Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Development of Ubiquitin Tools for Studies of Complex Ubiquitin Processing Protein Machines

Author(s): Xin Sui and Yi-Ming Li*

Volume 23, Issue 23, 2019

Page: [2614 - 2625] Pages: 12

DOI: 10.2174/1385272823666191113161511

Price: $65

Abstract

Ubiquitination is one of the most extensive post-translational modifications in eukaryotes and is involved in various physiological processes such as protein degradation, autophagy, protein interaction, and protein localization. The ubiquitin (Ub)-related protein machines include Ub-activating enzymes (E1s), Ub-conjugating enzymes (E2s), Ub ligases (E3s), deubiquitinating enzymes (DUBs), p97, and the proteasomes. In recent years, the role of DUBs has been extensively studied and relatively well understood. On the other hand, the functional mechanisms of the other more complex ubiquitin-processing protein machines (e.g., E3, p97, and proteasomes) are still to be sufficiently well explored due to their intricate nature. One of the hurdles facing the studies of these complex protein machines is the challenge of developing tailor-designed structurally defined model substrates, which unfortunately cannot be directly obtained using recombinant technology. Consequently, the acquisition and synthesis of the ubiquitin tool molecules are essential for the elucidation of the functions and structures of the complex ubiquitin-processing protein machines. This paper aims to highlight recent studies on these protein machines based on the synthetic ubiquitin tool molecules.

Keywords: Tool molecules, ubiquitin, p97, E3, proteasome, chemical synthesis.

Graphical Abstract
[1]
Komander, D.; Rape, M. The ubiquitin code. Annu. Rev. Biochem., 2012, 81, 203-229.
[http://dx.doi.org/10.1146/annurev-biochem-060310-170328] [PMID: 22524316]
[2]
Peng, J.; Schwartz, D.; Elias, J.E.; Thoreen, C.C.; Cheng, D.; Marsischky, G.; Roelofs, J.; Finley, D.; Gygi, S.P. A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol., 2003, 21(8), 921-926.
[http://dx.doi.org/10.1038/nbt849] [PMID: 12872131]
[3]
Xu, P.; Duong, D.M.; Seyfried, N.T.; Cheng, D.; Xie, Y.; Robert, J.; Rush, J.; Hochstrasser, M.; Finley, D.; Peng, J. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell, 2009, 137(1), 133-145.
[http://dx.doi.org/10.1016/j.cell.2009.01.041] [PMID: 19345192]
[4]
Kwon, Y.T.; Ciechanover, A. The ubiquitin code in the ubiquitin-proteasome system and autophagy. Trends Biochem. Sci., 2017, 42(11), 873-886.
[http://dx.doi.org/10.1016/j.tibs.2017.09.002] [PMID: 28947091]
[5]
Yau, R.; Rape, M. The increasing complexity of the ubiquitin code. Nat. Cell Biol., 2016, 18(6), 579-586.
[http://dx.doi.org/10.1038/ncb3358] [PMID: 27230526]
[6]
Ye, Y.; Blaser, G.; Horrocks, M.H.; Ruedas-Rama, M.J.; Ibrahim, S.; Zhukov, A.A.; Orte, A.; Klenerman, D.; Jackson, S.E.; Komander, D. Ubiquitin chain conformation regulates recognition and activity of interacting proteins. Nature, 2012, 492(7428), 266-270.
[http://dx.doi.org/10.1038/nature11722] [PMID: 23201676]
[7]
Muratani, M.; Tansey, W.P. How the ubiquitin-proteasome system controls transcription. Nat. Rev. Mol. Cell Biol., 2003, 4(3), 192-201.
[http://dx.doi.org/10.1038/nrm1049] [PMID: 12612638]
[8]
Dikic, I. Proteasomal and autophagic degradation systems. Annu. Rev. Biochem., 2017, 86, 193-224.
[http://dx.doi.org/10.1146/annurev-biochem-061516-044908] [PMID: 28460188]
[9]
Ciechanover, A. The ubiquitin-proteasome proteolytic pathway. Cell, 1994, 79(1), 13-21.
[http://dx.doi.org/10.1016/0092-8674(94)90396-4] [PMID: 7923371]
[10]
Bedford, L.; Paine, S.; Sheppard, P.W.; Mayer, R.J.; Roelofs, J. Assembly, structure, and function of the 26S proteasome. Trends Cell Biol., 2010, 20(7), 391-401.
[http://dx.doi.org/10.1016/j.tcb.2010.03.007] [PMID: 20427185]
[11]
Bard, J.A.M.; Goodall, E.A.; Greene, E.R.; Jonsson, E.; Dong, K.C.; Martin, A. Structure and Function of the 26S Proteasome. Annu. Rev. Biochem., 2018, 87, 697-724.
[http://dx.doi.org/10.1146/annurev-biochem-062917-011931] [PMID: 29652515]
[12]
Komander, D.; Clague, M.J.; Urbé, S. Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol., 2009, 10(8), 550-563.
[http://dx.doi.org/10.1038/nrm2731] [PMID: 19626045]
[13]
Komander, D. In Conjugation and Deconjugation of Ubiquitin Family Modifiers; Springer, 2010, pp. 69-87.
[http://dx.doi.org/10.1007/978-1-4419-6676-6_6]
[14]
Mevissen, T.E.T.; Komander, D. Mechanisms of deubiquitinase specificity and regulation. Annu. Rev. Biochem., 2017, 86, 159-192.
[http://dx.doi.org/10.1146/annurev-biochem-061516-044916] [PMID: 28498721]
[15]
Pfoh, R.; Lacdao, I.K.; Saridakis, V. Deubiquitinases and the new therapeutic opportunities offered to cancer. Endocr. Relat. Cancer, 2015, 22(1), T35-T54.
[http://dx.doi.org/10.1530/ERC-14-0516] [PMID: 25605410]
[16]
Kategaya, L.; Di Lello, P.; Rougé, L.; Pastor, R.; Clark, K.R.; Drummond, J.; Kleinheinz, T.; Lin, E.; Upton, J-P.; Prakash, S.; Heideker, J.; McCleland, M.; Ritorto, M.S.; Alessi, D.R.; Trost, M.; Bainbridge, T.W.; Kwok, M.C.M.; Ma, T.P.; Stiffler, Z.; Brasher, B.; Tang, Y.; Jaishankar, P.; Hearn, B.R.; Renslo, A.R.; Arkin, M.R.; Cohen, F.; Yu, K.; Peale, F.; Gnad, F.; Chang, M.T.; Klijn, C.; Blackwood, E.; Martin, S.E.; Forrest, W.F.; Ernst, J.A.; Ndubaku, C.; Wang, X.; Beresini, M.H.; Tsui, V.; Schwerdtfeger, C.; Blake, R.A.; Murray, J.; Maurer, T. Wertz, I.E. USP7 small-molecule inhibitors interfere with ubiquitin binding. Nature, 2017, 550(7677), 534-538.
[http://dx.doi.org/10.1038/nature24006] [PMID: 29045385]
[17]
Turnbull, A.P.; Ioannidis, S.; Krajewski, W.W.; Pinto-Fernandez, A.; Heride, C.; Martin, A.C.L.; Tonkin, L.M.; Townsend, E.C.; Buker, S.M.; Lancia, D.R.; Caravella, J.A.; Toms, A.V.; Charlton, T.M.; Lahdenranta, J.; Wilker, E.; Follows, B.C.; Evans, N.J.; Stead, L.; Alli, C.; Zarayskiy, V.V.; Talbot, A.C.; Buckmelter, A.J.; Wang, M.; McKinnon, C.L.; Saab, F.; McGouran, J.F.; Century, H.; Gersch, M.; Pittman, M.S.; Marshall, C.G.; Raynham, T.M.; Simcox, M.; Stewart, L.M.D.; McLoughlin, S.B.; Escobedo, J.A.; Bair, K.W.; Dinsmore, C.J.; Hammonds, T.R.; Kim, S.; Urbé, S.; Clague, M.J.; Kessler, B.M.; Komander, D. Molecular basis of USP7 inhibition by selective small-molecule inhibitors. Nature, 2017, 550(7677), 481-486.
[http://dx.doi.org/10.1038/nature24451] [PMID: 29045389]
[18]
Rousseau, A.; Bertolotti, A. Regulation of proteasome assembly and activity in health and disease. Nat. Rev. Mol. Cell Biol., 2018, 19(11), 697-712.
[http://dx.doi.org/10.1038/s41580-018-0040-z] [PMID: 30065390]
[19]
Meyer-Schwesinger, C. The ubiquitin-proteasome system in kidney physiology and disease. Nat. Rev. Nephrol., 2019, 15(7), 393-411.
[http://dx.doi.org/10.1038/s41581-019-0148-1] [PMID: 31036905]
[20]
Leroy, E.; Boyer, R.; Auburger, G.; Leube, B.; Ulm, G.; Mezey, E.; Harta, G.; Brownstein, M.J.; Jonnalagada, S.; Chernova, T.; Dehejia, A.; Lavedan, C.; Gasser, T.; Steinbach, P.J.; Wilkinson, K.D.; Polymeropoulos, M.H. The ubiquitin pathway in Parkinson’s disease. Nature, 1998, 395(6701), 451-452.
[http://dx.doi.org/10.1038/26652] [PMID: 9774100]
[21]
Lecker, S.H.; Goldberg, A.L.; Mitch, W.E. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J. Am. Soc. Nephrol., 2006, 17(7), 1807-1819.
[http://dx.doi.org/10.1681/ASN.2006010083] [PMID: 16738015]
[22]
Skrott, Z.; Mistrik, M.; Andersen, K.K.; Friis, S.; Majera, D.; Gursky, J.; Ozdian, T.; Bartkova, J.; Turi, Z.; Moudry, P.; Kraus, M.; Michalova, M.; Vaclavkova, J.; Dzubak, P.; Vrobel, I.; Pouckova, P.; Sedlacek, J.; Miklovicova, A.; Kutt, A.; Li, J.; Mattova, J.; Driessen, C.; Dou, Q.P.; Olsen, J.; Hajduch, M.; Cvek, B.; Deshaies, R.J.; Bartek, J. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature, 2017, 552(7684), 194-199.
[http://dx.doi.org/10.1038/nature25016] [PMID: 29211715]
[23]
Zhou, H.J.; Wang, J.; Yao, B.; Wong, S.; Djakovic, S.; Kumar, B.; Rice, J.; Valle, E.; Soriano, F.; Menon, M.K.; Madriaga, A.; Kiss von Soly, S.; Kumar, A.; Parlati, F.; Yakes, F.M.; Shawver, L.; Le Moigne, R.; Anderson, D.J.; Rolfe, M.; Wustrow, D. Discovery of a first-in-class, potent, selective, and orally bioavailable inhibitor of the p97 AAA ATPase (CB-5083). J. Med. Chem., 2015, 58(24), 9480-9497.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01346] [PMID: 26565666]
[24]
Lan, B.; Chai, S.; Wang, P.; Wang, K. VCP/p97/Cdc48, a linking of protein homeostasis and cancer therapy. Curr. Mol. Med., 2017, 17(9), 608-618.
[http://dx.doi.org/10.2174/1566524018666180308111238] [PMID: 29521227]
[25]
Bi, X.; Pasunooti, K.K.; Liu, C-F. Total chemical and semisynthetic approaches for the preparation of ubiquitinated proteins and their applications. Sci. China Chem., 2018, 61(3), 251-265.
[http://dx.doi.org/10.1007/s11426-017-9122-3]
[26]
Qi, Y-K.; Si, Y-Y.; Du, S-S.; Liang, J.; Wang, K-W.; Zheng, J-S. Recent advances in the chemical synthesis and semi-synthesis of poly-ubiquitin-based proteins and probes. Sci. China Chem., 2019, 62(3), 299-312.
[http://dx.doi.org/10.1007/s11426-018-9401-8]
[27]
Pan, M.; Zheng, Q.; Ding, S.; Zhang, L.; Qu, Q.; Wang, T.; Hong, D.; Ren, Y.; Liang, L.; Chen, C.; Mei, Z.; Liu, L. Chemical protein synthesis enabled mechanistic studies on the molecular recognition of K27-linked ubiquitin chains. Angew. Chem. Int. Ed. Engl., 2019, 58(9), 2627-2631.
[http://dx.doi.org/10.1002/anie.201810814] [PMID: 30589182]
[28]
Pan, M.; Gao, S.; Zheng, Y.; Tan, X.; Lan, H.; Tan, X.; Sun, D.; Lu, L.; Wang, T.; Zheng, Q.; Huang, Y.; Wang, J.; Liu, L. Quasi-racemic X-ray structures of K27-linked ubiquitin chains prepared by total chemical synthesis. J. Am. Chem. Soc., 2016, 138(23), 7429-7435.
[http://dx.doi.org/10.1021/jacs.6b04031] [PMID: 27268299]
[29]
Swatek, K.N.; Komander, D. Ubiquitin modifications. Cell Res., 2016, 26(4), 399-422.
[http://dx.doi.org/10.1038/cr.2016.39] [PMID: 27012465]
[30]
Varshavsky, A. The ubiquitin system, an immense realm. Annu. Rev. Biochem., 2012, 81, 167-176.
[http://dx.doi.org/10.1146/annurev-biochem-051910-094049] [PMID: 22663079]
[31]
Stewart, M.D.; Ritterhoff, T.; Klevit, R.E.; Brzovic, P.S. E2 enzymes: more than just middle men. Cell Res., 2016, 26(4), 423-440.
[http://dx.doi.org/10.1038/cr.2016.35] [PMID: 27002219]
[32]
An, H.; Statsyuk, A.V. Facile synthesis of covalent probes to capture enzymatic intermediates during E1 enzyme catalysis. Chem. Commun. (Camb.), 2016, 52(12), 2477-2480.
[http://dx.doi.org/10.1039/C5CC08592F] [PMID: 26575161]
[33]
An, H.; Statsyuk, A.V. Development of activity-based probes for ubiquitin and ubiquitin-like protein signaling pathways. J. Am. Chem. Soc., 2013, 135(45), 16948-16962.
[http://dx.doi.org/10.1021/ja4099643] [PMID: 24138456]
[34]
Olsen, S.K.; Capili, A.D.; Lu, X.; Tan, D.S.; Lima, C.D. Active site remodelling accompanies thioester bond formation in the SUMO E1. Nature, 2010, 463(7283), 906-912.
[http://dx.doi.org/10.1038/nature08765] [PMID: 20164921]
[35]
Lu, X.; Olsen, S.K.; Capili, A.D.; Cisar, J.S.; Lima, C.D.; Tan, D.S. Designed semisynthetic protein inhibitors of Ub/Ubl E1 activating enzymes. J. Am. Chem. Soc., 2010, 132(6), 1748-1749.
[http://dx.doi.org/10.1021/ja9088549] [PMID: 20099854]
[36]
Stanley, M.; Han, C.; Knebel, A.; Murphy, P.; Shpiro, N.; Virdee, S. Orthogonal thiol functionalization at a single atomic center for profiling transthiolation activity of E1 activating enzymes. ACS Chem. Biol., 2015, 10(6), 1542-1554.
[http://dx.doi.org/10.1021/acschembio.5b00118] [PMID: 25845023]
[37]
Hewings, D.S.; Flygare, J.A.; Bogyo, M.; Wertz, I.E. Activity-based probes for the ubiquitin conjugation-deconjugation machinery: new chemistries, new tools, and new insights. FEBS J., 2017, 284(10), 1555-1576.
[http://dx.doi.org/10.1111/febs.14039] [PMID: 28196299]
[38]
Meledin, R.; Mali, S.M.; Kleifeld, O.; Brik, A. Activity-based probes developed by applying a sequential dehydroalanine formation strategy to expressed proteins reveal a potential α-globin-modulating deubiquitinase. Angew. Chem. Int. Ed. Engl., 2018, 57(20), 5645-5649.
[http://dx.doi.org/10.1002/anie.201800032] [PMID: 29527788]
[39]
Haj-Yahya, N.; Hemantha, H.P.; Meledin, R.; Bondalapati, S.; Seenaiah, M.; Brik, A. Dehydroalanine-based diubiquitin activity probes. Org. Lett., 2014, 16(2), 540-543.
[http://dx.doi.org/10.1021/ol403416w] [PMID: 24364494]
[40]
Hewings, D.S.; Heideker, J.; Ma, T.P. AhYoung, A.P.; El Oualid, F.; Amore, A.; Costakes, G.T.; Kirchhofer, D.; Brasher, B.; Pillow, T.; Popovych, N.; Maurer, T.; Schwerdtfeger, C.; Forrest, W.F.; Yu, K.; Flygare, J.; Bogyo, M.; Wertz, I.E. Reactive-site-centric chemoproteomics identifies a distinct class of deubiquitinase enzymes. Nat. Commun., 2018, 9(1), 1162.
[http://dx.doi.org/10.1038/s41467-018-03511-6] [PMID: 29563501]
[41]
Morreale, F.E.; Walden, H. Types of ubiquitin ligases. Cell, 2016, 165(1), 248-248.
[http://dx.doi.org/10.1016/j.cell.2016.03.003]
[42]
Popovic, D.; Vucic, D.; Dikic, I. Ubiquitination in disease pathogenesis and treatment. Nat. Med., 2014, 20(11), 1242-1253.
[http://dx.doi.org/10.1038/nm.3739] [PMID: 25375928]
[43]
Kazlauskaite, A.; Kondapalli, C.; Gourlay, R.; Campbell, D.G.; Ritorto, M.S.; Hofmann, K.; Alessi, D.R.; Knebel, A.; Trost, M.; Muqit, M.M. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem. J., 2014, 460(1), 127-139.
[http://dx.doi.org/10.1042/BJ20140334] [PMID: 24660806]
[44]
Lazarou, M.; Narendra, D.P.; Jin, S.M.; Tekle, E.; Banerjee, S.; Youle, R.J. PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding. J. Cell Biol., 2013, 200(2), 163-172.
[http://dx.doi.org/10.1083/jcb.201210111] [PMID: 23319602]
[45]
Koyano, F.; Okatsu, K.; Kosako, H.; Tamura, Y.; Go, E.; Kimura, M.; Kimura, Y.; Tsuchiya, H.; Yoshihara, H.; Hirokawa, T.; Endo, T.; Fon, E.A.; Trempe, J.F.; Saeki, Y.; Tanaka, K.; Matsuda, N. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature, 2014, 510(7503), 162-166.
[http://dx.doi.org/10.1038/nature13392] [PMID: 24784582]
[46]
Kazlauskaite, A.; Kelly, V.; Johnson, C.; Baillie, C.; Hastie, C.J.; Peggie, M.; Macartney, T.; Woodroof, H.I.; Alessi, D.R.; Pedrioli, P.G.; Muqit, M.M. Phosphorylation of Parkin at Serine65 is essential for activation: elaboration of a Miro1 substrate-based assay of Parkin E3 ligase activity. Open Biol., 2014, 4(3)130213
[http://dx.doi.org/10.1098/rsob.130213] [PMID: 24647965]
[47]
Matsuda, N.; Sato, S.; Shiba, K.; Okatsu, K.; Saisho, K.; Gautier, C.A.; Sou, Y.S.; Saiki, S.; Kawajiri, S.; Sato, F.; Kimura, M.; Komatsu, M.; Hattori, N.; Tanaka, K. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol., 2010, 189(2), 211-221.
[http://dx.doi.org/10.1083/jcb.200910140] [PMID: 20404107]
[48]
Pao, K.C.; Stanley, M.; Han, C.; Lai, Y.C.; Murphy, P.; Balk, K.; Wood, N.T.; Corti, O.; Corvol, J.C.; Muqit, M.M.; Virdee, S. Probes of ubiquitin E3 ligases enable systematic dissection of parkin activation. Nat. Chem. Biol., 2016, 12(5), 324-331.
[http://dx.doi.org/10.1038/nchembio.2045] [PMID: 26928937]
[49]
Sadaghiani, A.M.; Verhelst, S.H.; Bogyo, M. Tagging and detection strategies for activity-based proteomics. Curr. Opin. Chem. Biol., 2007, 11(1), 20-28.
[http://dx.doi.org/10.1016/j.cbpa.2006.11.030] [PMID: 17174138]
[50]
Cravatt, B.F.; Wright, A.T.; Kozarich, J.W. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu. Rev. Biochem., 2008, 77, 383-414.
[http://dx.doi.org/10.1146/annurev.biochem.75.101304.124125] [PMID: 18366325]
[51]
Byrne, R.; Mund, T.; Licchesi, J.D.F. Activity-based probes for HECT E3 ubiquitin ligases. ChemBioChem, 2017, 18(14), 1415-1427.
[http://dx.doi.org/10.1002/cbic.201700006] [PMID: 28425671]
[52]
Pao, K.C.; Wood, N.T.; Knebel, A.; Rafie, K.; Stanley, M.; Mabbitt, P.D.; Sundaramoorthy, R.; Hofmann, K.; van Aalten, D.M.F.; Virdee, S. Activity-based E3 ligase profiling uncovers an E3 ligase with esterification activity. Nature, 2018, 556(7701), 381-385.
[http://dx.doi.org/10.1038/s41586-018-0026-1] [PMID: 29643511]
[53]
Borodovsky, A.; Ovaa, H.; Kolli, N.; Gan-Erdene, T.; Wilkinson, K.D.; Ploegh, H.L.; Kessler, B.M. Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem. Biol., 2002, 9(10), 1149-1159.
[http://dx.doi.org/10.1016/S1074-5521(02)00248-X] [PMID: 12401499]
[54]
Ekkebus, R.; van Kasteren, S.I.; Kulathu, Y.; Scholten, A.; Berlin, I.; Geurink, P.P.; de Jong, A.; Goerdayal, S.; Neefjes, J.; Heck, A.J.; Komander, D.; Ovaa, H. On terminal alkynes that can react with active-site cysteine nucleophiles in proteases. J. Am. Chem. Soc., 2013, 135(8), 2867-2870.
[http://dx.doi.org/10.1021/ja309802n] [PMID: 23387960]
[55]
Mulder, M.P.; Witting, K.; Berlin, I.; Pruneda, J.N.; Wu, K-P.; Chang, J-G.; Merkx, R.; Bialas, J.; Groettrup, M.; Vertegaal, A.C.; Schulman, B.A.; Komander, D.; Neefjes, J.; El Oualid, F.; Ovaa, H. A cascading activity-based probe sequentially targets E1-E2-E3 ubiquitin enzymes. Nat. Chem. Biol., 2016, 12(7), 523-530.
[http://dx.doi.org/10.1038/nchembio.2084] [PMID: 27182664]
[56]
Xu, L.; Fan, J.; Wang, Y.; Zhang, Z.; Fu, Y.; Li, Y.M.; Shi, J. An activity-based probe developed by a sequential dehydroalanine formation strategy targets HECT E3 ubiquitin ligases. Chem. Commun. (Camb.), 2019, 55(49), 7109-7112.
[http://dx.doi.org/10.1039/C9CC03739J] [PMID: 31157339]
[57]
Zheng, J-S.; Tang, S.; Qi, Y-K.; Wang, Z-P.; Liu, L. Chemical synthesis of proteins using peptide hydrazides as thioester surrogates. Nat. Protoc., 2013, 8(12), 2483-2495.
[http://dx.doi.org/10.1038/nprot.2013.152] [PMID: 24232250]
[58]
Fang, G.M.; Wang, J.X.; Liu, L. Convergent chemical synthesis of proteins by ligation of peptide hydrazides. Angew. Chem. Int. Ed. Engl., 2012, 51(41), 10347-10350.
[http://dx.doi.org/10.1002/anie.201203843] [PMID: 22968928]
[59]
Fang, G.M.; Li, Y.M.; Shen, F.; Huang, Y.C.; Li, J.B.; Lin, Y.; Cui, H.K.; Liu, L. Protein chemical synthesis by ligation of peptide hydrazides. Angew. Chem. Int. Ed. Engl., 2011, 50(33), 7645-7649.
[http://dx.doi.org/10.1002/anie.201100996] [PMID: 21648030]
[60]
Dawson, P.E.; Muir, T.W.; Clark-Lewis, I.; Kent, S.B. Synthesis of proteins by native chemical ligation. Science, 1994, 266(5186), 776-779.
[http://dx.doi.org/10.1126/science.7973629] [PMID: 7973629]
[61]
Li, H.; Dong, S. Recent advances in the preparation of Fmoc-SPPS-based peptide thioester and its surrogates for NCL-type reactions. Sci. China Chem., 2017, 60(2), 201-213.
[http://dx.doi.org/10.1007/s11426-016-0381-1]
[62]
Deshaies, R.J.; Joazeiro, C.A. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem., 2009, 78, 399-434.
[http://dx.doi.org/10.1146/annurev.biochem.78.101807.093809] [PMID: 19489725]
[63]
Hänzelmann, P.; Schindelin, H. The interplay of cofactor interactions and post-translational modifications in the regulation of the AAA+ ATPase p97. Front. Mol. Biosci., 2017, 4, 21.
[http://dx.doi.org/10.3389/fmolb.2017.00021] [PMID: 28451587]
[64]
Xia, D.; Tang, W.K.; Ye, Y. Structure and function of the AAA+ ATPase p97/Cdc48p. Gene, 2016, 583(1), 64-77.
[http://dx.doi.org/10.1016/j.gene.2016.02.042] [PMID: 26945625]
[65]
Stach, L.; Freemont, P.S. The AAA+ ATPase p97, a cellular multitool. Biochem. J., 2017, 474(17), 2953-2976.
[http://dx.doi.org/10.1042/BCJ20160783] [PMID: 28819009]
[66]
Davies, J.M.; Brunger, A.T.; Weis, W.I. Improved structures of full-length p97, an AAA ATPase: implications for mechanisms of nucleotide-dependent conformational change. Structure, 2008, 16(5), 715-726.
[http://dx.doi.org/10.1016/j.str.2008.02.010] [PMID: 18462676]
[67]
Beuron, F.; Dreveny, I.; Yuan, X.; Pye, V.E.; McKeown, C.; Briggs, L.C.; Cliff, M.J.; Kaneko, Y.; Wallis, R.; Isaacson, R.L.; Ladbury, J.E.; Matthews, S.J.; Kondo, H.; Zhang, X.; Freemont, P.S. Conformational changes in the AAA ATPase p97-p47 adaptor complex. EMBO J., 2006, 25(9), 1967-1976.
[http://dx.doi.org/10.1038/sj.emboj.7601055] [PMID: 16601695]
[68]
Banerjee, S.; Bartesaghi, A.; Merk, A.; Rao, P.; Bulfer, S.L.; Yan, Y.; Green, N.; Mroczkowski, B.; Neitz, R.J.; Wipf, P.; Falconieri, V.; Deshaies, R.J.; Milne, J.L.S.; Huryn, D.; Arkin, M.; Subramaniam, S. 2.3 Å resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition. Science, 2016, 351(6275), 871-875.
[http://dx.doi.org/10.1126/science.aad7974] [PMID: 26822609]
[69]
Li, Z.H.; Wang, Y.; Xu, M.; Jiang, T. Crystal structures of the UBX domain of human UBXD7 and its complex with p97 ATPase. Biochem. Biophys. Res. Commun., 2017, 486(1), 94-100.
[http://dx.doi.org/10.1016/j.bbrc.2017.03.005] [PMID: 28274878]
[70]
Dreveny, I.; Kondo, H.; Uchiyama, K.; Shaw, A.; Zhang, X.; Freemont, P.S. Structural basis of the interaction between the AAA ATPase p97/VCP and its adaptor protein p47. EMBO J., 2004, 23(5), 1030-1039.
[http://dx.doi.org/10.1038/sj.emboj.7600139] [PMID: 14988733]
[71]
Bodnar, N.O.; Kim, K.H.; Ji, Z.; Wales, T.E.; Svetlov, V.; Nudler, E.; Engen, J.R.; Walz, T.; Rapoport, T.A. Structure of the Cdc48 ATPase with its ubiquitin-binding cofactor Ufd1-Npl4. Nat. Struct. Mol. Biol., 2018, 25(7), 616-622.
[http://dx.doi.org/10.1038/s41594-018-0085-x] [PMID: 29967539]
[72]
Niwa, H.; Ewens, C.A.; Tsang, C.; Yeung, H.O.; Zhang, X.; Freemont, P.S. The role of the N-domain in the ATPase activity of the mammalian AAA ATPase p97/VCP. J. Biol. Chem., 2012, 287(11), 8561-8570.
[http://dx.doi.org/10.1074/jbc.M111.302778] [PMID: 22270372]
[73]
Rothballer, A.; Tzvetkov, N.; Zwickl, P. Mutations in p97/VCP induce unfolding activity. FEBS Lett., 2007, 581(6), 1197-1201.
[http://dx.doi.org/10.1016/j.febslet.2007.02.031] [PMID: 17346713]
[74]
Li, G.; Huang, C.; Zhao, G.; Lennarz, W.J. Interprotomer motion-transmission mechanism for the hexameric AAA ATPase p97. Proc. Natl. Acad. Sci. USA, 2012, 109(10), 3737-3741.
[http://dx.doi.org/10.1073/pnas.1200255109] [PMID: 22355145]
[75]
Chou, T.F.; Bulfer, S.L.; Weihl, C.C.; Li, K.; Lis, L.G.; Walters, M.A.; Schoenen, F.J.; Lin, H.J.; Deshaies, R.J.; Arkin, M.R. Specific inhibition of p97/VCP ATPase and kinetic analysis demonstrate interaction between D1 and D2 ATPase domains. J. Mol. Biol., 2014, 426(15), 2886-2899.
[http://dx.doi.org/10.1016/j.jmb.2014.05.022] [PMID: 24878061]
[76]
Song, C.; Wang, Q.; Li, C.C.H. ATPase activity of p97-valosin-containing protein (VCP). D2 mediates the major enzyme activity, and D1 contributes to the heat-induced activity. J. Biol. Chem., 2003, 278(6), 3648-3655.
[http://dx.doi.org/10.1074/jbc.M208422200] [PMID: 12446676]
[77]
Nishikori, S.; Esaki, M.; Yamanaka, K.; Sugimoto, S.; Ogura, T. Positive cooperativity of the p97 AAA ATPase is critical for essential functions. J. Biol. Chem., 2011, 286(18), 15815-15820.
[http://dx.doi.org/10.1074/jbc.M110.201400] [PMID: 21454554]
[78]
Huang, C.; Li, G.; Lennarz, W.J. Dynamic flexibility of the ATPase p97 is important for its interprotomer motion transmission. Proc. Natl. Acad. Sci. USA, 2012, 109(25), 9792-9797.
[http://dx.doi.org/10.1073/pnas.1205853109] [PMID: 22675116]
[79]
Tang, W.K.; Xia, D. Role of the D1-D2 Linker of Human VCP/p97 in the Asymmetry and ATPase Activity of the D1-domain. Sci. Rep., 2016, 6, 20037.
[http://dx.doi.org/10.1038/srep20037] [PMID: 26818443]
[80]
Yang, F.C.; Lin, Y.H.; Chen, W.H.; Huang, J.Y.; Chang, H.Y.; Su, S.H.; Wang, H.T.; Chiang, C.Y.; Hsu, P.H.; Tsai, M.D.; Tan, B.C.; Lee, S.C. Interaction between salt-inducible kinase 2 (SIK2) and p97/valosin-containing protein (VCP) regulates endoplasmic reticulum (ER)-associated protein degradation in mammalian cells. J. Biol. Chem., 2013, 288(47), 33861-33872.
[http://dx.doi.org/10.1074/jbc.M113.492199] [PMID: 24129571]
[81]
Schaeffer, V.; Akutsu, M.; Olma, M.H.; Gomes, L.C.; Kawasaki, M.; Dikic, I. Binding of OTULIN to the PUB domain of HOIP controls NF-κB signaling. Mol. Cell, 2014, 54(3), 349-361.
[http://dx.doi.org/10.1016/j.molcel.2014.03.016] [PMID: 24726327]
[82]
Böhm, S.; Lamberti, G.; Fernández-Sáiz, V.; Stapf, C.; Buchberger, A. Cellular functions of Ufd2 and Ufd3 in proteasomal protein degradation depend on Cdc48 binding. Mol. Cell. Biol., 2011, 31(7), 1528-1539.
[http://dx.doi.org/10.1128/MCB.00962-10] [PMID: 21282470]
[83]
Sasagawa, Y.; Yamanaka, K.; Saito-Sasagawa, Y.; Ogura, T. Caenorhabditis elegans UBX cofactors for CDC-48/p97 control spermatogenesis. Genes Cells, 2010, 15(12), 1201-1215.
[http://dx.doi.org/10.1111/j.1365-2443.2010.01454.x] [PMID: 20977550]
[84]
Bodnar, N.O.; Rapoport, T.A. Molecular mechanism of substrate processing by the Cdc48 ATPase complex. Cell, 2017, 169(4), 722-735.
[http://dx.doi.org/10.1016/j.cell.2017.04.020]
[85]
Bartel, B.; Wünning, I.; Varshavsky, A. The recognition component of the N-end rule pathway. EMBO J., 1990, 9(10), 3179-3189.
[http://dx.doi.org/10.1002/j.1460-2075.1990.tb07516.x] [PMID: 2209542]
[86]
Dormán, G.; Prestwich, G.D. Benzophenone photophores in biochemistry. Biochemistry, 1994, 33(19), 5661-5673.
[http://dx.doi.org/10.1021/bi00185a001] [PMID: 8180191]
[87]
Blythe, E.E.; Olson, K.C.; Chau, V.; Deshaies, R.J. Ubiquitin- and ATP-dependent unfoldase activity of P97/VCP•NPLOC4•UFD1L is enhanced by a mutation that causes multisystem proteinopathy. Proc. Natl. Acad. Sci. USA, 2017, 114(22), E4380-E4388.
[http://dx.doi.org/10.1073/pnas.1706205114] [PMID: 28512218]
[88]
Olszewski, M.M.; Williams, C.; Dong, K.C.; Martin, A. The Cdc48 unfoldase prepares well-folded protein substrates for degradation by the 26S proteasome. Commun. Biol., 2019, 2, 29.
[http://dx.doi.org/10.1038/s42003-019-0283-z] [PMID: 30675527]
[89]
Zhang, M.; Chang, H.; Zhang, Y.; Yu, J.; Wu, L.; Ji, W.; Chen, J.; Liu, B.; Lu, J.; Liu, Y.; Zhang, J.; Xu, P.; Xu, T. Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat. Methods, 2012, 9(7), 727-729.
[http://dx.doi.org/10.1038/nmeth.2021] [PMID: 22581370]
[90]
Kim, H.T.; Kim, K.P.; Lledias, F.; Kisselev, A.F.; Scaglione, K.M.; Skowyra, D.; Gygi, S.P.; Goldberg, A.L. Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages. J. Biol. Chem., 2007, 282(24), 17375-17386.
[http://dx.doi.org/10.1074/jbc.M609659200] [PMID: 17426036]
[91]
Si, Y.; Liang, L.; Tang, S.; Qi, Y.; Huang, Y.; Liu, L. Semi-synthesis of disulfide-linked branched tri-ubiquitin mimics. Sci. China Chem., 2018, 61(4), 412-417.
[http://dx.doi.org/10.1007/s11426-017-9189-6]
[92]
Tang, S.; Liang, L.J.; Si, Y.Y.; Gao, S.; Wang, J.X.; Liang, J.; Mei, Z.; Zheng, J.S.; Liu, L. Practical chemical synthesis of atypical ubiquitin chains by using an isopeptide-linked Ub isomer. Angew. Chem. Int. Ed. Engl., 2017, 56(43), 13333-13337.
[http://dx.doi.org/10.1002/anie.201708067] [PMID: 28873270]
[93]
Liang, L-J.; Si, Y.; Tang, S.; Huang, D.; Wang, Z.A.; Tian, C.; Zheng, J-S. Biochemical properties of K11, 48-branched ubiquitin chains. Chin. Chem. Lett., 2018, 29(7), 1155-1159.
[http://dx.doi.org/10.1016/j.cclet.2018.03.022]
[94]
Rodrigo-Brenni, M.C.; Morgan, D.O. Sequential E2s drive polyubiquitin chain assembly on APC targets. Cell, 2007, 130(1), 127-139.
[http://dx.doi.org/10.1016/j.cell.2007.05.027] [PMID: 17632060]
[95]
Meyer, H.J.; Rape, M. Enhanced protein degradation by branched ubiquitin chains. Cell, 2014, 157(4), 910-921.
[http://dx.doi.org/10.1016/j.cell.2014.03.037] [PMID: 24813613]
[96]
Tomko, R.J., Jr; Hochstrasser, M. Molecular architecture and assembly of the eukaryotic proteasome. Annu. Rev. Biochem., 2013, 82, 415-445.
[http://dx.doi.org/10.1146/annurev-biochem-060410-150257] [PMID: 23495936]
[97]
Yu, H.; Matouschek, A. Recognition of Client Proteins by the Proteasome. Annu. Rev. Biophys., 2017, 46, 149-173.
[http://dx.doi.org/10.1146/annurev-biophys-070816-033719] [PMID: 28301771]
[98]
Saeki, Y.; Tanaka, K. Assembly and function of the proteasome. Methods Mol. Biol., 2012, 832, 315-337.
[http://dx.doi.org/10.1007/978-1-61779-474-2_22] [PMID: 22350895]
[99]
Martin, A.; Baker, T.A.; Sauer, R.T. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. Nat. Struct. Mol. Biol., 2008, 15(11), 1147-1151.
[http://dx.doi.org/10.1038/nsmb.1503] [PMID: 18931677]
[100]
Aubin-Tam, M.E.; Olivares, A.O.; Sauer, R.T.; Baker, T.A.; Lang, M.J. Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine. Cell, 2011, 145(2), 257-267.
[http://dx.doi.org/10.1016/j.cell.2011.03.036] [PMID: 21496645]
[101]
Verma, R.; McDonald, H.; Yates, J.R., III; Deshaies, R.J. Selective degradation of ubiquitinated Sic1 by purified 26S proteasome yields active S phase cyclin-Cdk. Mol. Cell, 2001, 8(2), 439-448.
[http://dx.doi.org/10.1016/S1097-2765(01)00308-2] [PMID: 11545745]
[102]
Seol, J.H.; Feldman, R.M.; Zachariae, W.; Shevchenko, A.; Correll, C.C.; Lyapina, S.; Chi, Y.; Galova, M.; Claypool, J.; Sandmeyer, S.; Nasmyth, K.; Deshaies, R.J.; Shevchenko, A.; Deshaies, R.J. Cdc53/cullin and the essential Hrt1 RING-H2 subunit of SCF define an ubiquitin ligase module that activates the E2 enzyme Cdc34. Genes Dev., 1999, 13(12), 1614-1626.
[http://dx.doi.org/10.1101/gad.13.12.1614] [PMID: 10385629]
[103]
Saeki, Y.; Isono, E.; Toh-E, A. Preparation of ubiquitinated substrates by the PY motif-insertion method for monitoring 26S proteasome activity. Methods Enzymol., 2005, 399, 215-227.
[http://dx.doi.org/10.1016/S0076-6879(05)99014-9] [PMID: 16338358]
[104]
Sudol, M.; Hunter, T. NeW wrinkles for an old domain. Cell, 2000, 103(7), 1001-1004.
[http://dx.doi.org/10.1016/S0092-8674(00)00203-8] [PMID: 11163176]
[105]
Zwickl, P.; Baumeister, W. AAA-ATPases at the crossroads of protein life and death. Nat. Cell Biol., 1999, 1(4), E97-E98.
[http://dx.doi.org/10.1038/12097] [PMID: 10559933]
[106]
Larsen, C.N.; Finley, D. Protein translocation channels in the proteasome and other proteases. Cell, 1997, 91(4), 431-434.
[http://dx.doi.org/10.1016/S0092-8674(00)80427-4] [PMID: 9390550]
[107]
Verma, R.; Oania, R.; Graumann, J.; Deshaies, R.J. Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell, 2004, 118(1), 99-110.
[http://dx.doi.org/10.1016/j.cell.2004.06.014] [PMID: 15242647]
[108]
Saeki, Y.; Kudo, T.; Sone, T.; Kikuchi, Y.; Yokosawa, H.; Toh-e, A.; Tanaka, K. Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO J., 2009, 28(4), 359-371.
[http://dx.doi.org/10.1038/emboj.2008.305] [PMID: 19153599]
[109]
Kee, Y.; Muñoz, W.; Lyon, N.; Huibregtse, J.M. The deubiquitinating enzyme Ubp2 modulates Rsp5-dependent Lys63-linked polyubiquitin conjugates in Saccharomyces cerevisiae. J. Biol. Chem., 2006, 281(48), 36724-36731.
[http://dx.doi.org/10.1074/jbc.M608756200] [PMID: 17028178]
[110]
Shi, Y.; Chen, X.; Elsasser, S.; Stocks, B.B.; Tian, G.; Lee, B.H.; Shi, Y.; Zhang, N.; de Poot, S.A.; Tuebing, F.; Sun, S.; Vannoy, J.; Tarasov, S.G.; Engen, J.R.; Finley, D.; Walters, K.J. Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome. Science, 2016, 351(6275)aad9421
[http://dx.doi.org/10.1126/science.aad9421] [PMID: 26912900]
[111]
Dong, Y.; Zhang, S.; Wu, Z.; Li, X.; Wang, W.L.; Zhu, Y.; Stoilova-McPhie, S.; Lu, Y.; Finley, D.; Mao, Y. Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome. Nature, 2019, 565(7737), 49-55.
[http://dx.doi.org/10.1038/s41586-018-0736-4] [PMID: 30479383]
[112]
Bard, J.A.M.; Bashore, C.; Dong, K.C.; Martin, A. The 26S proteasome utilizes a kinetic gateway to prioritize substrate degradation. Cell, 2019, 177(2), 286-298.e215.
[113]
Bard, J.A.M.; Martin, A. Recombinant expression, unnatural amino acid incorporation, and site-specific labeling of 26s proteasomal subcomplexes. Methods Mol. Biol., 2018, 1844, 219-236.
[http://dx.doi.org/10.1007/978-1-4939-8706-1_15] [PMID: 30242713]
[114]
Amiram, M.; Haimovich, A.D.; Fan, C.; Wang, Y.S.; Aerni, H.R.; Ntai, I.; Moonan, D.W.; Ma, N.J.; Rovner, A.J.; Hong, S.H.; Kelleher, N.L.; Goodman, A.L.; Jewett, M.C.; Söll, D.; Rinehart, J.; Isaacs, F.J. Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nat. Biotechnol., 2015, 33(12), 1272-1279.
[http://dx.doi.org/10.1038/nbt.3372] [PMID: 26571098]
[115]
de la Peña, A.H.; Goodall, E.A.; Gates, S.N.; Lander, G.C.; Martin, A. Substrate-engaged 26S proteasome structures reveal mechanisms for ATP-hydrolysis-driven translocation. Science, 2018, 362(6418)eaav0725
[http://dx.doi.org/10.1126/science.aav0725] [PMID: 30309908]
[116]
Puchades, C.; Rampello, A.J.; Shin, M.; Giuliano, C.J.; Wiseman, R.L.; Glynn, S.E.; Lander, G.C. Structure of the mitochondrial inner membrane AAA+ protease YME1 gives insight into substrate processing. Science, 2017, 358(6363)eaao0464
[http://dx.doi.org/10.1126/science.aao0464] [PMID: 29097521]
[117]
Gates, S.N.; Yokom, A.L.; Lin, J.; Jackrel, M.E.; Rizo, A.N.; Kendsersky, N.M.; Buell, C.E.; Sweeny, E.A.; Mack, K.L.; Chuang, E.; Torrente, M.P.; Su, M.; Shorter, J.; Southworth, D.R. Ratchet-like polypeptide translocation mechanism of the AAA+ disaggregase Hsp104. Science, 2017, 357(6348), 273-279.
[http://dx.doi.org/10.1126/science.aan1052] [PMID: 28619716]
[118]
Dephoure, N.; Hwang, S.; O’Sullivan, C.; Dodgson, S.E.; Gygi, S.P.; Amon, A.; Torres, E.M. Quantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeast. eLife,, 2014, 3, e03023.
[http://dx.doi.org/10.7554/eLife.03023] [PMID: 25073701]
[119]
Torres, E.M.; Dephoure, N.; Panneerselvam, A.; Tucker, C.M.; Whittaker, C.A.; Gygi, S.P.; Dunham, M.J.; Amon, A. Identification of aneuploidy-tolerating mutations. Cell, 2010, 143(1), 71-83.
[http://dx.doi.org/10.1016/j.cell.2010.08.038] [PMID: 20850176]
[120]
Lee, B.H.; Lee, M.J.; Park, S.; Oh, D.C.; Elsasser, S.; Chen, P.C.; Gartner, C.; Dimova, N.; Hanna, J.; Gygi, S.P.; Wilson, S.M.; King, R.W.; Finley, D. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature, 2010, 467(7312), 179-184.
[http://dx.doi.org/10.1038/nature09299] [PMID: 20829789]
[121]
Walters, B.J.; Hallengren, J.J.; Theile, C.S.; Ploegh, H.L.; Wilson, S.M.; Dobrunz, L.E. A catalytic independent function of the deubiquitinating enzyme USP14 regulates hippocampal synaptic short-term plasticity and vesicle number. J. Physiol., 2014, 592(4), 571-586.
[http://dx.doi.org/10.1113/jphysiol.2013.266015] [PMID: 24218545]
[122]
Dang, L.C.; Melandri, F.D.; Stein, R.L. Kinetic and mechanistic studies on the hydrolysis of ubiquitin C-terminal 7-amido-4-methylcoumarin by deubiquitinating enzymes. Biochemistry, 1998, 37(7), 1868-1879.
[http://dx.doi.org/10.1021/bi9723360] [PMID: 9485312]
[123]
Qu, Q.; Pan, M.; Gao, S.; Zheng, Q.Y.; Yu, Y.Y.; Su, J.C.; Li, X.; Hu, H.G. A Highly Efficient Synthesis of Polyubiquitin Chains. Adv. Sci. (Weinh.), 2018, 5(7)1800234
[http://dx.doi.org/10.1002/advs.201800234] [PMID: 30027052]
[124]
Chu, G-C.; Bai, J-S.; Kong, Y-F.; Fan, J.; Sun, S-S.; Xu, H-J.; Shi, J.; Li, Y-M. Efficient semi-synthesis of ubiquitin-7-amino-4-methylcoumarin. Tetrahedron, 2018, 74(28), 3931-3935.
[http://dx.doi.org/10.1016/j.tet.2018.05.081]
[125]
Xu, L.; Xu, Y.; Qu, Q.; Guan, C-J.; Chu, G-C.; Shi, J.; Li, Y-M. Efficient chemical synthesis for the analogue of ubiquitin-based probe Ub-AMC with native bioactivity. RSC Advances, 2016, 6(53), 47926-47930.
[http://dx.doi.org/10.1039/C6RA11019C]
[126]
Yao, T.; Song, L.; Xu, W.; DeMartino, G.N.; Florens, L.; Swanson, S.K.; Washburn, M.P.; Conaway, R.C.; Conaway, J.W.; Cohen, R.E. Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat. Cell Biol., 2006, 8(9), 994-1002.
[http://dx.doi.org/10.1038/ncb1460] [PMID: 16906146]
[127]
Bashore, C.; Dambacher, C.M.; Goodall, E.A.; Matyskiela, M.E.; Lander, G.C.; Martin, A. Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome. Nat. Struct. Mol. Biol., 2015, 22(9), 712-719.
[http://dx.doi.org/10.1038/nsmb.3075] [PMID: 26301997]
[128]
Lander, G.C.; Estrin, E.; Matyskiela, M.E.; Bashore, C.; Nogales, E.; Martin, A. Complete subunit architecture of the proteasome regulatory particle. Nature, 2012, 482(7384), 186-191.
[http://dx.doi.org/10.1038/nature10774] [PMID: 22237024]
[129]
Matyskiela, M.E.; Lander, G.C.; Martin, A. Conformational switching of the 26S proteasome enables substrate degradation. Nat. Struct. Mol. Biol., 2013, 20(7), 781-788.
[http://dx.doi.org/10.1038/nsmb.2616] [PMID: 23770819]
[130]
Martin, A.; Baker, T.A.; Sauer, R.T. Protein unfolding by a AAA+ protease is dependent on ATP-hydrolysis rates and substrate energy landscapes. Nat. Struct. Mol. Biol., 2008, 15(2), 139-145.
[http://dx.doi.org/10.1038/nsmb.1380] [PMID: 18223658]
[131]
Thomsen, N.D.; Berger, J.M. Running in reverse: the structural basis for translocation polarity in hexameric helicases. Cell, 2009, 139(3), 523-534.
[http://dx.doi.org/10.1016/j.cell.2009.08.043] [PMID: 19879839]
[132]
Kim, H.C.; Huibregtse, J.M. Polyubiquitination by HECT E3s and the determinants of chain type specificity. Mol. Cell. Biol., 2009, 29(12), 3307-3318.
[http://dx.doi.org/10.1128/MCB.00240-09] [PMID: 19364824]
[133]
Martinez-Fonts, K.; Matouschek, A. A rapid and versatile method for generating proteins with defined ubiquitin chains. Biochemistry, 2016, 55(12), 1898-1908.
[http://dx.doi.org/10.1021/acs.biochem.5b01310] [PMID: 26943792]
[134]
Kirkpatrick, D.S.; Hathaway, N.A.; Hanna, J.; Elsasser, S.; Rush, J.; Finley, D.; King, R.W.; Gygi, S.P. Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat. Cell Biol., 2006, 8(7), 700-710.
[http://dx.doi.org/10.1038/ncb1436] [PMID: 16799550]
[135]
Lu, Y.; Lee, B.H.; King, R.W.; Finley, D.; Kirschner, M.W. Substrate degradation by the proteasome: a single-molecule kinetic analysis. Science, 2015, 348(6231)1250834
[http://dx.doi.org/10.1126/science.1250834] [PMID: 25859050]
[136]
Thrower, J.S.; Hoffman, L.; Rechsteiner, M.; Pickart, C.M. Recognition of the polyubiquitin proteolytic signal. EMBO J., 2000, 19(1), 94-102.
[http://dx.doi.org/10.1093/emboj/19.1.94] [PMID: 10619848]
[137]
Dick, T.P.; Nussbaum, A.K.; Deeg, M.; Heinemeyer, W.; Groll, M.; Schirle, M.; Keilholz, W.; Stevanović, S.; Wolf, D.H.; Huber, R.; Rammensee, H.G.; Schild, H. Contribution of proteasomal beta-subunits to the cleavage of peptide substrates analyzed with yeast mutants. J. Biol. Chem., 1998, 273(40), 25637-25646.
[http://dx.doi.org/10.1074/jbc.273.40.25637] [PMID: 9748229]
[138]
Prakash, S.; Tian, L.; Ratliff, K.S.; Lehotzky, R.E.; Matouschek, A. An unstructured initiation site is required for efficient proteasome-mediated degradation. Nat. Struct. Mol. Biol., 2004, 11(9), 830-837.
[http://dx.doi.org/10.1038/nsmb814] [PMID: 15311270]
[139]
Lee, B.H.; Lu, Y.; Prado, M.A.; Shi, Y.; Tian, G.; Sun, S.; Elsasser, S.; Gygi, S.P.; King, R.W.; Finley, D. USP14 deubiquitinates proteasome-bound substrates that are ubiquitinated at multiple sites. Nature, 2016, 532(7599), 398-401.
[http://dx.doi.org/10.1038/nature17433] [PMID: 27074503]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy