi-guang Q, Tian L. Brain MR segmentation using a fusion of K-means and spatial fuzzy C-means. DEStech Trans Comp Sci Engineer 2017; 2017: 1-8.
[24]
Chaddad A. Automated feature extraction in brain tumor by magnetic resonance imaging using gaussian mixture models. Int J Biomed Imaging 2015; 2015: 868031.
[http://dx.doi.org/10.1155/2015/868031] [PMID: 26136774]
[25]
Menon N, Ramakrishnan R. Brain tumor segmentation in MRI images using unsupervised artificial bee colony algorithm and FCM clustering International Conference on Communications and Signal Processing (ICCSP) 2015 Apr 2-4 Melmaruvathur, India New Jersey: IEEE. 2015.
[http://dx.doi.org/10.1109/ICCSP.2015.7322635]
[26]
Pereira S, Pinto A, Alves V, Silva CA. Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 2016; 35(5): 1240-51.
[http://dx.doi.org/10.1109/TMI.2016.2538465] [PMID: 26960222]
[27]
Bahadure NB, Ray AK, Thethi HP. Comparative approach of MRI-based brain tumor segmentation and classification using genetic algorithm. J Digit Imaging 2018; 31(4): 477-89.
[http://dx.doi.org/10.1007/s10278-018-0050-6] [PMID: 29344753]
[28]
Nasir M, Khan MA, Sharif M, Lali IU, Saba T, Iqbal T. An improved strategy for skin lesion detection and classification using uniform segmentation and feature selection based approach. Microsc Res Tech 2018; 81(6): 528-43.
[http://dx.doi.org/10.1002/jemt.23009] [PMID: 29464868]
[29]
Ohgaki H, Kleihues P. The definition of primary and secondary glioblastoma. Clin Cancer Res 2013; 19(4): 764-72.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3002] [PMID: 23209033]
[30]
Vartanian A, Singh SK, Agnihotri S, et al. GBM’s multifaceted landscape: highlighting regional and microenvironmental heterogeneity. Neuro-oncol 2014; 16(9): 1167-75.
[http://dx.doi.org/10.1093/neuonc/nou035] [PMID: 24642524]
[31]
Liu J, Li M, Wang J, Wu F, Liu T, Pan Y. A survey of MRI-based brain tumor segmentation methods. Tsinghua Sci Technol 2014; 19: 578-95.
[http://dx.doi.org/10.1109/TST.2014.6961028]
[32]
Dalal N, Triggs B. Histograms of oriented gradients for human detection. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) 2005 June 20-25 San Diego, CA, USA New Jersey IEEE; pp. 886-93
[http://dx.doi.org/10.1109/CVPR.2005.177]
[33]
Lawonn K, Smit NN, Bühler K, Preim B. A survey on multimodal medical data visualization. Comput Graph Forum 2018; 208: 413-38.
[http://dx.doi.org/10.1111/cgf.13306]
[34]
Naceur MB, Saouli R, Akil M, Kachouri R. Fully automatic brain tumor segmentation using end-to-end incremental deep neural networks in MRI images. Comput Methods Programs Biomed 2018; 166: 39-49.
[http://dx.doi.org/10.1016/j.cmpb.2018.09.007] [PMID: 30415717]
[35]
Tong J, Zhao Y, Zhang P, Chen L, Jiang L. MRI brain tumor segmentation based on texture features and kernel sparse coding. Biomed Signal Process Control 2019; 47: 387-92.
[http://dx.doi.org/10.1016/j.bspc.2018.06.001]
[36]
Setyawan R, Almahfud MA, Sari CA, Rachmawanto EH. MRI Image Segmentation using morphological enhancement and noise removal based on fuzzy C-means. 5th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE) 2018 Sept 27-28 Semarang, Indonesia New Jersey IEEE
[http://dx.doi.org/10.1109/ICITACEEi.2018.8576941]
[37]
Nazir M, Wahid F, Khan AS. A simple and intelligent approach for brain MRI classification. J Intell Fuzzy Syst 2015; 28: 1127-35.
[38]
Amin J, Sharif M, Raza M, Saba T, Anjum MA. Brain tumor detection using statistical and machine learning method. Comput Methods Programs Biomed 2019; 177: 69-79.
[http://dx.doi.org/10.1016/j.cmpb.2019.05.015] [PMID: 31319962]
[39]
You Y-L, Xu W, Tannenbaum A, Kaveh M. Behavioral analysis of anisotropic diffusion in image processing. IEEE Trans Image Process 1996; 5(11): 1539-53.
[http://dx.doi.org/10.1109/83.541424] [PMID: 18290071]
[40]
Weickert J, Romeny BH, Viergever MA. Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans Image Process 1998; 7(3): 398-410.
[http://dx.doi.org/10.1109/83.661190] [PMID: 18276260]
[41]
Prima S, Commowick O. Using bilateral symmetry to improve non-local means denoising of MR brain images. 10th International Symposium on Biomedical Imaging 2013 Apr 7-11 San Francisco, CA, USA New Jersey: IEEE 2013.
[http://dx.doi.org/10.1109/ISBI.2013.6556703]
[42]
Bauer S, Nolte L-P, Reyes M. Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularizaReviewtion. Med Image Comput Comput Assist Interv 2011; 14(Pt 3): 354-61.
[http://dx.doi.org/10.1007/978-3-642-23626-6_44]
[43]
Phatak K, Jakhade S, Nene A, Kamathe R, Joshi K. De-noising of magnetic resonance images using independent component analysis Recent Advances in Intelligent Computational Systems; 22-24 Sept 2011; Trivandrum, Kerala, India New Jersey: IEEE 2011.
[http://dx.doi.org/10.1109/RAICS.2011.6069421]
[44]
Rajinikanth V, Raja NSM, Kamalanand K. Firefly algorithm assisted segmentation of tumor from brain MRI using Tsallis function and Markov random field. J Contr Engineer Appl Inform 2017; 19: 97-106.
[45]
Rajinikanth V, Fernandes SL, Bhushan B, Sunder NR. Segmentation and analysis of brain tumor using Tsallis entropy and regularised level set. Proceedings of 2nd International Conference on Micro-Electronics, Electromagnetics and Telecommunications Singapore: Springer . 2018; pp. 313-21.
[http://dx.doi.org/10.1007/978-981-10-4280-5_33]
[46]
Rajinikanth V, Satapathy SC, Dey N, Vijayarajan R. DWT-PCA image fusion technique to improve segmentation accuracy in brain tumor analysis Microelectronics, electromagnetics and telecommunications. Berlin: Springer 2018; pp. 453-62.
[http://dx.doi.org/10.1007/978-981-10-7329-8_46]
[47]
Nazir M, Khan MA, Saba T, Rehman A. Brain tumor detection from MRI images using multi-level wavelets. International Conference on Computer and Information Sciences (ICCIS) 3-4 April 2019; Sakaka, Saudi Arabia. New Jersey: IEEE 2019.
[http://dx.doi.org/10.1109/CCISci.2019.8716413]
[48]
Khan MA, Javed MY, Sharif M, Saba T, Rehman A. Multi-model deep neural network based features extraction and optimal selection approach for skin lesion classification. International Conference on Computer and Information Sciences (ICCIS) 2019Apr 3-4; Sakaka, Saudi Arabia New Jersey: IEEE 2019.
[http://dx.doi.org/10.1109/ICCISci.2019.8716400]
[49]
Khan MA, Lali MIU, Sharif M, Javed K, Aurangzeb K, Haider SI. An optimized method for segmentation and classification of apple diseases based on strong correlation and genetic algorithm based feature selection IEEE Access 2019; 7: 46261-77.
[http://dx.doi.org/10.1109/ACCESS.2019.2908040]
[50]
Khan MA, Akram T, Sharif M, et al. Construction of saliency map and hybrid set of features for efficient segmentation and classification of skin lesion. Microsc Res Tech 2019; 82(6): 741-63.
[http://dx.doi.org/10.1002/jemt.23220] [PMID: 30768826]
[51]
Sharif M, Khan MA, Rashid M, Yasmin M, Afza F, Tanik UJ. Deep CNN and geometric features-based gastrointestinal tract diseases detection and classification from wireless capsule endoscopy images. J Exp Theor Artif Intell 2019; 2019: 1-23.
[http://dx.doi.org/10.1080/0952813X.2019.1572657]
[52]
Mathew AR, Anto PB, Thara N. Brain tumor segmentation and classification using DWT, Gabour wavelet and GLCM. International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT) 2017 July 6-7; Kannur, India New Jersey: IEEE 2018.
[http://dx.doi.org/10.1109/ICICICT1.2017.8342834]
[53]
Chua AS, Egorova S, Anderson MC, et al. Using multiple imputation to efficiently correct cerebral MRI whole brain lesion and atrophy data in patients with multiple sclerosis. Neuroimage 2015; 119: 81-88.
[http://dx.doi.org/10.1016/j.neuroimage.2015.06.037] [PMID: 26093330]
[54]
Mohsen H, El-Dahshan E-SA, El-Horbaty E-SM, Salem A-BM. Classification using deep learning neural networks for brain tumors. Future Comput Inform J 2018; 3: 68-71.
[http://dx.doi.org/10.1016/j.fcij.2017.12.001]
[55]
Sharma M, Purohit G, Mukherjee S. Information retrieves from brain MRI images for tumor detection using hybrid technique K-means and artificial neural network (KMANN) Networking Communication and Data Knowledge Engineering. Berlin: Springer 2018; pp. 145-57.
[http://dx.doi.org/10.1007/978-981-10-4600-1_14]
[56]
Lin G-C, Wang W-J, Kang C-C, Wang C-M. Multispectral MR images segmentation based on fuzzy knowledge and modified seeded region growing. Magn Reson Imaging 2012; 30(2): 230-46.
[http://dx.doi.org/10.1016/j.mri.2011.09.008] [PMID: 22133286]
[57]
Weizman L, Ben Sira L, Joskowicz L, et al. Automatic segmentation, internal classification, and follow-up of optic pathway gliomas in MRI. Med Image Anal 2012; 16(1): 177-188.
[http://dx.doi.org/10.1016/j.media.2011.07.001] [PMID: 21852179]
[58]
Zhang N, Ruan S, Lebonvallet S, Liao Q, Zhu Y. Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation. Comput Vis Image Underst 2011; 115: 256-69.
[http://dx.doi.org/10.1016/j.cviu.2010.09.007]
[59]
Sun Y, Wu M, Ruan W, Huang X, Kwiatkowska M, Kroening D. Concolic testing for deep neural networks. Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering Sept 2018 New York, NY, USA Berlin Springer 2018.
[60]
Afza F, Khan MA, Sharif M, Rehman A. Microscopic skin laceration segmentation and classification: A framework of statistical normal distribution and optimal feature selection. Microsc Res Tech 2019; 82(9): 1471-88.
[http://dx.doi.org/10.1002/jemt.23301] [PMID: 31168871]
[61]
Safdar A, Khan MA, Shah JH, et al. Intelligent microscopic approach for identification and recognition of citrus deformities. Microsc Res Tech 2019; 82(9): 1542-56.
[http://dx.doi.org/10.1002/jemt.23320] [PMID: 31209970]
[62]
Sharif M, Khan MA, Faisal M, Yasmin M, Fernandes SL. A framework for offline signature verification system: Best features selection approach. Pattern Recognit Lett 2018; 2018: 1-8.
[http://dx.doi.org/10.1016/j.patrec.2018.01.021]
[63]
Eskandari M, Toygar Ö. Fusion of face and iris biometrics using local and global feature extraction methods. Signal Image Video Process 2014; 8: 995-1006.
[http://dx.doi.org/10.1007/s11760-012-0411-4]
[64]
Khedher L, Ramírez J, Górriz JM, Brahim A, Segovia F. Early diagnosis of Alzheimer׳s disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images. Neurocomputing 2015; 151: 139-50.
[http://dx.doi.org/10.1016/j.neucom.2014.09.072]
[65]
Khan MA, Sharif M, Javed MY, Akram T, Yasmin M, Saba T. License number plate recognition system using entropy-based features selection approach with SVM. IET Image Process 2017; 12: 200-9.
[http://dx.doi.org/10.1049/iet-ipr.2017.0368]
[66]
Aurangzeb K, Haider I, Khan MA, Saba T, Javed K, Iqbal T. Human behavior analysis based on multi-types features fusion and von nauman entropy based features reduction. J Med Imaging Health Inform 2019; 9: 662-9.
[http://dx.doi.org/10.1166/jmihi.2019.2611]
[67]
Arshad H, Khan MA, Sharif M, Yasmin M, Javed MY. Multi-level features fusion and selection for human gait recognition: an optimized framework of Bayesian model and binomial distribution. Int J Mach Learn Cybern 2019; 2019: 1-18.
[http://dx.doi.org/10.1007/s13042-019-00947-0]
[68]
Sharif M, Khan MA, Zahid F, Shah JH, Akram T. Human action recognition: a framework of statistical weighted segmentation and rank correlation-based selection. Pattern Anal Appl 2019; 2019: 1-14.
[http://dx.doi.org/10.1007/s10044-019-00789-0]
[69]
Rashid M, Khan MA, Sharif M, Raza M, Sarfraz MM, Afza F. Object detection and classification: a joint selection and fusion strategy of deep convolutional neural network and SIFT point features. Multimedia Tools Appl 2018; 2018: 1-27.
[70]
Raza M, Sharif M, Yasmin M, Khan MA, Saba T, Fernandes SL. Appearance based pedestrians’ gender recognition by employing stacked auto encoders in deep learning. Future Gener Comput Syst 2018; 88: 28-39.
[http://dx.doi.org/10.1016/j.future.2018.05.002]
[71]
Siddiqui S, Khan MA, Bashir K, Sharif M, Azam F, Javed MY. Human action recognition: a construction of codebook by discriminative features selection approach. Int J Appl Patt Recogn 2018; 5: 206-28.
[http://dx.doi.org/10.1504/IJAPR.2018.094815]
[72]
Khan MA, Akram T, Sharif M, Javed MY, Muhammad N, Yasmin M. An implementation of optimized framework for action classification using multilayers neural network on selected fused features. Patt Anal Appl 2018; 2018: 1-21.
[73]
Sharif M, Khan MA, Akram T, Javed MY, Saba T, Rehman A. A framework of human detection and action recognition based on uniform segmentation and combination of Euclidean distance and joint entropy-based features selection. EURASIP J Image Video Process 2017; 2017: 89.
[http://dx.doi.org/10.1186/s13640-017-0236-8]
[74]
Alhindi TJ, Kalra S, Ng KH, Afrin A, Tizhoosh HR. Comparing LBP, HOG and deep features for classification of histopathology images. 2018 International Joint Conference on Neural Networks (IJCNN), 2018, pp. 1-7. arXiv:1805.05837.
[http://dx.doi.org/10.1109/IJCNN.2018.8489329]
[75]
Sharif M, Khan MA, Iqbal Z, Azam MF, Lali MIU, Javed MY. Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection. Comput Electron Agric 2018; 150: 220-34.
[http://dx.doi.org/10.1016/j.compag.2018.04.023]
[76]
Iqbal Z, Khan MA, Sharif M, Shah JH, Rehman MH, Javed K. An automated detection and classification of citrus plant diseases using image processing techniques: A review. Comput Electron Agric 2018; 153: 12-32.
[http://dx.doi.org/10.1016/j.compag.2018.07.032]
[77]
Khan MA, Akram T, Sharif M, Awais M, Javed K, Ali H. CCDF: Automatic system for segmentation and recognition of fruit crops diseases based on correlation coefficient and deep CNN features. Comput Electron Agric 2018; 155: 220-36.
[http://dx.doi.org/10.1016/j.compag.2018.10.013]
[78]
Khan SA, Nazir M, Khan MA, et al. Lungs nodule detection framework from computed tomography images using support vector machine. Microsc Res Tech 2019; 82(8): 1256-66.
[http://dx.doi.org/10.1002/jemt.23275] [PMID: 30974031]
[79]
Khan MA, Akram T, Sharif M, et al. An implementation of normal distribution based segmentation and entropy controlled features selection for skin lesion detection and classification. BMC Cancer 2018; 18(1): 638.
[http://dx.doi.org/10.1186/s12885-018-4465-8] [PMID: 29871593]
[80]
Liaqat A, Khan MA, Shah JH, Sharif M, Yasmin M, Fernandes SL. Automated ulcer and bleeding classification from WCE images using multiple features fusion and selection. J Mech Med Biol 2018; 18(4): 1850038.
[http://dx.doi.org/10.1142/S0219519418500380]
[81]
Akram T, Khan MA, Sharif M, Yasmin M. Skin lesion segmentation and recognition using multichannel saliency estimation and M-SVM on selected serially fused features. J Ambient Intell Humaniz Comput 2018; 2018: 1-20.
[http://dx.doi.org/10.1007/s12652-018-1051-5]
[82]
Rajinikanth V, Raja NSM, Satapathy SC, Dey N, Devadhas GG. Thermogram assisted detection and analysis of Ductal Carcinoma In Situ (DCIS). International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT) 2017 July 6-7; Kannur, India New Jersey: IEEE 2018.
[http://dx.doi.org/10.1109/ICICICT1.2017.8342817]
[83]
Raj S. S;, Raja N.S. M;, Madhumitha M, Rajinikanth V. Examination of digital mammogram using Otsu’s function and watershed segmentation. Fourth International Conference on Biosignals, Images and Instrumentation (ICBSII) 2018 Mar 22-24 Chennai, India New Jersey: IEEE 2018.
[http://dx.doi.org/10.1109/ICBSII.2018.8524794]
[84]
Revanth K, Raja N.S. M;, Rajinikanth V. Computational investigation of stroke lesion segmentation from flair/DW modality MRI. Fourth International Conference on Biosignals, Images and Instrumentation (ICBSII) 2018 Mar 22-24 Chennai, India New Jersey: IEEE 2018.
[http://dx.doi.org/10.1109/ICBSII.2018.8524617]
[85]
Rajesh T, Malar R, Mani S. Robust classification of brain tumor in MRI images using salient structure descriptor and RBF kernel-SVM. Asian J Res Soc Sci Human 2017; 7(2): 58-71.
[86]
Majid M, Abidin A, Anuar N, Kadiran K, Karis M, Yusoff Z. A comparative study on the application of binary particle swarm optimization and binary gravitational search algorithm in feature selection for automatic classification of brain tumor MRI. J Fundament Appl Sci 2018; 10: 486-98.
[87]
Rajesh T, Malar R. Robust classification of brain tumor in MRI images using salient structure descriptor and RBF kernel-SVM. Asian J Res Soc Sci Humanit 2017; 7: 58-71.
[http://dx.doi.org/10.5958/2249-7315.2017.00071.5]
[88]
Rajinikanth V, Satapathy SC, Fernandes SL, Nachiappan S. Entropy based segmentation of tumor from brain MR images–a study with teaching learning based optimization. Patt Recognit Lett 2017; 94: 87-95.
[http://dx.doi.org/10.1016/j.patrec.2017.05.028]
[89]
Kaur T, Saini BS, Gupta S. An adaptive fuzzy K-nearest neighbor approach for MR brain tumor image classification using parameter free bat optimization algorithm. Multimedia Tools Appl 2019; 2019: 1-38.
[http://dx.doi.org/10.1007/s11042-019-7498-3]
[90]
Polepaka S, Rao CS, Mohan MC. A brain tumor: localization using bounding box and classification using SVM. Innov Electron Comm Engineer 2019; 2019: 61-70.
[http://dx.doi.org/10.1007/978-981-10-8204-7_6]
[91]
Padlia M, Sharma J. Fractional Sobel filter based brain tumor detection and segmentation using statistical features and SVM. Nanoelectronics. Circ Comm Syst 2019; 209: 161-75.
[http://dx.doi.org/10.1007/978-981-13-0776-8_15]
[92]
Sajjad M, Khan S, Muhammad K, Wu W, Ullah A, Baik SW. Multi-grade brain tumor classification using deep CNN with extensive data augmentation. J Comput Sci 2019; 30: 174-82.
[http://dx.doi.org/10.1016/j.jocs.2018.12.003]
[93]
Swati ZNK, Zhao Q, Kabir M, et al. Brain tumor classification for MR images using transfer learning and fine-tuning. Comput Med Imaging Graph 2019; 75: 34-46.
[http://dx.doi.org/10.1016/j.compmedimag.2019.05.001] [PMID: 31150950]
[94]
Amin J, Sharif M, Yasmin M, Fernandes SL. A distinctive approach in brain tumor detection and classification using MRI. Patt Recog Lett 2017; 2017: 1-8.
[http://dx.doi.org/10.1016/j.patrec.2017.10.036]
[95]
Valverde S, Oliver A, Cabezas M, Roura E, Lladó X. Comparison of 10 brain tissue segmentation methods using revisited IBSR annotations. J Magn Reson Imaging 2015; 41(1): 93-101.
[http://dx.doi.org/10.1002/jmri.24517] [PMID: 24459099]
[96]
Hamamci A, Unal G. Multimodal brain tumor segmentation using the tumor-cut method on the BraTS dataset. Proceed MICCAI-BRATS 2012; 2012: 19-23.
[97]
Menze BH, Jakab A, Bauer S, et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 2015; 34(10): 1993-2024.
[http://dx.doi.org/10.1109/TMI.2014.2377694] [PMID: 25494501]
[98]
Akkus Z, Galimzianova A, Hoogi A, Rubin DL, Erickson BJ. Deep learning for brain MRI segmentation: state of the art and future directions. J. Digit. Imaging 2017; 30(4): 449-59.
[http://dx.doi.org/10.1007/s10278-017-9983-4] [PMID: 28577131]
[99]
Rao V, Sarabi MS, Jaiswal A. Brain tumor segmentation with deep learning. Multimodal Brain Tumor Segment Challenge 2015; 2015: 56-9.
[100]
Kamnitsas K, Ferrante E, Parisot S, Ledig C, Nori AV, Criminisi A. DeepMedic for brain tumor segmentation. International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries 2017 Sept 14; Quebec City, Canada, Berlin Springer 2016.
[http://dx.doi.org/10.1007/978-3-319-55524-9_14]
[101]
Isensee F, Kickingerede P, Wick W, Bendszus M, Maier-Hein KH. Brain tumor segmentation and radiomics survival prediction: contribution to the BRATS 2017 challenge. International MICCAI Brainlesion Workshop 2017 Sept 14 Quebec City, Canada Berlin Springer 2017.
[102]
Kao P-Y, Ngo T, Zhang A, Chen J.W. , Manjunath B. Brain tumor segmentation and tractographic feature extraction from structural mr images for overall survival prediction. International MICCAI Brainlesion Workshop, 2018. arXiv:1807.07716.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy