Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Novel Phytochemical Constituents and Anticancer Activities of the Genus, Typhonium

Author(s): Shaik I. Khalivulla, Arifullah Mohammed*, Kuttulebbai N.S. Sirajudeen, Mannur I. Shaik, Weibing Ye and Mallikarjuna Korivi*

Volume 20, Issue 12, 2019

Page: [946 - 957] Pages: 12

DOI: 10.2174/1389200220666191118102616

Price: $65

Abstract

Background: Typhonium is the largest genus in the Araceae family (~70 species), distributed in South Asia, Southeast Asia and Australia. Typhonium is well-known for its ethnopharmacological uses, and Southeast Asians consider it as an alternative medicine to treat cancer. This review elucidated the confirmed chemical structures of the isolated compounds of Typhonium and emphasized on their anticancer activities against various human cancer cells.

Methods: Among several species, Typhonium blumei, T. flagelliforme, T. divaricatum and T. giganteum were extensively studied due to the presence of a class of secondary metabolites. All the available reports on Typhonium were included and discussed in this article.

Results: Until now several groups of compounds, namely amino acids (1, 2), cinnamic acid (3), fatty acids (4-14), glycerol derivatives (15-18) and cerebrosides (19-34), flavonoids (35), hydantoins (36-38), lignin monomers (39-44), nucleobases (45-48), pheophorbides (49-52), phthalate (53), terpene and steroids (54-59) and vitamins (60, 61) were isolated and characterized from Typhonium. These phytochemicals were investigated for their anticancer properties, and results confirmed the promising growth inhibitory effect and anticancer activities against human lung, breast, prostate and colon cancer cells. The anticancer activity of these compounds appears to be mediated through the induction of apoptotic cell death. These phytochemicals further reported to exhibit other pharmacological efficacies, including anti-inflammatory, antioxidant, antiviral, anti-allergic, neuroprotective and hepato-protective properties.

Conclusion: This is the first review to summarize the anticancer properties of all isolated compounds of Typhonium genus with confirmed chemical structures. Further advanced studies are necessary to establish the detailed signaling pathways that are involved in the anticancer property of the compounds.

Keywords: Malignancy, anticancer herbs, Typhonium, secondary metabolites, alternative medicine, apoptosis.

Graphical Abstract
[1]
Cusimano, N.; Barrett, M.D.; Hetterscheid, W.L.; Renner, S.S. A phylogeny of the Areae (Araceae) implies that Typhonium, Sauromatum, and the Australian species of Typhonium are distinct clades. Taxon, 2010, 59(2), 439-447.
[http://dx.doi.org/10.1002/tax.592009]
[2]
Zhong, Z.; Zhou, G.; Chen, X.; Huang, P. Pharmacological study on the extracts from Typhonium flagelliforme Blume. Zhong Yao Cai, 2001, 24(10), 735-738.
[PMID: 11822289]
[3]
Ali, K.; Ashraf, A.; Nath Biswas, N. Analgesic, anti-inflammatory and anti-diarrheal activities of ethanolic leaf extract of Typhonium trilobatum L. Schott. Asian Pac. J. Trop. Biomed., 2012, 2(9), 722-726.
[http://dx.doi.org/10.1016/S2221-1691(12)60217-2] [PMID: 23570002]
[4]
Neoh, C.K. Typhonium divaricatum (rodent tuber): A promising local plant in the fight against cancer. Med. J. Malaysia, 1992, 47(1), 86-88.
[PMID: 1387458]
[5]
Dassanayake, M.; Fosberg, F. A Revised Handbook to the Flora of Ceylon: Taylor & Franncis: London; , 1980.
[6]
Hsu, H-F.; Huang, K-H.; Lu, K-J.; Chiou, S-J.; Yen, J-H.; Chang, C-C.; Houng, J-Y. Typhonium blumei extract inhibits proliferation of human lung adenocarcinoma A549 cells via induction of cell cycle arrest and apoptosis. J. Ethnopharmacol., 2011, 135(2), 492-500.
[http://dx.doi.org/10.1016/j.jep.2011.03.048] [PMID: 21470575]
[7]
Setiawati, A.; Immanuel, H.; Utami, M.T. The inhibition of Typhonium flagelliforme Lodd. Blume leaf extract on COX-2 expression of WiDr colon cancer cells. Asian Pac. J. Trop. Biomed., 2016, 6(3), 251-255.
[http://dx.doi.org/10.1016/j.apjtb.2015.12.012]
[8]
Jin, Y.; Fan, J-T.; Gu, X-L.; Zhang, L-Y.; Han, J.; Du, S-H.; Zhang, A-X. Neuroprotective activity of cerebrosides from Typhonium giganteum by regulating caspase-3 and Bax/Bcl-2 signaling pathways in PC12 cells. J. Nat. Prod., 2017, 80(6), 1734-1741.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00954] [PMID: 28394604]
[9]
Kabera, J.N.; Semana, E.; Mussa, A.R.; He, X. Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. J. Pharm. Pharmacol., 2014, 2, 377-392.
[10]
Annapurna, D.; Rajkumar, M.; Prasad, M. Potential of castor bean (Ricinus communis L.) for phytoremediation of metalliferous waste assisted by plant growth-promoting bacteria: Possible cogeneration of economic products. Bioremed. Bioeco; Elsevier, 2016, pp. 149-175.
[http://dx.doi.org/10.1016/B978-0-12-802830-8.00008-3]
[11]
Slominski, A.; Semak, I.; Pisarchik, A.; Sweatman, T.; Szczesniewski, A.; Wortsman, J. Conversion of L-tryptophan to serotonin and melatonin in human melanoma cells. FEBS Lett., 2002, 511(1-3), 102-106.
[http://dx.doi.org/10.1016/S0014-5793(01)03319-1] [PMID: 11821057]
[12]
Tezgel, Ö.; Noinville, S.; Bennevault, V.; Illy, N.; Guégan, P. An alternative approach to create N-substituted cyclic dipeptides. Polym. Chem., 2019, 10(6), 776-785.
[http://dx.doi.org/10.1039/C8PY01552J]
[13]
Choo, C-Y.; Chan, K-L.; Takeya, K.; Itokawa, H. Cytotoxic activity of Typhonium flagelliforme (Araceae). Phytother. Res., 2001, 15(3), 260-262.
[http://dx.doi.org/10.1002/ptr.717] [PMID: 11351365]
[14]
Liu, K-W.; Li, Z-L.; Pu, S-B.; Xu, D-R.; Zhou, H-H.; Shen, W-B. Chemical constituents of the rhizome of Typhonium giganteum. Chem. Nat. Compd., 2014, 50(6), 1079-1081.
[http://dx.doi.org/10.1007/s10600-014-1163-x]
[15]
Scopel, M.; Abraham, W-R.; Henriques, A.T.; Macedo, A.J. Dipeptide cis-cyclo(Leucyl-Tyrosyl) produced by sponge associated Penicillium sp. F37 inhibits biofilm formation of the pathogenic Staphylococcus epidermidis. Bioorg. Med. Chem. Lett., 2013, 23(3), 624-626.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.020] [PMID: 23290053]
[16]
Van Holle, S.; Van Damme, E.J.M. Messages rrom the past: New insights in plant lectin evolution. Front. Plant Sci., 2019, 10, 36.
[http://dx.doi.org/10.3389/fpls.2019.00036] [PMID: 30761173]
[17]
Berg, J.M.; Tymoczko, J.L.; Stryer, L. Lectins are specific carbohydrate-binding proteins. In: Biochemistry; Berg, J.M.; Tymoczko, J.L.; Stryer, L., Eds.; W.H. Freeman: New York, 2002; pp. 333-335.
[18]
Yau, T.; Dan, X.; Ng, C.C.; Ng, T.B. Lectins with potential for anti-cancer therapy. Molecules, 2015, 20(3), 3791-3810.
[http://dx.doi.org/10.3390/molecules20033791] [PMID: 25730388]
[19]
Kong, W.; Deng, Z.; Fei, J.; Wang, Q.; Sun, X.; Tang, K. Characterization of a mannose-binding lectin gene from Typhonium divaricatum (L.) Decne. Afr. J. Biotechnol., 2006, 5(10)
[20]
Luo, Y.; Xu, X.; Liu, J.; Li, J.; Sun, Y.; Liu, Z.; Liu, J.; Van Damme, E.; Balzarini, J.; Bao, J. A novel mannose-binding tuber lectin from Typhonium divaricatum (L.) Decne (family Araceae) with antiviral activity against HSV-II and anti-proliferative effect on human cancer cell lines. J. Biochem. Mol. Biol., 2007, 40(3), 358-367.
[PMID: 17562287]
[21]
Kang, N.H.; Mukherjee, S.; Yun, J.W. Trans-cinnamic acid stimulates white fat browning and activates brown adipocytes. Nutrients, 2019, 11(3), 577.
[http://dx.doi.org/10.3390/nu11030577] [PMID: 30857158]
[22]
Hseu, Y-C.; Korivi, M.; Lin, F-Y.; Li, M-L.; Lin, R-W.; Wu, J-J.; Yang, H-L. Trans-cinnamic acid attenuates UVA-induced photoaging through inhibition of AP-1 activation and induction of Nrf2-mediated antioxidant genes in human skin fibroblasts. J. Dermatol. Sci., 2018, 90(2), 123-134.
[http://dx.doi.org/10.1016/j.jdermsci.2018.01.004] [PMID: 29395579]
[23]
Ai, F.; Zhang, S.; Li, Y. Chemical constituents in root of Typhonium giganteum. Zhongcaoyao, 2010, 41(2), 201-203.
[24]
Kachroo, A.; Kachroo, P. Fatty Acid-derived signals in plant defense. Annu. Rev. Phytopathol., 2009, 47, 153-176.
[http://dx.doi.org/10.1146/annurev-phyto-080508-081820] [PMID: 19400642]
[25]
Lai, C-S.; Mas, R.H.; Nair, N.K.; Mansor, S.M.; Navaratnam, V. Chemical constituents and in vitro anticancer activity of Typhonium flagelliforme (Araceae). J. Ethnopharmacol., 2010, 127(2), 486-494.
[http://dx.doi.org/10.1016/j.jep.2009.10.009] [PMID: 19833183]
[26]
Mohan, S.; Bustamam, A.; Ibrahim, S.; Al-Zubairi, A.S.; Aspollah, M.; Abdullah, R.; Elhassan, M.M. In vitro ultramorphological assessment of apoptosis on CEMss induced by linoleic acid-rich fraction from Typhonium flagelliforme tuber. Evid. Based Complement. Alternat. Med., 2011, 2011 421894
[27]
Korinek, M.; Tsai, Y-H.; El-Shazly, M.; Lai, K-H.; Backlund, A.; Wu, S-F.; Lai, W-C.; Wu, T-Y.; Chen, S-L.; Wu, Y-C.; Cheng, Y.B.; Hwang, T.L.; Chen, B.H.; Chang, F.R. Anti-allergic hydroxy fatty acids from Typhonium blumei explored through ChemGPS-NP. Front. Pharmacol., 2017, 8, 356.
[http://dx.doi.org/10.3389/fphar.2017.00356] [PMID: 28674495]
[28]
Chen, S-X.; Goh, C-J.; Kon, O.L. Fatty acids from Typhonium flagelliforme. Planta Med., 1997, 63(6), 580.
[http://dx.doi.org/10.1055/s-2006-957778] [PMID: 9434618]
[29]
Choo, C.Y.; Chan, K.L.; Sam, T.W.; Hitotsuyanagi, Y.; Takeya, K. The cytotoxicity and chemical constituents of the hexane fraction of Typhonium flagelliforme (Araceace). J. Ethnopharmacol., 2001, 77(1), 129-131.
[http://dx.doi.org/10.1016/S0378-8741(01)00274-4] [PMID: 11483390]
[30]
Chen, X-S.; Chen, D-H.; Si, J-Y.; Tu, G-Z. Chemical constituents of Typhonium giganteum. Engl. J. Asian Nat. Prod. Res., 2001, 3(4), 277-283.
[http://dx.doi.org/10.1080/10286020108040367] [PMID: 11783581]
[31]
Elsbaey, M.; Ahmed, K.F.; Elsebai, M.F.; Zaghloul, A.; Amer, M.M.; Lahloub, M.I. Cytotoxic constituents of Alocasia macrorrhiza. Z. Natforsch. C J. Biosci., 2017, 72(1-2), 21-25.
[http://dx.doi.org/10.1515/znc-2015-0157] [PMID: 27497869]
[32]
Tan, R.X.; Chen, J.H. The cerebrosides. Nat. Prod. Rep., 2003, 20(5), 509-534.
[http://dx.doi.org/10.1039/b307243f] [PMID: 14620845]
[33]
Barrett, A.G.; Beall, J.C.; Braddock, D.C.; Flack, K.; Gibson, V.C.; Salter, M.M. Asymmetric allylboration and ring closing alkene metathesis: a novel strategy for the synthesis of glycosphingolipids. J. Org. Chem., 2000, 65(20), 6508-6514.
[http://dx.doi.org/10.1021/jo000690p] [PMID: 11052095]
[34]
Huang, P.; Karagianis, G.; Waterman, P.G. Chemical constituents from Typhonium flagelliforme. Zhong Yao Cai, 2004, 27(3), 173-175.
[PMID: 15272778]
[35]
Chen, X.; Wu, Y-L.; Chen, D. Structure determination and synthesis of a new cerebroside isolated from the traditional Chinese medicine Typhonium giganteum. Engl. Tetrahedron Lett., 2002, 43(19), 3529-3532.
[http://dx.doi.org/10.1016/S0040-4039(02)00583-X]
[36]
Xu, H.; Qi, J.; Wang, G.; Deng, H.; Qi, Z. The effect of single cerebroside compounds on activation of BKCa channels. Mol. Membr. Biol., 2011, 28(2), 145-154.
[http://dx.doi.org/10.3109/09687688.2010.538731] [PMID: 21190430]
[37]
Chi, S.; Cai, W.; Liu, P.; Zhang, Z.; Chen, X.; Gao, L.; Qi, J.; Bi, L.; Chen, L.; Qi, Z. Baifuzi reduces transient ischemic brain damage through an interaction with the STREX domain of BKCa channels. Cell Death Dis., 2010, 1(1)e13
[http://dx.doi.org/10.1038/cddis.2009.10] [PMID: 21364615]
[38]
Farida, Y.; Wahyudi, P.; Wahono, S.; Hanafi, M. Flavonoid glycoside from the ethyl acetate extract of keladi tikus Typhonium flagelliforme (Lodd) Blume leaves. Asian J. Natur. Appl. Sci., 2012, 1(4), 16-21.
[39]
Quy Thuong, L.; Tuyet Mai, B.; Minh Chau, N.; Thi Phuong Hoa, L.; Quang Huy, N. Study on biological activities of extracted fractions from Typhonium flagelliforme (Lodd.) Blume. VNU J. Sci: Natur. Sci. Technol., 2017, 33(2S)
[http://dx.doi.org/10.25073/2588-1140/vnunst.4575]
[40]
Sianipar, N.F.; Purnamaningsih, R.; Darwati, I.; Laurent, D. Gas chromatography-mass spectrometry (GC-MS) analysis of phytochemicals of first generation gamma-irradiated Typhonium flagelliforme lodd. Mutants. J. Teknol., 2016, 78, 10-14.
[http://dx.doi.org/10.11113/jt.v78.9883]
[41]
Ganesan, K.; Xu, B. Molecular targets of vitexin and isovitexin in cancer therapy: A critical review. Ann. N. Y. Acad. Sci., 2017, 1401(1), 102-113.
[http://dx.doi.org/10.1111/nyas.13446] [PMID: 28891090]
[42]
He, M.; Min, J-W.; Kong, W-L.; He, X-H.; Li, J-X.; Peng, B-W. A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia, 2016, 115, 74-85.
[http://dx.doi.org/10.1016/j.fitote.2016.09.011] [PMID: 27693342]
[43]
Ware, E. The chemistry of the hydantoins. Chem. Rev., 1950, 46(3), 403-470.
[http://dx.doi.org/10.1021/cr60145a001] [PMID: 24537833]
[44]
Spengler, G.; Evaristo, M.; Handzlik, J.; Serly, J.; Molnár, J.; Viveiros, M.; Kiéc-Kononowicz, K.; Amaral, L. Biological activity of hydantoin derivatives on P-glycoprotein (ABCB1) of mouse lymphoma cells. Anticancer Res., 2010, 30(12), 4867-4871.
[PMID: 21187464]
[45]
Huang, P.; Gloria, K.; Pepter, G. Phenylpropanoid glycosides from Typhonium flagelliforme (Araceace). Natur. Prod. Res. Develop., 2004, 16(5), 403-405.
[46]
Schöttner, M.; Reiner, J.; Tayman, F.S. (+)-neo-olivil from roots of Urtica dioica. Phytochemistry, 1997, 46(6), 1107-1109.
[http://dx.doi.org/10.1016/S0031-9422(97)00401-9]
[47]
Martinez, V.; Mitjans, M.; Pilar Vinardell, M. Pharmacological applications of lignins and lignins related compounds: an overview. Curr. Org. Chem., 2012, 16(16), 1863-1870.
[http://dx.doi.org/10.2174/138527212802651223]
[48]
Saarinen, N.M.; Wärri, A.; Dings, R.P.; Airio, M.; Smeds, A.I.; Mäkelä, S. Dietary lariciresinol attenuates mammary tumor growth and reduces blood vessel density in human MCF-7 breast cancer xenografts and carcinogen-induced mammary tumors in rats. Int. J. Cancer, 2008, 123(5), 1196-1204.
[http://dx.doi.org/10.1002/ijc.23614] [PMID: 18528864]
[49]
Fini, L.; Hotchkiss, E.; Fogliano, V.; Graziani, G.; Romano, M.; De Vol, E.B.; Qin, H.; Selgrad, M.; Boland, C.R.; Ricciardiello, L. Chemopreventive properties of pinoresinol-rich olive oil involve a selective activation of the ATM-p53 cascade in colon cancer cell lines. Carcinogenesis, 2008, 29(1), 139-146.
[http://dx.doi.org/10.1093/carcin/bgm255] [PMID: 17999988]
[50]
Girke, C.; Daumann, M.; Niopek-Witz, S.; Möhlmann, T. Nucleobase and nucleoside transport and integration into plant metabolism. Front. Plant Sci., 2014, 5, 443.
[http://dx.doi.org/10.3389/fpls.2014.00443] [PMID: 25250038]
[51]
Ferreira, G.C.; Kadish, K.M.; Smith, K.M.; Guilard, R. Handbook of Porphyrin Science: Chlorophyll, photosynthesis and bio-inspired energy; World Scientific: Singapore, 2013.
[52]
Cho, M.; Park, G-M.; Kim, S-N.; Amna, T.; Lee, S.; Shin, W-S. Glioblastoma-specific anticancer activity of pheophorbide a from the edible red seaweed Grateloupia elliptica. J. Microbiol. Biotechnol., 2014, 24(3), 346-353.
[http://dx.doi.org/10.4014/jmb.1308.08090] [PMID: 24296458]
[53]
Tanielian, C.; Kobayashi, M.; Wolff, C. Mechanism of photodynamic activity of pheophorbides. J. Biomed. Opt., 2001, 6(2), 252-256.
[http://dx.doi.org/10.1117/1.1352750] [PMID: 11375737]
[54]
Shobi, T.; Viswanathan, M. Antibacterial activity of di-butyl phthalate isolated from Begonia malabarica. J. Appl. Biotechnol. Bioeng., 2018, 5(2), 97-100.
[55]
Marchetti, L.; Sabbieti, M.G.; Menghi, M.; Materazzi, S.; Hurley, M.M.; Menghi, G. Effects of phthalate esters on actin cytoskeleton of Py1a rat osteoblasts. Histol. Histopathol., 2002, 17(4), 1061-1066.
[PMID: 12371133]
[56]
Roy, R.N.; Laskar, S.; Sen, S.K. Dibutyl phthalate, the bioactive compound produced by Streptomyces albidoflavus 321.2. Microbiol. Res., 2006, 161(2), 121-126.
[http://dx.doi.org/10.1016/j.micres.2005.06.007] [PMID: 16427514]
[57]
Song, Y.; Cho, S.K. Phytol induces apoptosis and ROS-mediated protective autophagy in human gastric adenocarcinoma AGS cells. Biochem. Anal. Biochem., 2015, 4(4), 1-7.
[http://dx.doi.org/10.4172/2161-1009.1000211]
[58]
Thakur, K.; Tomar, S.K.; Singh, A.K.; Mandal, S.; Arora, S. Riboflavin and health: a review of recent human research. Crit. Rev. Food Sci. Nutr., 2017, 57(17), 3650-3660.
[http://dx.doi.org/10.1080/10408398.2016.1145104] [PMID: 27029320]
[59]
Prousky, J.; Millman, C.G.; Kirkland, J.B. Pharmacologic use of niacin. J. Evid. Based Complementary Altern. Med., 2011, 16(2), 91-101.
[http://dx.doi.org/10.1177/2156587211399579]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy