Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The CXCL12-CXCR4 Signaling Axis Plays a Key Role in Cancer Metastasis and is a Potential Target for Developing Novel Therapeutics against Metastatic Cancer

Author(s): Ping Yang, Yae Hu and Quansheng Zhou*

Volume 27 , Issue 33 , 2020

Page: [5543 - 5561] Pages: 19

DOI: 10.2174/0929867326666191113113110

Price: $65

Abstract

Metastasis is the main cause of death in cancer patients; there is currently no effective treatment for cancer metastasis. This is primarily due to our insufficient understanding of the metastatic mechanisms in cancer. An increasing number of studies have shown that the C-X-C motif chemokine Ligand 12 (CXCL12) is overexpressed in various tissues and organs. It is a key niche factor that nurtures the pre-metastatic niches (tumorigenic soil) and recruits tumor cells (oncogenic “seeds”) to these niches, thereby fostering cancer cell aggression and metastatic capabilities. However, the C-X-C motif chemokine Receptor 4 (CXCR4) is aberrantly overexpressed in various cancer stem/progenitor cells and functions as a CXCL12 receptor. CXCL12 activates CXCR4 as well as multiple downstream multiple tumorigenic signaling pathways, promoting the expression of various oncogenes. Activation of the CXCL12-CXCR4 signaling axis promotes Epithelial-Mesenchymal Transition (EMT) and mobilization of cancer stem/progenitor cells to pre-metastatic niches. It also nurtures cancer cells with high motility, invasion, and dissemination phenotypes, thereby escalating multiple proximal or distal cancer metastasis; this results in poor patient prognosis. Based on this evidence, recent studies have explored either CXCL12- or CXCR4-targeted anti-cancer therapeutics and have achieved promising results in the preclinical trials. Further exploration of this new strategy and its potent therapeutics effect against metastatic cancer through the targeting of the CXCL12- CXCR4 signaling axis may lead to a novel therapy that can clean up the tumor microenvironment (“soil”) and kill the cancer cells, particularly the cancer stem/progenitor cells (“seeds”), in cancer patients. Ultimately, this approach has the potential to effectively treat metastatic cancer.

Keywords: CXCL12, CXCR4, cancer metastasis, therapeutics, cancer therapy, signaling axis.

[1]
Fidler, I.J. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer, 2003, 3(6), 453-458.
[http://dx.doi.org/10.1038/nrc1098] [PMID: 12778135]
[2]
Lichtenstein, A.V. Genetic mosaicism and cancer: cause and effect. Cancer Res., 2018, 78(6), 1375-1378.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-2769] [PMID: 29472519]
[3]
Agliano, A.; Calvo, A.; Box, C. The challenge of targeting cancer stem cells to halt metastasis. Semin. Cancer Biol., 2017, 44, 25-42.
[http://dx.doi.org/10.1016/j.semcancer.2017.03.003] [PMID: 28323021]
[4]
Ribatti, D.; Mangialardi, G.; Vacca, A. Stephen Paget and the ‘seed and soil’ theory of metastatic dissemination. Clin. Exp. Med., 2006, 6(4), 145-149.
[http://dx.doi.org/10.1007/s10238-006-0117-4] [PMID: 17191105]
[5]
Whitson, R.J.; Oro, A.E. Soil primes the seed: epigenetic landscape drives tumor behavior. Cell Stem Cell, 2017, 20(2), 149-150.
[http://dx.doi.org/10.1016/j.stem.2017.01.007] [PMID: 28157493]
[6]
Pastushenko, I.; Brisebarre, A.; Sifrim, A.; Fioramonti, M.; Revenco, T.; Boumahdi, S.; Van Keymeulen, A.; Brown, D.; Moers, V.; Lemaire, S.; De Clercq, S.; Minguijón, E.; Balsat, C.; Sokolow, Y.; Dubois, C.; De Cock, F.; Scozzaro, S.; Sopena, F.; Lanas, A.; D’Haene, N.; Salmon, I.; Marine, J.C.; Voet, T.; Sotiropoulou, P.A.; Blanpain, C. Identification of the tumour transition states occurring during EMT. Nature, 2018, 556(7702), 463-468.
[http://dx.doi.org/10.1038/s41586-018-0040-3] [PMID: 29670281]
[7]
Americal Association for Cancer Research. CXCL12 has niche-specific roles in leukemia stem cell function. Cancer Discov., 2019, 9(5), OF11.
[http://dx.doi.org/10.1158/2159-8290.CD-RW2019-044]
[8]
Jung, Y.; Cackowski, F.C.; Yumoto, K.; Decker, A.M.; Wang, J.; Kim, J.K.; Lee, E.; Wang, Y.; Chung, J.S.; Gursky, A.M.; Krebsbach, P.H.; Pienta, K.J.; Morgan, T.M.; Taichman, R.S. CXCL12γ Promotes metastatic castration-resistant prostate cancer by inducing cancer stem cell and neuroendocrine phenotypes. Cancer Res., 2018, 78(8), 2026-2039.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-2332] [PMID: 29431639]
[9]
Kong, L.; Guo, S.; Liu, C.; Zhao, Y.; Feng, C.; Liu, Y.; Wang, T.; Li, C. Overexpression of SDF-1 activates the NF-κB pathway to induce epithelial to mesenchymal transition and cancer stem cell-like phenotypes of breast cancer cells. Int. J. Oncol., 2016, 48(3), 1085-1094.
[http://dx.doi.org/10.3892/ijo.2016.3343] [PMID: 26782945]
[10]
Miyata, T.; Yamashita, Y.I.; Yoshizumi, T.; Shiraishi, M.; Ohta, M.; Eguchi, S.; Aishima, S.; Fujioka, H.; Baba, H. CXCL12 expression in intrahepatic cholangiocarcinoma is associated with metastasis and poor prognosis. Cancer Sci., 2019, 110(10), 3197-3203.
[http://dx.doi.org/10.1111/cas.14151] [PMID: 31361379]
[11]
Wang, M.; Yang, X.; Wei, M.; Wang, Z. The role of CXCL12 axis in lung metastasis of colorectal cancer. J. Cancer, 2018, 9(21), 3898-3903.
[http://dx.doi.org/10.7150/jca.26383] [PMID: 30410593]
[12]
Ahirwar, D.K.; Nasser, M.W.; Ouseph, M.M.; Elbaz, M.; Cuitiño, M.C.; Kladney, R.D.; Varikuti, S.; Kaul, K.; Satoskar, A.R.; Ramaswamy, B.; Zhang, X.; Ostrowski, M.C.; Leone, G.; Ganju, R.K. Fibroblast-derived CXCL12 promotes breast cancer metastasis by facilitating tumor cell intravasation. Oncogene, 2018, 37(32), 4428-4442.
[http://dx.doi.org/10.1038/s41388-018-0263-7] [PMID: 29720724]
[13]
Azizidoost, S.; Asnafi, A.A.; Saki, N. Signaling-chemokine axis network in brain as a sanctuary site for metastasis. J. Cell. Physiol., 2019, 234(4), 3376-3382.
[http://dx.doi.org/10.1002/jcp.27305] [PMID: 30187487]
[14]
Conley-LaComb, M.K.; Saliganan, A.; Kandagatla, P.; Chen, Y.Q.; Cher, M.L.; Chinni, S.R. PTEN loss mediated Akt activation promotes prostate tumor growth and metastasis via CXCL12/CXCR4 signaling. Mol. Cancer, 2013, 12(1), 85.
[http://dx.doi.org/10.1186/1476-4598-12-85] [PMID: 23902739]
[15]
Lee, B.C.; Lee, T.H.; Avraham, S.; Avraham, H.K. Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1alpha in breast cancer cell migration through human brain microvascular endothelial cells. Mol. Cancer Res., 2004, 2(6), 327-338.
[PMID: 15235108]
[16]
Roy, I.; Zimmerman, N.P.; Mackinnon, A.C.; Tsai, S.; Evans, D.B.; Dwinell, M.B. CXCL12 chemokine expression suppresses human pancreatic cancer growth and metastasis. PLoS One, 2014, 9(3)e90400
[http://dx.doi.org/10.1371/journal.pone.0090400] [PMID: 24594697]
[17]
Gil, M.; Komorowski, M.P.; Seshadri, M.; Rokita, H.; McGray, A.J.; Opyrchal, M.; Odunsi, K.O.; Kozbor, D. CXCL12/CXCR4 blockade by oncolytic virotherapy inhibits ovarian cancer growth by decreasing immunosuppression and targeting cancer-initiating cells. J. Immunol., 2014, 193(10), 5327-5337.
[http://dx.doi.org/10.4049/jimmunol.1400201] [PMID: 25320277]
[18]
Wang, J.; Knaut, H. Chemokine signaling in development and disease. Development, 2014, 141(22), 4199-4205.
[http://dx.doi.org/10.1242/dev.101071] [PMID: 25371357]
[19]
Ruscher, K.; Kuric, E.; Liu, Y.; Walter, H.L.; Issazadeh-Navikas, S.; Englund, E.; Wieloch, T. Inhibition of CXCL12 signaling attenuates the postischemic immune response and improves functional recovery after stroke. J. Cereb. Blood Flow Metab., 2013, 33(8), 1225-1234.
[http://dx.doi.org/10.1038/jcbfm.2013.71] [PMID: 23632969]
[20]
Cheng, J.W.; Sadeghi, Z.; Levine, A.D.; Penn, M.S.; von Recum, H.A.; Caplan, A.I.; Hijaz, A. The role of CXCL12 and CCL7 chemokines in immune regulation, embryonic development, and tissue regeneration. Cytokine, 2014, 69(2), 277-283.
[http://dx.doi.org/10.1016/j.cyto.2014.06.007] [PMID: 25034237]
[21]
Sleightholm, R.L.; Neilsen, B.K.; Li, J.; Steele, M.M.; Singh, R.K.; Hollingsworth, M.A.; Oupicky, D. Emerging roles of the CXCL12/CXCR4 axis in pancreatic cancer progression and therapy. Pharmacol. Ther., 2017, 179, 158-170.
[http://dx.doi.org/10.1016/j.pharmthera.2017.05.012] [PMID: 28549596]
[22]
Feig, C.; Jones, J.O.; Kraman, M.; Wells, R.J.; Deonarine, A.; Chan, D.S.; Connell, C.M.; Roberts, E.W.; Zhao, Q.; Caballero, O.L.; Teichmann, S.A.; Janowitz, T.; Jodrell, D.I.; Tuveson, D.A.; Fearon, D.T. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl. Acad. Sci. USA, 2013, 110(50), 20212-20217.
[http://dx.doi.org/10.1073/pnas.1320318110] [PMID: 24277834]
[23]
Neagu, M.; Constantin, C.; Longo, C. Chemokines in the melanoma metastasis biomarkers portrait. J. Immunoassay Immunochem., 2015, 36(6), 559-566.
[http://dx.doi.org/10.1080/15321819.2015.1035593] [PMID: 25839711]
[24]
Amarante, M.K.; Vitiello, G.A.F.; Rosa, M.H.; Mancilla, I.A.; Watanabe, M.A.E. Potential use of CXCL12/CXCR4 and sonic hedgehog pathways as therapeutic targets in medulloblastoma. Acta Oncol., 2018, 57(9), 1134-1142.
[http://dx.doi.org/10.1080/0284186X.2018.1473635] [PMID: 29771176]
[25]
Nazari, A.; Khorramdelazad, H.; Hassanshahi, G. Biological/pathological functions of the CXCL12/CXCR4/CXCR7 axes in the pathogenesis of bladder cancer. Int. J. Clin. Oncol., 2017, 22(6), 991-1000.
[http://dx.doi.org/10.1007/s10147-017-1187-x] [PMID: 29022185]
[26]
Jeng, K.S.; Jeng, C.J.; Jeng, W.J.; Chang, C.F.; Sheen, I.S. Role of C-X-C chemokine ligand 12/C-X-C chemokine receptor 4 in the progression of hepatocellular carcinoma. Oncol. Lett., 2017, 14(2), 1905-1910.
[http://dx.doi.org/10.3892/ol.2017.6396] [PMID: 28789425]
[27]
Zheng, N.; Chen, J.; Li, T.; Liu, W.; Liu, J.; Chen, H.; Wang, J.; Jia, L. 0000-0001-6839-5545, A.O. Abortifacient metapristone (RU486 derivative) interrupts CXCL12/CXCR4 axis for ovarian metastatic chemoprevention. Mol. Carcinog., 2017, 56, 1896-1908.
[http://dx.doi.org/10.1002/mc.22645] [PMID: 28277622]
[28]
Hsiao, J.J.; Ng, B.H.; Smits, M.M.; Wang, J.; Jasavala, R.J.; Martinez, H.D.; Lee, J.; Alston, J.J.; Misonou, H.; Trimmer, J.S.; Wright, M.E. Androgen receptor and chemokine receptors 4 and 7 form a signaling axis to regulate CXCL12-dependent cellular motility. BMC Cancer, 2015, 15, 204.
[http://dx.doi.org/10.1186/s12885-015-1201-5] [PMID: 25884570]
[29]
Li, X.; Bu, W.; Meng, L.; Liu, X.; Wang, S.; Jiang, L.; Ren, M.; Fan, Y.; Sun, H. CXCL12/CXCR4 pathway orchestrates CSC-like properties by CAF recruited tumor associated macrophage in OSCC. Exp. Cell Res., 2019, 378(2), 131-138.
[http://dx.doi.org/10.1016/j.yexcr.2019.03.013] [PMID: 30857971]
[30]
Xia, R.; Xu, G.; Huang, Y.; Sheng, X.; Xu, X.; Lu, H. Hesperidin suppresses the migration and invasion of non-small cell lung cancer cells by inhibiting the SDF-1/CXCR-4 pathway. Life Sci., 2018, 201, 111-120.
[http://dx.doi.org/10.1016/j.lfs.2018.03.046] [PMID: 29604270]
[31]
Sivina, M.; Kreitman, R.J.; Arons, E.; Ravandi, F.; Burger, J.A. The bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) blocks hairy cell leukaemia survival, proliferation and B cell receptor signalling: a new therapeutic approach. Br. J. Haematol., 2014, 166(2), 177-188.
[http://dx.doi.org/10.1111/bjh.12867] [PMID: 24697238]
[32]
Ludwig, H.; Weisel, K.; Petrucci, M.T.; Leleu, X.; Cafro, A.M.; Garderet, L.; Leitgeb, C.; Foa, R.; Greil, R.; Yakoub-Agha, I.; Zboralski, D.; Vauléon, S.; Dümmler, T.; Beyer, D.; Kruschinski, A.; Riecke, K.; Baumann, M.; Engelhardt, M. Olaptesed pegol, an anti-CXCL12/SDF-1 Spiegelmer, alone and with bortezomib-dexamethasone in relapsed/refractory multiple myeloma: a phase IIa study. Leukemia, 2017, 31(4), 997-1000.
[http://dx.doi.org/10.1038/leu.2017.5] [PMID: 28074071]
[33]
Hainsworth, J.D.; Reeves, J.A.; Mace, J.R.; Crane, E.J.; Hamid, O.; Stille, J.R.; Flynt, A.; Roberson, S.; Polzer, J.; Arrowsmith, E.R.A. A randomized, open-label phase 2 study of the CXCR4 inhibitor LY2510924 in combination with sunitinib versus sunitinib alone in patients with metastatic renal cell carcinoma (RCC). Target. Oncol., 2016, 11(5), 643-653.
[http://dx.doi.org/10.1007/s11523-016-0434-9] [PMID: 27154357]
[34]
Lu, C.; Xu, F.; Gu, J.; Yuan, Y.; Zhao, G.; Yu, X.; Ge, D. Clinical and biological significance of stem-like CD133(+) CXCR4(+) cells in esophageal squamous cell carcinoma. J. Thorac. Cardiovasc. Surg., 2015, 150(2), 386-395.
[http://dx.doi.org/10.1016/j.jtcvs.2015.05.030] [PMID: 26092504]
[35]
Cioffi, M.; D’Alterio, C.; Camerlingo, R.; Tirino, V.; Consales, C.; Riccio, A.; Ieranò, C.; Cecere, S.C.; Losito, N.S.; Greggi, S.; Pignata, S.; Pirozzi, G.; Scala, S. Identification of a distinct population of CD133(+)CXCR4(+) cancer stem cells in ovarian cancer. Sci. Rep., 2015, 5, 10357.
[http://dx.doi.org/10.1038/srep10357] [PMID: 26020117]
[36]
Jensen, T.; Vadasz, S.; Phoenix, K.; Claffey, K.; Parikh, N.; Finck, C. Descriptive analysis of tumor cells with stem like phenotypes in metastatic and benign adrenal tumors. J. Pediatr. Surg., 2015, 50(9), 1493-1501.
[http://dx.doi.org/10.1016/j.jpedsurg.2015.04.012] [PMID: 25976447]
[37]
Margolin, D.A.; Myers, T.; Zhang, X.; Bertoni, D.M.; Reuter, B.A.; Obokhare, I.; Borgovan, T.; Grimes, C.; Green, H.; Driscoll, T.; Lee, C.G.; Davis, N.K.; Li, L. The critical roles of tumor-initiating cells and the lymph node stromal microenvironment in human colorectal cancer extranodal metastasis using a unique humanized orthotopic mouse model. FASEB J., 2015, 29(8), 3571-3581.
[http://dx.doi.org/10.1096/fj.14-268938] [PMID: 25962655]
[38]
Hira, V.V.; Ploegmakers, K.J.; Grevers, F.; Verbovšek, U.; Silvestre-Roig, C.; Aronica, E.; Tigchelaar, W.; Turnšek, T.L.; Molenaar, R.J.; Van Noorden, C.J. CD133+ and nestin+ glioma stem-like cells reside around CD31+ arterioles in niches that express SDF-1α, CXCR4, osteopontin and cathepsin K. J. Histochem. Cytochem., 2015, 63(7), 481-493.
[http://dx.doi.org/10.1369/0022155415581689] [PMID: 25809793]
[39]
Zhu, L.; Zhang, W.; Wang, J.; Liu, R. Evidence of CD90+CXCR4+ cells as circulating tumor stem cells in hepatocellular carcinoma. Tumour Biol., 2015, 36(7), 5353-5360.
[http://dx.doi.org/10.1007/s13277-015-3196-6] [PMID: 25672610]
[40]
Bertolini, G.; D’Amico, L.; Moro, M.; Landoni, E.; Perego, P.; Miceli, R.; Gatti, L.; Andriani, F.; Wong, D.; Caserini, R.; Tortoreto, M.; Milione, M.; Ferracini, R.; Mariani, L.; Pastorino, U.; Roato, I.; Sozzi, G.; Roz, L. Microenvironment-modulated metastatic CD133+/CXCR4+/EpCAM-lung cancer-initiating cells sustain tumor dissemination and correlate with poor prognosis. Cancer Res., 2015, 75(17), 3636-3649.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3781] [PMID: 26141860]
[41]
Bleul, C.C.; Farzan, M.; Choe, H.; Parolin, C.; Clark-Lewis, I.; Sodroski, J.; Springer, T.A. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature, 1996, 382(6594), 829-833.
[http://dx.doi.org/10.1038/382829a0] [PMID: 8752280]
[42]
Oberlin, E.; Amara, A.; Bachelerie, F.; Bessia, C.; Virelizier, J.L.; Arenzana-Seisdedos, F.; Schwartz, O.; Heard, J.M.; Clark-Lewis, I.; Legler, D.F.; Loetscher, M.; Baggiolini, M.; Moser, B. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature, 1996, 382(6594), 833-835.
[http://dx.doi.org/10.1038/382833a0] [PMID: 8752281]
[43]
Schols, D.; Struyf, S.; Van Damme, J.; Esté, J.A.; Henson, G.; De Clercq, E. Inhibition of T-tropic HIV strains by selective antagonization of the chemokine receptor CXCR4. J. Exp. Med., 1997, 186(8), 1383-1388.
[http://dx.doi.org/10.1084/jem.186.8.1383] [PMID: 9334378]
[44]
Sakaida, H.; Hori, T.; Yonezawa, A.; Sato, A.; Isaka, Y.; Yoshie, O.; Hattori, T.; Uchiyama, T. T-tropic human immunodeficiency virus type 1 (HIV-1)-derived V3 loop peptides directly bind to CXCR-4 and inhibit T-tropic HIV-1 infection. J. Virol., 1998, 72(12), 9763-9770.
[http://dx.doi.org/10.1128/JVI.72.12.9763-9770.1998] [PMID: 9811711]
[45]
De La Luz Sierra, M.; Yang, F.; Narazaki, M.; Salvucci, O.; Davis, D.; Yarchoan, R.; Zhang, H.H.; Fales, H.; Tosato, G. Differential processing of stromal-derived factor-1alpha and stromal-derived factor-1beta explains functional diversity. Blood, 2004, 103(7), 2452-2459.
[http://dx.doi.org/10.1182/blood-2003-08-2857] [PMID: 14525775]
[46]
Crump, M.P.; Gong, J.H.; Loetscher, P.; Rajarathnam, K.; Amara, A.; Arenzana-Seisdedos, F.; Virelizier, J.L.; Baggiolini, M.; Sykes, B.D.; Clark-Lewis, I. Solution structure and basis for functional activity of stromal cell-derived factor-1: dissociation of CXCR4 activation from binding and inhibition of HIV-1. EMBO J., 1997, 16(23), 6996-7007.
[http://dx.doi.org/10.1093/emboj/16.23.6996] [PMID: 9384579]
[47]
Timotijević, G.; Mostarica Stojković, M.; Miljković, D. CXCL12: role in neuroinflammation. Int. J. Biochem. Cell Biol., 2012, 44(6), 838-841.
[http://dx.doi.org/10.1016/j.biocel.2012.03.014] [PMID: 22484430]
[48]
Zhao, Z.; Ma, X.; Ma, J.; Sun, X.; Li, F.; Lv, J. Naringin enhances endothelial progenitor cell (EPC) proliferation and tube formation capacity through the CXCL12/CXCR4/PI3K/Akt signaling pathway. Chem. Biol. Interact., 2018, 286, 45-51.
[http://dx.doi.org/10.1016/j.cbi.2018.03.002] [PMID: 29510123]
[49]
Zirafi, O.; Kim, K.A.; Ständker, L.; Mohr, K.B.; Sauter, D.; Heigele, A.; Kluge, S.F.; Wiercinska, E.; Chudziak, D.; Richter, R.; Moepps, B.; Gierschik, P.; Vas, V.; Geiger, H.; Lamla, M.; Weil, T.; Burster, T.; Zgraja, A.; Daubeuf, F.; Frossard, N.; Hachet-Haas, M.; Heunisch, F.; Reichetzeder, C.; Galzi, J.L.; Pérez-Castells, J.; Canales-Mayordomo, A.; Jiménez-Barbero, J.; Giménez-Gallego, G.; Schneider, M.; Shorter, J.; Telenti, A.; Hocher, B.; Forssmann, W.G.; Bonig, H.; Kirchhoff, F.; Münch, J. Discovery and characterization of an endogenous CXCR4 antagonist. Cell Rep., 2015, 11(5), 737-747.
[http://dx.doi.org/10.1016/j.celrep.2015.03.061] [PMID: 25921529]
[50]
Chen, L.; Xu, S.; Zeng, X.; Li, J.; Yin, W.; Chen, Y.; Shao, Z.; Jin, W. c-myb activates CXCL12 transcription in T47D and MCF7 breast cancer cells. Acta Biochim. Biophys. Sin. (Shanghai), 2010, 42(1), 1-7.
[http://dx.doi.org/10.1093/abbs/gmp108] [PMID: 20043041]
[51]
Piva, R.; Manferdini, C.; Lambertini, E.; Torreggiani, E.; Penolazzi, L.; Gambari, R.; Pastore, A.; Pelucchi, S.; Gabusi, E.; Piacentini, A.; Filardo, G.; Facchini, A.; Lisignoli, G. Slug contributes to the regulation of CXCL12 expression in human osteoblasts. Exp. Cell Res., 2011, 317(8), 1159-1168.
[http://dx.doi.org/10.1016/j.yexcr.2010.12.011] [PMID: 21182836]
[52]
Uygur, B.; Wu, W.S. SLUG promotes prostate cancer cell migration and invasion via CXCR4/CXCL12 axis. Mol. Cancer, 2011, 10, 139.
[http://dx.doi.org/10.1186/1476-4598-10-139] [PMID: 22074556]
[53]
Holland, J.D.; Györffy, B.; Vogel, R.; Eckert, K.; Valenti, G.; Fang, L.; Lohneis, P.; Elezkurtaj, S.; Ziebold, U.; Birchmeier, W. Combined Wnt/β-catenin, Met and CXCL12/CXCR4 signals characterize basal breast cancer and predict disease outcome. Cell Rep., 2013, 5(5), 1214-1227.
[http://dx.doi.org/10.1016/j.celrep.2013.11.001] [PMID: 24290754]
[54]
Santiago, B.; Calonge, E.; Del Rey, M.J.; Gutierrez-Cañas, I.; Izquierdo, E.; Usategui, A.; Galindo, M.; Alcamí, J.; Pablos, J.L. CXCL12 gene expression is upregulated by hypoxia and growth arrest but not by inflammatory cytokines in rheumatoid synovial fibroblasts. Cytokine, 2011, 53(2), 184-190.
[http://dx.doi.org/10.1016/j.cyto.2010.06.006] [PMID: 20609598]
[55]
Boudot, A.; Kerdivel, G.; Lecomte, S.; Flouriot, G.; Desille, M.; Godey, F.; Leveque, J.; Tas, P.; Le Dréan, Y.; Pakdel, F. COUP-TFI modifies CXCL12 and CXCR4 expression by activating EGF signaling and stimulates breast cancer cell migration. BMC Cancer, 2014, 14, 407.
[http://dx.doi.org/10.1186/1471-2407-14-407] [PMID: 24906407]
[56]
Khurana, S.; Melacarne, A.; Yadak, R.; Schouteden, S.; Notelaers, T.; Pistoni, M.; Maes, C.; Verfaillie, C.M. SMAD signaling regulates CXCL12 expression in the bone marrow niche, affecting homing and mobilization of hematopoietic progenitors. Stem Cells, 2014, 32(11), 3012-3022.
[http://dx.doi.org/10.1002/stem.1794] [PMID: 25069965]
[57]
Chen, X.W.; Yu, T.J.; Zhang, J.; Li, Y.; Chen, H.L.; Yang, G.F.; Yu, W.; Liu, Y.Z.; Liu, X.X.; Duan, C.F.; Tang, H.L.; Qiu, M.; Wang, C.L.; Zheng, H.; Yue, J.; Guo, A.M.; Yang, J. CYP4A in tumor-associated macrophages promotes pre-metastatic niche formation and metastasis. Oncogene, 2017, 36(35), 5045-5057.
[http://dx.doi.org/10.1038/onc.2017.118] [PMID: 28481877]
[58]
Murgai, M.; Ju, W.; Eason, M.; Kline, J.; Beury, D.W.; Kaczanowska, S.; Miettinen, M.M.; Kruhlak, M.; Lei, H.; Shern, J.F.; Cherepanova, O.A.; Owens, G.K.; Kaplan, R.N. KLF4-dependent perivascular cell plasticity mediates pre-metastatic niche formation and metastasis. Nat. Med., 2017, 23(10), 1176-1190.
[http://dx.doi.org/10.1038/nm.4400] [PMID: 28920957]
[59]
Hiratsuka, S.; Tomita, T.; Mishima, T.; Matsunaga, Y.; Omori, T.; Ishibashi, S.; Yamaguchi, S.; Hosogane, T.; Watarai, H.; Omori-Miyake, M.; Yamamoto, T.; Shibata, N.; Watanabe, A.; Aburatani, H.; Tomura, M.; High, K.A.; Maru, Y. Hepato-entrained B220+CD11c+NK1.1+ cells regulate pre-metastatic niche formation in the lung. EMBO Mol. Med., 2018, 10(7)e8643
[http://dx.doi.org/10.15252/emmm.201708643] [PMID: 29930175]
[60]
Houg, D.S.; Bijlsma, M.F. The hepatic pre-metastatic niche in pancreatic ductal adenocarcinoma. Mol. Cancer, 2018, 17(1), 95.
[http://dx.doi.org/10.1186/s12943-018-0842-9] [PMID: 29903049]
[61]
Shu, S.; Yang, Y.; Allen, C.L.; Maguire, O.; Minderman, H.; Sen, A.; Ciesielski, M.J.; Collins, K.A.; Bush, P.J.; Singh, P.; Wang, X.; Morgan, M.; Qu, J.; Bankert, R.B.; Whiteside, T.L.; Wu, Y.; Ernstoff, M.S. Metabolic reprogramming of stromal fibroblasts by melanoma exosome microRNA favours a pre-metastatic microenvironment. Sci. Rep., 2018, 8(1), 12905.
[http://dx.doi.org/10.1038/s41598-018-31323-7] [PMID: 30150674]
[62]
Wang, Y.; Ding, Y.; Guo, N.; Wang, S. MDSCs: key criminals of tumor pre-metastatic niche formation. Front. Immunol., 2019, 10, 172.
[http://dx.doi.org/10.3389/fimmu.2019.00172] [PMID: 30792719]
[63]
Doglioni, G.; Parik, S.; Fendt, S.M. Interactions in the (pre)metastatic niche support metastasis formation. Front. Oncol., 2019, 9, 219.
[http://dx.doi.org/10.3389/fonc.2019.00219] [PMID: 31069166]
[64]
Kim, H.; Chung, H.; Kim, J.; Choi, D.H.; Shin, Y.; Kang, Y.G.; Kim, B.M.; Seo, S.U.; Chung, S.; Seok, S.H. Macrophages-triggered sequential remodeling of endothelium-interstitial matrix to form pre-metastatic niche in microfluidic tumor microenvironment. Adv. Sci. (Weinh.), 2019, 6(11)1900195
[http://dx.doi.org/10.1002/advs.201900195] [PMID: 31179226]
[65]
Liu, Y.; Gu, Y.; Han, Y.; Zhang, Q.; Jiang, Z.; Zhang, X.; Huang, B.; Xu, X.; Zheng, J.; Cao, X. Tumor exosomal RNAs promote lung pre-metastatic niche formation by activating alveolar epithelial TLR3 to recruit neutrophils. Cancer Cell, 2016, 30(2), 243-256.
[http://dx.doi.org/10.1016/j.ccell.2016.06.021] [PMID: 27505671]
[66]
Zeng, Z.; Li, Y.; Pan, Y.; Lan, X.; Song, F.; Sun, J.; Zhou, K.; Liu, X.; Ren, X.; Wang, F.; Hu, J.; Zhu, X.; Yang, W.; Liao, W.; Li, G.; Ding, Y.; Liang, L. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat. Commun., 2018, 9(1), 5395.
[http://dx.doi.org/10.1038/s41467-018-07810-w] [PMID: 30568162]
[67]
Guo, Y.; Ji, X.; Liu, J.; Fan, D.; Zhou, Q.; Chen, C.; Wang, W.; Wang, G.; Wang, H.; Yuan, W.; Ji, Z.; Sun, Z. Effects of exosomes on pre-metastatic niche formation in tumors. Mol. Cancer, 2019, 18(1), 39.
[http://dx.doi.org/10.1186/s12943-019-0995-1] [PMID: 30857545]
[68]
Wu, S.; Zheng, Q.; Xing, X.; Dong, Y.; Wang, Y.; You, Y.; Chen, R.; Hu, C.; Chen, J.; Gao, D.; Zhao, Y.; Wang, Z.; Xue, T.; Ren, Z.; Cui, J. Matrix stiffness-upregulated LOXL2 promotes fibronectin production, MMP9 and CXCL12 expression and BMDCs recruitment to assist pre-metastatic niche formation. J. Exp. Clin. Cancer Res., 2018, 37(1), 99.
[http://dx.doi.org/10.1186/s13046-018-0761-z] [PMID: 29728125]
[69]
Mannavola, F.; Tucci, M.; Felici, C.; Passarelli, A.; D’Oronzo, S.; Silvestris, F. Tumor-derived exosomes promote the in vitro osteotropism of melanoma cells by activating the SDF-1/CXCR4/CXCR7 axis. J. Transl. Med., 2019, 17(1), 230.
[http://dx.doi.org/10.1186/s12967-019-1982-4] [PMID: 31324252]
[70]
Muders, M.H.; Baretton, G.B. The metastatic niche. Mechanisms and prognostic implications. Pathologe, 2015, 36(Suppl. 2), 185-188.
[http://dx.doi.org/10.1007/s00292-015-0079-y] [PMID: 26395891]
[71]
Silinsky, J.; Grimes, C.; Driscoll, T.; Green, H.; Cordova, J.; Davis, N.K.; Li, L.; Margolin, D.A. CD 133+ and CXCR4+ colon cancer cells as a marker for lymph node metastasis. J. Surg. Res., 2013, 185(1), 113-118.
[http://dx.doi.org/10.1016/j.jss.2013.05.049] [PMID: 23777983]
[72]
Wang, N.; Docherty, F.; Brown, H.K.; Reeves, K.; Fowles, A.; Lawson, M.; Ottewell, P.D.; Holen, I.; Croucher, P.I.; Eaton, C.L. Mitotic quiescence, but not unique “stemness,” marks the phenotype of bone metastasis-initiating cells in prostate cancer. FASEB J., 2015, 29(8), 3141-3150.
[http://dx.doi.org/10.1096/fj.14-266379] [PMID: 25888599]
[73]
Trautmann, F.; Cojoc, M.; Kurth, I.; Melin, N.; Bouchez, L.C.; Dubrovska, A.; Peitzsch, C. CXCR4 as biomarker for radioresistant cancer stem cells. Int. J. Radiat. Biol., 2014, 90(8), 687-699.
[http://dx.doi.org/10.3109/09553002.2014.906766] [PMID: 24650104]
[74]
Kimura, T.; Wang, L.; Tabu, K.; Tsuda, M.; Tanino, M.; Maekawa, A.; Nishihara, H.; Hiraga, H.; Taga, T.; Oda, Y.; Tanaka, S. Identification and analysis of CXCR4-positive synovial sarcoma-initiating cells. Oncogene, 2016, 35(30), 3932-3943.
[http://dx.doi.org/10.1038/onc.2015.461] [PMID: 26640147]
[75]
Heiler, S.; Wang, Z.; Zöller, M. Pancreatic cancer stem cell markers and exosomes - the incentive push. World J. Gastroenterol., 2016, 22(26), 5971-6007.
[http://dx.doi.org/10.3748/wjg.v22.i26.5971] [PMID: 27468191]
[76]
Cheng, B.; Yang, G.; Jiang, R.; Cheng, Y.; Yang, H.; Pei, L.; Qiu, X. Cancer stem cell markers predict a poor prognosis in renal cell carcinoma: a meta-analysis. Oncotarget, 2016, 7(40), 65862-65875.
[http://dx.doi.org/10.18632/oncotarget.11672] [PMID: 27588469]
[77]
Flüh, C.; Hattermann, K.; Mehdorn, H.M.; Synowitz, M.; Held-Feindt, J. Differential expression of CXCR4 and CXCR7 with various stem cell markers in paired human primary and recurrent glioblastomas. Int. J. Oncol., 2016, 48(4), 1408-1416.
[http://dx.doi.org/10.3892/ijo.2016.3354] [PMID: 26821357]
[78]
Rasti, A.; Abolhasani, M.; Zanjani, L.S.; Asgari, M.; Mehrazma, M.; Madjd, Z. Reduced expression of CXCR4, a novel renal cancer stem cell marker, is associated with high-grade renal cell carcinoma. J. Cancer Res. Clin. Oncol., 2017, 143(1), 95-104.
[http://dx.doi.org/10.1007/s00432-016-2239-8] [PMID: 27638770]
[79]
Corrò, C.; Moch, H. Biomarker discovery for renal cancer stem cells. J. Pathol. Clin. Res., 2018, 4(1), 3-18.
[http://dx.doi.org/10.1002/cjp2.91] [PMID: 29416873]
[80]
Dotan, I.; Werner, L.; Vigodman, S.; Weiss, S.; Brazowski, E.; Maharshak, N.; Chen, O.; Tulchinsky, H.; Halpern, Z.; Guzner-Gur, H. CXCL12 is a constitutive and inflammatory chemokine in the intestinal immune system. Inflamm. Bowel Dis., 2010, 16(4), 583-592.
[http://dx.doi.org/10.1002/ibd.21106] [PMID: 19774645]
[81]
Noort, A.R.; van Zoest, K.P.; Weijers, E.M.; Koolwijk, P.; Maracle, C.X.; Novack, D.V.; Siemerink, M.J.; Schlingemann, R.O.; Tak, P.P.; Tas, S.W. NF-κB-inducing kinase is a key regulator of inflammation-induced and tumour-associated angiogenesis. J. Pathol., 2014, 234(3), 375-385.
[http://dx.doi.org/10.1002/path.4403] [PMID: 25043127]
[82]
Pan, F.; Ma, S.; Cao, W.; Liu, H.; Chen, F.; Chen, X.; Shi, R. SDF-1α upregulation of MMP-2 is mediated by p38 MAPK signaling in pancreatic cancer cell lines. Mol. Biol. Rep., 2013, 40(7), 4139-4146.
[http://dx.doi.org/10.1007/s11033-012-2225-4] [PMID: 23712777]
[83]
Ray, P.; Stacer, A.C.; Fenner, J.; Cavnar, S.P.; Meguiar, K.; Brown, M.; Luker, K.E.; Luker, G.D. CXCL12-γ in primary tumors drives breast cancer metastasis. Oncogene, 2015, 34(16), 2043-2051.
[http://dx.doi.org/10.1038/onc.2014.157] [PMID: 24909174]
[84]
Hernández-López, C.; Varas, A.; Sacedón, R.; Jiménez, E.; Muñoz, J.J.; Zapata, A.G.; Vicente, A. Stromal cell-derived factor 1/CXCR4 signaling is critical for early human T-cell development. Blood, 2002, 99(2), 546-554.
[http://dx.doi.org/10.1182/blood.V99.2.546] [PMID: 11781237]
[85]
Mao, W.; Yi, X.; Qin, J.; Tian, M.; Jin, G. CXCL12 inhibits cortical neuron apoptosis by increasing the ratio of Bcl-2/Bax after traumatic brain injury. Int. J. Neurosci., 2014, 124(4), 281-290.
[http://dx.doi.org/10.3109/00207454.2013.838236] [PMID: 23984821]
[86]
Yuecheng, Y.; Xiaoyan, X. Stromal-cell derived factor-1 regulates epithelial ovarian cancer cell invasion by activating matrix metalloproteinase-9 and matrix metalloproteinase-2. Eur. J. Cancer Prev., 2007, 16(5), 430-435.
[http://dx.doi.org/10.1097/01.cej.0000236259.88146.a4] [PMID: 17923814]
[87]
Tripathi, V.; Kumar, R.; Dinda, A.K.; Kaur, J.; Luthra, K. CXCL12-CXCR7 signaling activates ERK and Akt pathways in human choriocarcinoma cells. Cell Commun. Adhes., 2014, 21(4), 221-228.
[http://dx.doi.org/10.3109/15419061.2013.876013] [PMID: 24450273]
[88]
Wei, L.; Zhang, B.; Cao, W.; Xing, H.; Yu, X.; Zhu, D. Inhibition of CXCL12/CXCR4 suppresses pulmonary arterial smooth muscle cell proliferation and cell cycle progression via PI3K/Akt pathway under hypoxia. J. Recept. Signal Transduct. Res., 2015, 35(4), 329-339.
[http://dx.doi.org/10.3109/10799893.2014.984308] [PMID: 25421526]
[89]
Delgado-Martín, C.; Escribano, C.; Pablos, J.L.; Riol-Blanco, L.; Rodríguez-Fernández, J.L. Chemokine CXCL12 uses CXCR4 and a signaling core formed by bifunctional Akt, extracellular signal-regulated kinase (ERK)1/2, and mammalian target of rapamycin complex 1 (mTORC1) proteins to control chemotaxis and survival simultaneously in mature dendritic cells. J. Biol. Chem., 2011, 286(43), 37222-37236.
[http://dx.doi.org/10.1074/jbc.M111.294116] [PMID: 21878648]
[90]
Lin, C.H.; Shih, C.H.; Lin, Y.C.; Yang, Y.L.; Chen, B.C. MEKK1, JNK, and SMAD3 mediate CXCL12-stimulated connective tissue growth factor expression in human lung fibroblasts. J. Biomed. Sci., 2018, 25(1), 19.
[http://dx.doi.org/10.1186/s12929-018-0421-9] [PMID: 29499695]
[91]
Wang, S.; Zhang, S.; Li, J.; Xu, X.; Weng, Y.; Zheng, M.; Ouyang, L.; Li, F. CXCL12-induced upregulation of FOXM1 expression promotes human glioblastoma cell invasion. Biochem. Biophys. Res. Commun., 2014, 447(1), 1-6.
[http://dx.doi.org/10.1016/j.bbrc.2013.12.079] [PMID: 24561124]
[92]
Yamazaki, M.; Nakamura, K.; Mizukami, Y.; Ii, M.; Sasajima, J.; Sugiyama, Y.; Nishikawa, T.; Nakano, Y.; Yanagawa, N.; Sato, K.; Maemoto, A.; Tanno, S.; Okumura, T.; Karasaki, H.; Kono, T.; Fujiya, M.; Ashida, T.; Chung, D.C.; Kohgo, Y. Sonic hedgehog derived from human pancreatic cancer cells augments angiogenic function of endothelial progenitor cells. Cancer Sci., 2008, 99(6), 1131-1138.
[http://dx.doi.org/10.1111/j.1349-7006.2008.00795.x] [PMID: 18422746]
[93]
Wang, B.; Wang, W.; Niu, W.; Liu, E.; Liu, X.; Wang, J.; Peng, C.; Liu, S.; Xu, L.; Wang, L.; Niu, J. SDF-1/CXCR4 axis promotes directional migration of colorectal cancer cells through upregulation of integrin αvβ6. Carcinogenesis, 2014, 35(2), 282-291.
[http://dx.doi.org/10.1093/carcin/bgt331] [PMID: 24085800]
[94]
Winderlich, J.N.; Kremer, K.L.; Koblar, S.A. Adult human dental pulp stem cells promote blood-brain barrier permeability through vascular endothelial growth factor-a expression. J. Cereb. Blood Flow Metab., 2016, 36(6), 1087-1097.
[http://dx.doi.org/10.1177/0271678X15608392] [PMID: 26661186]
[95]
Yao, C.; Li, P.; Song, H.; Song, F.; Qu, Y.; Ma, X.; Shi, R.; Wu, J. Retraction note to: CXCL12/CXCR4 axis upregulates twist to induce EMT in human glioblastoma. Mol. Neurobiol., 2017, 54(9), 7553.
[http://dx.doi.org/10.1007/s12035-017-0629-9] [PMID: 28550531]
[96]
Yao, C.; Li, P.; Song, H.; Song, F.; Qu, Y.; Ma, X.; Shi, R.; Wu, J. CXCL12/CXCR4 axis upregulates twist to induce EMT in human glioblastoma. Mol. Neurobiol., 2016, 53(6), 3948-3953.
[http://dx.doi.org/10.1007/s12035-015-9340-x] [PMID: 26179613]
[97]
Hu, T.H.; Yao, Y.; Yu, S.; Han, L.L.; Wang, W.J.; Guo, H.; Tian, T.; Ruan, Z.P.; Kang, X.M.; Wang, J.; Wang, S.H.; Nan, K.J. SDF-1/CXCR4 promotes epithelial-mesenchymal transition and progression of colorectal cancer by activation of the Wnt/β-catenin signaling pathway. Cancer Lett., 2014, 354(2), 417-426.
[http://dx.doi.org/10.1016/j.canlet.2014.08.012] [PMID: 25150783]
[98]
Sun, Y.; Liu, X.; Zhang, Q.; Mao, X.; Feng, L.; Su, P.; Chen, H.; Guo, Y.; Jin, F. Oncogenic potential of TSTA3 in breast cancer and its regulation by the tumor suppressors miR-125a-5p and miR-125b. Tumour Biol., 2016, 37(4), 4963-4972.
[http://dx.doi.org/10.1007/s13277-015-4178-4] [PMID: 26531722]
[99]
Miao, C.G.; Yang, Y.Y.; He, X.; Li, X.F.; Huang, C.; Huang, Y.; Zhang, L.; Lv, X.W.; Jin, Y.; Li, J. Wnt signaling pathway in rheumatoid arthritis, with special emphasis on the different roles in synovial inflammation and bone remodeling. Cell. Signal., 2013, 25(10), 2069-2078.
[http://dx.doi.org/10.1016/j.cellsig.2013.04.002] [PMID: 23602936]
[100]
Zhang, F.; Kang, H.; Xu, Q. Estrogen increases secretion of stromal cell derived factor-1 in human breast cancer cells. Int. J. Clin. Exp. Med., 2014, 7(12), 5529-5534.
[PMID: 25664066]
[101]
Li, X.; Li, P.; Chang, Y.; Xu, Q.; Wu, Z.; Ma, Q.; Wang, Z. The SDF-1/CXCR4 axis induces epithelial-mesenchymal transition in hepatocellular carcinoma. Mol. Cell. Biochem., 2014, 392(1-2), 77-84.
[http://dx.doi.org/10.1007/s11010-014-2020-8] [PMID: 24658853]
[102]
Lv, B.; Yang, X.; Lv, S.; Wang, L.; Fan, K.; Shi, R.; Wang, F.; Song, H.; Ma, X.; Tan, X.; Xu, K.; Xie, J.; Wang, G.; Feng, M.; Zhang, L. CXCR4 Signaling induced epithelial-mesenchymal transition by PI3K/AKT and ERK pathways in glioblastoma. Mol. Neurobiol., 2015, 52(3), 1263-1268.
[http://dx.doi.org/10.1007/s12035-014-8935-y] [PMID: 25326893]
[103]
Xu, C.; Liu, Y.; Xiao, L.; Guo, C.; Deng, S.; Zheng, S.; Zeng, E. The involvement of anterior gradient 2 in the stromal cell-derived factor 1-induced epithelial-mesenchymal transition of glioblastoma. Tumour Biol., 2016, 37(5), 6091-6097.
[http://dx.doi.org/10.1007/s13277-015-4481-0] [PMID: 26608373]
[104]
Bertran, E.; Crosas-Molist, E.; Sancho, P.; Caja, L.; Lopez-Luque, J.; Navarro, E.; Egea, G.; Lastra, R.; Serrano, T.; Ramos, E.; Fabregat, I. Overactivation of the TGF-β pathway confers a mesenchymal-like phenotype and CXCR4-dependent migratory properties to liver tumor cells. Hepatology, 2013, 58(6), 2032-2044.
[http://dx.doi.org/10.1002/hep.26597] [PMID: 23813475]
[105]
Yamaguchi, K.; Miyashita, K.; Aizawa, K.; Todoroki, H.; Kiyonaga, H. A case of gastric cancer with liver metastasis in which obstruction of the bile duct and choledocholithiasis was caused by intra-hepatic arterial infusion chemotherapy. Gan To Kagaku Ryoho, 2003, 30(4), 523-526.
[PMID: 12722686]
[106]
Hirakawa, S.; Detmar, M.; Kerjaschki, D.; Nagamatsu, S.; Matsuo, K.; Tanemura, A.; Kamata, N.; Higashikawa, K.; Okazaki, H.; Kameda, K.; Nishida-Fukuda, H.; Mori, H.; Hanakawa, Y.; Sayama, K.; Shirakata, Y.; Tohyama, M.; Tokumaru, S.; Katayama, I.; Hashimoto, K. Nodal lymphangiogenesis and metastasis: Role of tumor-induced lymphatic vessel activation in extramammary Paget’s disease. Am. J. Pathol., 2009, 175(5), 2235-2248.
[http://dx.doi.org/10.2353/ajpath.2009.090420] [PMID: 19815713]
[107]
Li, D.; Qu, C.; Ning, Z.; Wang, H.; Zang, K.; Zhuang, L.; Chen, L.; Wang, P.; Meng, Z. Radiation promotes epithelial-to-mesenchymal transition and invasion of pancreatic cancer cell by activating carcinoma-associated fibroblasts. Am. J. Cancer Res., 2016, 6(10), 2192-2206.
[PMID: 27822411]
[108]
Yan, Y.; Zhou, C.; Li, J.; Chen, K.; Wang, G.; Wei, G.; Chen, M.; Li, X. Resveratrol inhibits hepatocellular carcinoma progression driven by hepatic stellate cells by targeting Gli-1. Mol. Cell. Biochem., 2017, 434(1-2), 17-24.
[http://dx.doi.org/10.1007/s11010-017-3031-z] [PMID: 28455791]
[109]
Lin, Y.; Ma, Q.; Li, L.; Wang, H. The CXCL12-CXCR4 axis promotes migration, invasiveness, and EMT in human papillary thyroid carcinoma B-CPAP cells via NF-κB signaling. Biochem. Cell Biol., 2018, 96(5), 619-626.
[http://dx.doi.org/10.1139/bcb-2017-0074] [PMID: 29316404]
[110]
Zhou, B.; Chen, W.L.; Wang, Y.Y.; Lin, Z.Y.; Zhang, D.M.; Fan, S.; Li, J.S. A role for cancer-associated fibroblasts in inducing the epithelial-to-mesenchymal transition in human tongue squamous cell carcinoma. J. Oral Pathol. Med., 2014, 43(8), 585-592.
[http://dx.doi.org/10.1111/jop.12172] [PMID: 24645915]
[111]
Albert, S.; Hourseau, M.; Halimi, C.; Serova, M.; Descatoire, V.; Barry, B.; Couvelard, A.; Riveiro, M.E.; Tijeras-Raballand, A.; de Gramont, A.; Raymond, E.; Faivre, S. Prognostic value of the chemokine receptor CXCR4 and epithelial-to-mesenchymal transition in patients with squamous cell carcinoma of the mobile tongue. Oral Oncol., 2012, 48(12), 1263-1271.
[http://dx.doi.org/10.1016/j.oraloncology.2012.06.010] [PMID: 22776129]
[112]
Clarke, M.F.; Dick, J.E.; Dirks, P.B.; Eaves, C.J.; Jamieson, C.H.; Jones, D.L.; Visvader, J.; Weissman, I.L.; Wahl, G.M. Cancer stem cells-perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res., 2006, 66(19), 9339-9344.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3126] [PMID: 16990346]
[113]
Nguyen, L.V.; Vanner, R.; Dirks, P.; Eaves, C.J. Cancer stem cells: an evolving concept. Nat. Rev. Cancer, 2012, 12(2), 133-143.
[http://dx.doi.org/10.1038/nrc3184] [PMID: 22237392]
[114]
Kreso, A.; van Galen, P.; Pedley, N.M.; Lima-Fernandes, E.; Frelin, C.; Davis, T.; Cao, L.; Baiazitov, R.; Du, W.; Sydorenko, N.; Moon, Y.C.; Gibson, L.; Wang, Y.; Leung, C.; Iscove, N.N.; Arrowsmith, C.H.; Szentgyorgyi, E.; Gallinger, S.; Dick, J.E.; O’Brien, C.A. Self-renewal as a therapeutic target in human colorectal cancer. Nat. Med., 2014, 20(1), 29-36.
[http://dx.doi.org/10.1038/nm.3418] [PMID: 24292392]
[115]
Tu, Z.; Xie, S.; Xiong, M.; Liu, Y.; Yang, X.; Tembo, K.M.; Huang, J.; Hu, W.; Huang, X.; Pan, S.; Liu, P.; Altaf, E.; Kang, G.; Xiong, J.; Zhang, Q. CXCR4 is involved in CD133-induced EMT in non-small cell lung cancer. Int. J. Oncol., 2017, 50(2), 505-514.
[http://dx.doi.org/10.3892/ijo.2016.3812] [PMID: 28000861]
[116]
Korkaya, H.; Liu, S.; Wicha, M.S. Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J. Clin. Invest., 2011, 121(10), 3804-3809.
[http://dx.doi.org/10.1172/JCI57099] [PMID: 21965337]
[117]
Korkaya, H.; Liu, S.; Wicha, M.S. Regulation of cancer stem cells by cytokine networks: attacking cancer’s inflammatory roots. Clin. Cancer Res., 2011, 17(19), 6125-6129.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2743] [PMID: 21685479]
[118]
Fessler, E.; Dijkgraaf, F.E.; De Sousa, E.; Melo, F.; Medema, J.P.; Medema, J.P.; Medema, J.P. Cancer stem cell dynamics in tumor progression and metastasis: is the microenvironment to blame? Cancer Lett., 2013, 341(1), 97-104.
[http://dx.doi.org/10.1016/j.canlet.2012.10.015] [PMID: 23089245]
[119]
Hanahan, D.; Coussens, L.M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell, 2012, 21(3), 309-322.
[http://dx.doi.org/10.1016/j.ccr.2012.02.022] [PMID: 22439926]
[120]
Kashyap, M.K.; Amaya-Chanaga, C.I.; Kumar, D.; Simmons, B.; Huser, N.; Gu, Y.; Hallin, M.; Lindquist, K.; Yafawi, R.; Choi, M.Y.; Amine, A.A.; Rassenti, L.Z.; Zhang, C.; Liu, S.H.; Smeal, T.; Fantin, V.R.; Kipps, T.J.; Pernasetti, F.; Castro, J.E. Targeting the CXCR4 pathway using a novel anti-CXCR4 IgG1 antibody (PF-06747143) in chronic lymphocytic leukemia. J. Hematol. Oncol., 2017, 10(1), 112.
[http://dx.doi.org/10.1186/s13045-017-0435-x] [PMID: 28526063]
[121]
Im, J.Y.; Min, W.K.; Park, M.H.; Kim, N.; Lee, J.K.; Jin, H.K.; Choi, J.Y.; Kim, S.Y.; Bae, J.S. AMD3100 improves ovariectomy-induced osteoporosis in mice by facilitating mobilization of hematopoietic stem/progenitor cells. BMB Rep., 2014, 47(8), 439-444.
[http://dx.doi.org/10.5483/BMBRep.2014.47.8.159] [PMID: 24314140]
[122]
Peled, A.; Tavor, S. Role of CXCR4 in the pathogenesis of acute myeloid leukemia. Theranostics, 2013, 3(1), 34-39.
[http://dx.doi.org/10.7150/thno.5150] [PMID: 23382784]
[123]
Feys, L.; Descamps, B.; Vanhove, C.; Vral, A.; Veldeman, L.; Vermeulen, S.; De Wagter, C.; Bracke, M.; De Wever, O. Radiation-induced lung damage promotes breast cancer lung-metastasis through CXCR4 signaling. Oncotarget, 2015, 6(29), 26615-26632.
[http://dx.doi.org/10.18632/oncotarget.5666] [PMID: 26396176]
[124]
Jiang, Z.; Zhou, W.; Guan, S.; Wang, J.; Liang, Y. Contribution of SDF-1α/CXCR4 signaling to brain development and glioma progression. Neurosignals, 2013, 21(3-4), 240-258.
[http://dx.doi.org/10.1159/000339091] [PMID: 22922481]
[125]
Shen, W.; Hu, X.M.; Liu, Y.N.; Han, Y.; Chen, L.P.; Wang, C.C.; Song, C. CXCL12 in astrocytes contributes to bone cancer pain through CXCR4-mediated neuronal sensitization and glial activation in rat spinal cord. J. Neuroinflammation, 2014, 11, 75.
[http://dx.doi.org/10.1186/1742-2094-11-75] [PMID: 24735601]
[126]
Liepelt, A.; Tacke, F. Stromal cell-derived factor-1 (SDF-1) as a target in liver diseases. Am. J. Physiol. Gastrointest. Liver Physiol., 2016, 311(2), G203-G209.
[http://dx.doi.org/10.1152/ajpgi.00193.2016] [PMID: 27313175]
[127]
Luker, K.E.; Lewin, S.A.; Mihalko, L.A.; Schmidt, B.T.; Winkler, J.S.; Coggins, N.L.; Thomas, D.G.; Luker, G.D. Scavenging of CXCL12 by CXCR7 promotes tumor growth and metastasis of CXCR4-positive breast cancer cells. Oncogene, 2012, 31(45), 4750-4758.
[http://dx.doi.org/10.1038/onc.2011.633] [PMID: 22266857]
[128]
Xu, Q.; Wang, Z.; Chen, X.; Duan, W.; Lei, J.; Zong, L.; Li, X.; Sheng, L.; Ma, J.; Han, L.; Li, W.; Zhang, L.; Guo, K.; Ma, Z.; Wu, Z.; Wu, E.; Ma, Q. Stromal-derived factor-1α/CXCL12-CXCR4 chemotactic pathway promotes perineural invasion in pancreatic cancer. Oncotarget, 2015, 6(7), 4717-4732.
[http://dx.doi.org/10.18632/oncotarget.3069] [PMID: 25605248]
[129]
Bartolomé, R.A.; Gálvez, B.G.; Longo, N.; Baleux, F.; Van Muijen, G.N.; Sánchez-Mateos, P.; Arroyo, A.G.; Teixidó, J. Stromal cell-derived factor-1alpha promotes melanoma cell invasion across basement membranes involving stimulation of membrane-type 1 matrix metalloproteinase and Rho GTPase activities. Cancer Res., 2004, 64(7), 2534-2543.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3398] [PMID: 15059909]
[130]
Lin, C.H.; Shih, C.H.; Tseng, C.C.; Yu, C.C.; Tsai, Y.J.; Bien, M.Y.; Chen, B.C. CXCL12 induces connective tissue growth factor expression in human lung fibroblasts through the Rac1/ERK, JNK, and AP-1 pathways. PLoS One, 2014, 9(8)e104746
[http://dx.doi.org/10.1371/journal.pone.0104746] [PMID: 25121739]
[131]
Wald, O.; Izhar, U.; Amir, G.; Kirshberg, S.; Shlomai, Z.; Zamir, G.; Peled, A.; Shapira, O.M. Interaction between neoplastic cells and cancer-associated fibroblasts through the CXCL12/CXCR4 axis: role in non-small cell lung cancer tumor proliferation. J. Thorac. Cardiovasc. Surg., 2011, 141(6), 1503-1512.
[http://dx.doi.org/10.1016/j.jtcvs.2010.11.056] [PMID: 21463876]
[132]
Economidou, F.; Antoniou, K.M.; Soufla, G.; Lasithiotaki, I.; Karagiannis, K.; Lymbouridou, R.; Proklou, A.; Spandidos, D.A.; Siafakas, N.M. Role of VEGF-stromal cell-derived factor-1alpha/CXCL12 axis in pleural effusion of lung cancer. J. Recept. Signal Transduct. Res., 2010, 30(3), 154-160.
[http://dx.doi.org/10.3109/10799891003671147] [PMID: 20196627]
[133]
Wagner, P.L.; Hyjek, E.; Vazquez, M.F.; Meherally, D.; Liu, Y.F.; Chadwick, P.A.; Rengifo, T.; Sica, G.L.; Port, J.L.; Lee, P.C.; Paul, S.; Altorki, N.K.; Saqi, A. CXCL12 and CXCR4 in adenocarcinoma of the lung: association with metastasis and survival. J. Thorac. Cardiovasc. Surg., 2009, 137(3), 615-621.
[http://dx.doi.org/10.1016/j.jtcvs.2008.07.039] [PMID: 19258077]
[134]
Xie, S.; Zeng, W.; Fan, G.; Huang, J.; Kang, G.; Geng, Q.; Cheng, B.; Wang, W.; Dong, P. Effect of CXCL12/CXCR4 on increasing the metastatic potential of non-small cell lung cancer in vitro is inhibited through the downregulation of CXCR4 chemokine receptor expression. Oncol. Lett., 2014, 7(4), 941-947.
[http://dx.doi.org/10.3892/ol.2014.1837] [PMID: 24944647]
[135]
Paratore, S.; Banna, G.L.; D’Arrigo, M.; Saita, S.; Iemmolo, R.; Lucenti, L.; Bellia, D.; Lipari, H.; Buscarino, C.; Cunsolo, R.; Cavallaro, S. CXCR4 and CXCL12 immunoreactivities differentiate primary non-small-cell lung cancer with or without brain metastases. Cancer Biomark., 2011-2012, 10(2), 79-89.
[http://dx.doi.org/10.3233/CBM-2011-0232] [PMID: 22430135]
[136]
Lee, Y.L.; Kuo, W.H.; Lin, C.W.; Chen, W.; Cheng, W.E.; Chen, S.C.; Shih, C.M. Association of genetic polymorphisms of CXCL12/SDF1 gene and its receptor, CXCR4, to the susceptibility and prognosis of non-small cell lung cancer. Lung Cancer, 2011, 73(2), 147-152.
[http://dx.doi.org/10.1016/j.lungcan.2010.12.011] [PMID: 21292343]
[137]
Sterlacci, W.; Saker, S.; Huber, B.; Fiegl, M.; Tzankov, A. Expression of the CXCR4 ligand SDF-1/CXCL12 is prognostically important for adenocarcinoma and large cell carcinoma of the lung. Virchows Arch., 2016, 468(4), 463-471.
[http://dx.doi.org/10.1007/s00428-015-1900-y] [PMID: 26818832]
[138]
Suzuki, M.; Mohamed, S.; Nakajima, T.; Kubo, R.; Tian, L.; Fujiwara, T.; Suzuki, H.; Nagato, K.; Chiyo, M.; Motohashi, S.; Yasufuku, K.; Iyoda, A.; Yoshida, S.; Sekine, Y.; Shibuya, K.; Hiroshima, K.; Nakatani, Y.; Yoshino, I.; Fujisawa, T. Aberrant methylation of CXCL12 in non-small cell lung cancer is associated with an unfavorable prognosis. Int. J. Oncol., 2008, 33(1), 113-119.
[http://dx.doi.org/10.3892/ijo.33.1.113] [PMID: 18575756]
[139]
Katsura, M.; Shoji, F.; Okamoto, T.; Shimamatsu, S.; Hirai, F.; Toyokawa, G.; Morodomi, Y.; Tagawa, T.; Oda, Y.; Maehara, Y. Correlation between CXCR4/CXCR7/CXCL12 chemokine axis expression and prognosis in lymph-node-positive lung cancer patients. Cancer Sci., 2018, 109(1), 154-165.
[http://dx.doi.org/10.1111/cas.13422] [PMID: 29032612]
[140]
Oonakahara, K.; Matsuyama, W.; Higashimoto, I.; Kawabata, M.; Arimura, K.; Osame, M. Stromal-derived factor-1alpha/CXCL12-CXCR 4 axis is involved in the dissemination of NSCLC cells into pleural space. Am. J. Respir. Cell Mol. Biol., 2004, 30(5), 671-677.
[http://dx.doi.org/10.1165/rcmb.2003-0340OC] [PMID: 14672915]
[141]
Terasaki, M.; Sugita, Y.; Arakawa, F.; Okada, Y.; Ohshima, K.; Shigemori, M. CXCL12/CXCR4 signaling in malignant brain tumors: a potential pharmacological therapeutic target. Brain Tumor Pathol., 2011, 28(2), 89-97.
[http://dx.doi.org/10.1007/s10014-010-0013-1] [PMID: 21210239]
[142]
Tang, T.; Xia, Q.J.; Chen, J.B.; Xi, M.R.; Lei, D. Expression of the CXCL12/SDF-1 chemokine receptor CXCR7 in human brain tumours. Asian Pac. J. Cancer Prev., 2012, 13(10), 5281-5286.
[http://dx.doi.org/10.7314/APJCP.2012.13.10.5281] [PMID: 23244149]
[143]
Zhang, W.; Bao, L.; Yang, S.; Qian, Z.; Dong, M.; Yin, L.; Zhao, Q.; Ge, K.; Deng, Z.; Zhang, J.; Qi, F.; An, Z.; Yu, Y.; Wang, Q.; Wu, R.; Fan, F.; Zhang, L.; Chen, X.; Na, Y.; Feng, L.; Liu, L.; Zhu, Y.; Qin, T.; Zhang, S.; Zhang, Y.; Zhang, X.; Wang, J.; Yi, X.; Zou, L.; Xin, H.W.; Ditzel, H.J.; Gao, H.; Zhang, K.; Liu, B.; Cheng, S. Tumor-selective replication herpes simplex virus-based technology significantly improves clinical detection and prognostication of viable circulating tumor cells. Oncotarget, 2016, 7(26), 39768-39783.
[http://dx.doi.org/10.18632/oncotarget.9465] [PMID: 27206795]
[144]
Kowalczuk, O.; Burzykowski, T.; Niklinska, W.E.; Kozlowski, M.; Chyczewski, L.; Niklinski, J. CXCL5 as a potential novel prognostic factor in early stage non-small cell lung cancer: results of a study of expression levels of 23 genes. Tumour Biol., 2014, 35(5), 4619-4628.
[http://dx.doi.org/10.1007/s13277-014-1605-x] [PMID: 24500664]
[145]
Donà, E.; Barry, J.D.; Valentin, G.; Quirin, C.; Khmelinskii, A.; Kunze, A.; Durdu, S.; Newton, L.R.; Fernandez-Minan, A.; Huber, W.; Knop, M.; Gilmour, D. Directional tissue migration through a self-generated chemokine gradient. Nature, 2013, 503(7475), 285-289.
[http://dx.doi.org/10.1038/nature12635] [PMID: 24067609]
[146]
Xin, Q.; Zhang, N.; Yu, H.B.; Zhang, Q.; Cui, Y.F.; Zhang, C.S.; Ma, Z.; Yang, Y.; Liu, W. CXCR7/CXCL12 axis is involved in lymph node and liver metastasis of gastric carcinoma. World J. Gastroenterol., 2017, 23(17), 3053-3065.
[http://dx.doi.org/10.3748/wjg.v23.i17.3053] [PMID: 28533662]
[147]
Wang, H.C.; Li, T.Y.; Chao, Y.J.; Hou, Y.C.; Hsueh, Y.S.; Hsu, K.H.; Shan, Y.S. KIT exon 11 codons 557-558 deletion mutation promotes liver metastasis through the CXCL12/CXCR4 axis in gastrointestinal stromal tumors. Clin. Cancer Res., 2016, 22(14), 3477-3487.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2748] [PMID: 26936919]
[148]
D’Alterio, C.; Nasti, G.; Polimeno, M.; Ottaiano, A.; Conson, M.; Circelli, L.; Botti, G.; Scognamiglio, G.; Santagata, S.; De Divitiis, C.; Nappi, A.; Napolitano, M.; Tatangelo, F.; Pacelli, R.; Izzo, F.; Vuttariello, E.; Botti, G.; Scala, S. CXCR4-CXCL12-CXCR7, TLR2-TLR4, and PD-1/PD-L1 in colorectal cancer liver metastases from neoadjuvant-treated patients. OncoImmunology, 2016, 5(12)e1254313
[http://dx.doi.org/10.1080/2162402X.2016.1254313] [PMID: 28123896]
[149]
Gronthos, S.; Zannettino, A.C. The role of the chemokine CXCL12 in osteoclastogenesis. Trends Endocrinol. Metab., 2007, 18(3), 108-113.
[http://dx.doi.org/10.1016/j.tem.2007.02.002] [PMID: 17320408]
[150]
Conley-LaComb, M.K.; Semaan, L.; Singareddy, R.; Li, Y.; Heath, E.I.; Kim, S.; Cher, M.L.; Chinni, S.R. Pharmacological targeting of CXCL12/CXCR4 signaling in prostate cancer bone metastasis. Mol. Cancer, 2016, 15(1), 68.
[http://dx.doi.org/10.1186/s12943-016-0552-0] [PMID: 27809841]
[151]
Cioffi, M.; Trabulo, S.M.; Vallespinos, M.; Raj, D.; Kheir, T.B.; Lin, M.L.; Begum, J.; Baker, A.M.; Amgheib, A.; Saif, J.; Perez, M.; Soriano, J.; Desco, M.; Gomez-Gaviro, M.V.; Cusso, L.; Megias, D.; Aicher, A.; Heeschen, C. The miR-25-93-106b cluster regulates tumor metastasis and immune evasion via modulation of CXCL12 and PD-L1. Oncotarget, 2017, 8(13), 21609-21625.
[http://dx.doi.org/10.18632/oncotarget.15450] [PMID: 28423491]
[152]
Subik, K.; Shu, L.; Wu, C.; Liang, Q.; Hicks, D.; Boyce, B.; Schiffhauer, L.; Chen, D.; Chen, C.; Tang, P.; Xing, L. The ubiquitin E3 ligase WWP1 decreases CXCL12-mediated MDA231 breast cancer cell migration and bone metastasis. Bone, 2012, 50(4), 813-823.
[http://dx.doi.org/10.1016/j.bone.2011.12.022] [PMID: 22266093]
[153]
Zhao, B.C.; Wang, Z.J.; Mao, W.Z.; Ma, H.C.; Han, J.G.; Zhao, B.; Xu, H.M. CXCR4/SDF-1 axis is involved in lymph node metastasis of gastric carcinoma. World J. Gastroenterol., 2011, 17(19), 2389-2396.
[http://dx.doi.org/10.3748/wjg.v17.i19.2389] [PMID: 21633638]
[154]
Ying, J.; Xu, Q.; Zhang, G.; Liu, B.; Zhu, L. The expression of CXCL12 and CXCR4 in gastric cancer and their correlation to lymph node metastasis. Med. Oncol., 2012, 29(3), 1716-1722.
[http://dx.doi.org/10.1007/s12032-011-9990-0] [PMID: 21630055]
[155]
Wu, W.; Qian, L.; Chen, X.; Ding, B. Prognostic significance of CXCL12, CXCR4, and CXCR7 in patients with breast cancer. Int. J. Clin. Exp. Pathol., 2015, 8(10), 13217-13224.
[PMID: 26722521]
[156]
Fridrichova, I.; Smolkova, B.; Kajabova, V.; Zmetakova, I.; Krivulcik, T.; Mego, M.; Cierna, Z.; Karaba, M.; Benca, J.; Pindak, D.; Bohac, M.; Repiska, V.; Danihel, L. CXCL12 and ADAM23 hypermethylation are associated with advanced breast cancers. Transl. Res., 2015, 165(6), 717-730.
[http://dx.doi.org/10.1016/j.trsl.2014.12.006] [PMID: 25620615]
[157]
Sasaki, K.; Natsugoe, S.; Ishigami, S.; Matsumoto, M.; Okumura, H.; Setoyama, T.; Uchikado, Y.; Kita, Y.; Tamotsu, K.; Sakurai, T.; Owaki, T.; Aikou, T. Expression of CXCL12 and its receptor CXCR4 correlates with lymph node metastasis in submucosal esophageal cancer. J. Surg. Oncol., 2008, 97(5), 433-438.
[http://dx.doi.org/10.1002/jso.20976] [PMID: 18176915]
[158]
Liu, H.; Pan, Z.; Li, A.; Fu, S.; Lei, Y.; Sun, H.; Wu, M.; Zhou, W. Roles of chemokine receptor 4 (CXCR4) and chemokine ligand 12 (CXCL12) in metastasis of hepatocellular carcinoma cells. Cell. Mol. Immunol., 2008, 5(5), 373-378.
[http://dx.doi.org/10.1038/cmi.2008.46] [PMID: 18954561]
[159]
Lv, Z.D.; Kong, B.; Liu, X.P.; Dong, Q.; Niu, H.T.; Wang, Y.H.; Li, F.N.; Wang, H.B. CXCL12 chemokine expression suppresses human breast cancer growth and metastasis in vitro and in vivo. Int. J. Clin. Exp. Pathol., 2014, 7(10), 6671-6678.
[PMID: 25400746]
[160]
Zhi, Y.; Chen, J.; Zhang, S.; Chang, X.; Ma, J.; Dai, D. Down-regulation of CXCL12 by DNA hypermethylation and its involvement in gastric cancer metastatic progression. Dig. Dis. Sci., 2012, 57(3), 650-659.
[http://dx.doi.org/10.1007/s10620-011-1922-5] [PMID: 21960286]
[161]
Yamada, K.; Maishi, N.; Akiyama, K.; Towfik Alam, M.; Ohga, N.; Kawamoto, T.; Shindoh, M.; Takahashi, N.; Kamiyama, T.; Hida, Y.; Taketomi, A.; Hida, K. CXCL12-CXCR7 axis is important for tumor endothelial cell angiogenic property. Int. J. Cancer, 2015, 137(12), 2825-2836.
[http://dx.doi.org/10.1002/ijc.29655] [PMID: 26100110]
[162]
Zhong, C.; Wang, J.; Li, B.; Xiang, H.; Ultsch, M.; Coons, M.; Wong, T.; Chiang, N.Y.; Clark, S.; Clark, R.; Quintana, L.; Gribling, P.; Suto, E.; Barck, K.; Corpuz, R.; Yao, J.; Takkar, R.; Lee, W.P.; Damico-Beyer, L.A.; Carano, R.D.; Adams, C.; Kelley, R.F.; Wang, W.; Ferrara, N. Development and preclinical characterization of a humanized antibody targeting CXCL12. Clin. Cancer Res., 2013, 19(16), 4433-4445.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0943] [PMID: 23812669]
[163]
Takekoshi, T.; Ziarek, J.J.; Volkman, B.F.; Hwang, S.T. A locked, dimeric CXCL12 variant effectively inhibits pulmonary metastasis of CXCR4-expressing melanoma cells due to enhanced serum stability. Mol. Cancer Ther., 2012, 11(11), 2516-2525.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0494] [PMID: 22869557]
[164]
Goffart, N.; Kroonen, J.; Di Valentin, E.; Dedobbeleer, M.; Denne, A.; Martinive, P.; Rogister, B. Adult mouse subventricular zones stimulate glioblastoma stem cells specific invasion through CXCL12/CXCR4 signaling. Neuro-oncol., 2015, 17(1), 81-94.
[http://dx.doi.org/10.1093/neuonc/nou144] [PMID: 25085362]
[165]
O’Boyle, G.; Swidenbank, I.; Marshall, H.; Barker, C.E.; Armstrong, J.; White, S.A.; Fricker, S.P.; Plummer, R.; Wright, M.; Lovat, P.E. Inhibition of CXCR4-CXCL12 chemotaxis in melanoma by AMD11070. Br. J. Cancer, 2013, 108(8), 1634-1640.
[http://dx.doi.org/10.1038/bjc.2013.124] [PMID: 23538388]
[166]
Kim, S.Y.; Lee, C.H.; Midura, B.V.; Yeung, C.; Mendoza, A.; Hong, S.H.; Ren, L.; Wong, D.; Korz, W.; Merzouk, A.; Salari, H.; Zhang, H.; Hwang, S.T.; Khanna, C.; Helman, L.J. Inhibition of the CXCR4/CXCL12 chemokine pathway reduces the development of murine pulmonary metastases. Clin. Exp. Metastasis, 2008, 25(3), 201-211.
[http://dx.doi.org/10.1007/s10585-007-9133-3] [PMID: 18071913]
[167]
Unzueta, U.; Céspedes, M.V.; Ferrer-Miralles, N.; Casanova, I.; Cedano, J.; Corchero, J.L.; Domingo-Espín, J.; Villaverde, A.; Mangues, R.; Vázquez, E. Intracellular CXCR4+ cell targeting with T22-empowered protein-only nanoparticles. Int. J. Nanomedicine, 2012, 7, 4533-4544.
[http://dx.doi.org/ 10.2147/ijn.s34450] [PMID: 22923991]
[168]
Platt, D.; Amara, S.; Mehta, T.; Vercuyssee, K.; Myles, E.L.; Johnson, T.; Tiriveedhi, V. Violacein inhibits matrix metalloproteinase mediated CXCR4 expression: potential anti-tumor effect in cancer invasion and metastasis. Biochem. Biophys. Res. Commun., 2014, 455(1-2), 107-112.
[http://dx.doi.org/10.1016/j.bbrc.2014.10.124] [PMID: 25450700]
[169]
Ma, L.; Qiao, H.; He, C.; Yang, Q.; Cheung, C.H.; Kanwar, J.R.; Sun, X. Modulating the interaction of CXCR4 and CXCL12 by low-molecular-weight heparin inhibits hepatic metastasis of colon cancer. Invest. New Drugs, 2012, 30(2), 508-517.
[http://dx.doi.org/10.1007/s10637-010-9578-0] [PMID: 21080209]
[170]
Zhong, G.X.; Gong, Y.; Yu, C.J.; Wu, S.F.; Ma, Q.P.; Wang, Y.; Ren, J.; Zhang, X.C.; Yang, W.H.; Zhu, W. Significantly inhibitory effects of low molecular weight heparin (Fraxiparine) on the motility of lung cancer cells and its related mechanism. Tumour Biol., 2015, 36(6), 4689-4697.
[http://dx.doi.org/10.1007/s13277-015-3117-8] [PMID: 25619477]
[171]
Miao, L.; Li, J.; Liu, Q.; Feng, R.; Das, M.; Lin, C.M.; Goodwin, T.J.; Dorosheva, O.; Liu, R.; Huang, L. Transient and local expression of chemokine and immune checkpoint traps to treat pancreatic cancer. ACS Nano, 2017, 11(9), 8690-8706.
[http://dx.doi.org/10.1021/acsnano.7b01786] [PMID: 28809532]
[172]
Zboralski, D.; Hoehlig, K.; Eulberg, D.; Frömming, A.; Vater, A. Increasing tumor-infiltrating T cells through inhibition of CXCL12 with NOX-A12 synergizes with PD-1 blockade. Cancer Immunol. Res., 2017, 5(11), 950-956.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0303] [PMID: 28963140]
[173]
Zeng, Y.; Li, B.; Liang, Y.; Reeves, P.M.; Qu, X.; Ran, C.; Liu, Q.; Callahan, M.V.; Sluder, A.E.; Gelfand, J.A.; Chen, H.; Poznansky, M.C. Dual blockade of CXCL12-CXCR4 and PD-1-PD-L1 pathways prolongs survival of ovarian tumor-bearing mice by prevention of immunosuppression in the tumor microenvironment. FASEB J., 2019, 33(5), 6596-6608.
[http://dx.doi.org/10.1096/fj.201802067RR] [PMID: 30802149]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy