Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Herbal Medicine of the 21st Century: A Focus on the Chemistry, Pharmacokinetics and Toxicity of Five Widely Advocated Phytotherapies

Author(s): S. Suroowan and M.F. Mahomoodally*

Volume 19, Issue 29, 2019

Page: [2718 - 2738] Pages: 21

DOI: 10.2174/1568026619666191112121330

Price: $65

Abstract

Widely advocated for their health benefits worldwide, herbal medicines (HMs) have evolved into a billion dollar generating industry. Much is known regarding their wellness inducing properties, prophylactic and therapeutic benefits for the relief of both minor to chronic ailment conditions given their long-standing use among various cultures worldwide. On the other hand, their equally meaningful chemistry, pharmacokinetic profile in humans, interaction and toxicity profile have been poorly researched and documented. Consequently, this review is an attempt to highlight the health benefits, pharmacokinetics, interaction, and toxicity profile of five globally famous HMs. A systematic literature search was conducted by browsing major scientific databases such as Bentham Science, SciFinder, ScienceDirect, PubMed, Google Scholar and EBSCO to include 196 articles. In general, ginsenosides, glycyrrhizin and curcumin demonstrate low bioavailability when orally administered. Ginkgo biloba L. induces both CYP3A4 and CYP2C9 and alters the AUC and Cmax of conventional medications including midazolam, tolbutamide, lopinavir and nifedipine. Ginsenosides Re stimulates CYP2C9, decreasing the anticoagulant activity of warfarin. Camellia sinensis (L.) Kuntze increases the bioavailability of buspirone and is rich in vitamin K thereby inhibiting the activity of anticoagulant agents. Glycyrrhiza glabra L. displaces serum bound cardiovascular drugs such as diltiazem, nifedipine and verapamil. Herbal medicine can directly affect hepatocytes leading to hepatoxicity based on both intrinsic and extrinsic factors. The potentiation of the activity of concurrently administered conventional agents is potentially lethal especially if the drugs bear dangerous side effects and have a low therapeutic window.

Keywords: Pharmacokinetics, Metabolism, Narrow therapeutic window, Herb-drug interactions, Phytoconstituents, Toxicity.

« Previous
Graphical Abstract
[1]
Biggs, R.D. edicine, surgery, and public health in ancient mesopotamia. Civilizations of the Ancient near East, 1995, 3, 1911-1924.
[2]
Aoelsoud, N.H. Herbal medicine in ancient Egypt. J. Med. Plants. Res., 2010, 4(2), 082-086.
[3]
O’Brien, K.A.; Xue, C.C. The Theoretical Framework of Chinese Medicine. A Comprehensive Guide to Chinese Medicine, 2003, 47-84.
[4]
Dar, R.A.; Shahnawaz, M.; Qazi, P.H. General overview of medicinal plants: A review. J. Phytopharmacol., 2017, 6(6), 349-351.
[5]
Obodozie, O.O. Pharmacokinetics and Drug Interactions of Herbal Medicines: A Missing Critical Step in the Phytomedicine/Drug Development Process; Readings in Advanced Pharmacokinetics - Theory, Methods and Applications, 2012.
[http://dx.doi.org/10.5772/33699]
[6]
Reid, A.M.; Oosthuizen, C.B.; Fibrich, B.D.; Twilley, D.; Lambrechts, I.A.; de Canha, M.N.; Rademan, S.; Lall, N. Traditional medicine: the ancient roots of modern practice. In:Medicinal Plants for Holistic Health and Well-Being; Academic Press: Cambridge, 2018, pp. 1-11.
[http://dx.doi.org/10.1016/B978-0-12-812475-8.00001-9]
[7]
Jamshidi-Kia, F.; Lorigooini, Z.; Amini-Khoei, H. Medicinal plants: Past history and future perspective. J. Herbmed. Pharmacol., 2018, 7(1)
[http://dx.doi.org/10.15171/jhp.2018.01]
[8]
Abebe, F.B. Ethnobotanical studies of medicinal plants used to treat human and livestock ailments in southern nations, nationalities and peoples’ region, ethiopia: a systematic review. JPS., 2019, 8(1)
[http://dx.doi.org/10.5539/jps.v8n1p1]
[9]
Ekor, M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol., 2014, 4, 177.
[http://dx.doi.org/10.3389/fphar.2013.00177] [PMID: 24454289]
[10]
Sarvananda, L. Potential uses of ancient herbal preparations against non-communicable diseases. J. Med. Plants. Stud., 2017, 5(5), 142-145.
[11]
Shah, Z.; Shafi, S.; Ali, T. Phytomedicines as potent alternative Anti-microbial naturopathic treatment in Chronic Communicable diseases: A Review. JDDT, 2019, 9(3-s), 952-953.
[http://dx.doi.org/10.22270/jddt.v9i3-s.3071]
[12]
Ifeoma, O.; Oluwakanyinsol, S. Screening of herbal medicines for potential toxicities. In:New Insights into Toxicity and Drug Testing; IntechOpen: London, 2013.
[http://dx.doi.org/10.5772/54493]
[13]
Marcus, D. Traditional medicine: a global perspective. Bull. World Health Organ., 2010, 88, 953-953.
[http://dx.doi.org/10.2471/BlT.10.079822]
[14]
Noleto-Dias, C.; Ward, J.L.; Bellisai, A.; Lomax, C.; Beale, M.H. Salicin-7-sulfate: A new salicinoid from willow and implications for herbal medicine. Fitoterapia, 2018, 127, 166-172.
[http://dx.doi.org/10.1016/j.fitote.2018.02.009] [PMID: 29447984]
[15]
Wangchuk, P. Therapeutic applications of natural products in herbal medicines, biodiscovery programs, and biomedicine. JBAPN, 2018, 8, 1-20.
[http://dx.doi.org/10.1080/22311866.2018.1426495]
[16]
Harvey, A.L. Natural products in drug discovery. Drug Discov. Today, 2008, 13(19-20), 894-901.
[http://dx.doi.org/10.1016/j.drudis.2008.07.004] [PMID: 18691670]
[17]
Winston, D.; Maimes, S. Adaptogens: Herbs for strength, stamina and stress relief; Inner Traditions: Vermont, 2007.
[18]
Cheng, Z.F.; Zhen, C. The Cheng Zhi-Fan Collectanea of Medical History., 2004.
[19]
Kennedy, D.O.; Wightman, E.L. Herbal extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain function. Adv. Nutr., 2011, 2(1), 32-50.
[http://dx.doi.org/10.3945/an.110.000117] [PMID: 22211188]
[20]
Dwivedi, S.K.; Dey, S. Medicinal herbs: a potential source of toxic metal exposure for man and animals in India. Arch. Environ. Health, 2002, 57(3), 229-231.
[http://dx.doi.org/10.1080/00039890209602941] [PMID: 12507176]
[21]
Amster, E.; Tiwary, A.; Schenker, M.B. Case report: potential arsenic toxicosis secondary to herbal kelp supplement. Environ. Health Perspect., 2007, 115(4), 606-608.
[http://dx.doi.org/10.1289/ehp.9495] [PMID: 17450231]
[22]
Alolga, R.N.; Fan, Y.; Zhang, G.; Li, J.; Zhao, Y-J.; Lelu Kakila, J.; Chen, Y.; Li, P.; Qi, L-W. Pharmacokinetics of a multicomponent herbal preparation in healthy Chinese and African volunteers. Sci. Rep., 2015, 5, 12961.
[http://dx.doi.org/10.1038/srep12961] [PMID: 26268432]
[23]
Chen, X.W.; Sneed, B.; Zhou, S.F. Pharmacokinetic profiles of anticancer herbal medicines in humans and the clinical implications. Curr. Med. Chem., 2011, 18, 3190-3210.
[http://dx.doi.org/10.2174/092986711796391624] [PMID: 21671861]
[24]
Fasinu, P.S.; Bouic, P.J.; Rosenkranz, B. An overview of the evidence and mechanisms of herb-drug interactions. Front. Pharmacol., 2012, 3, 69.
[http://dx.doi.org/10.3389/fphar.2012.00069] [PMID: 22557968]
[25]
Yu, K.; Chen, F.; Li, C. Absorption, disposition, and pharmacokinetics of saponins from Chinese medicinal herbs: what do we know and what do we need to know more? Curr. Drug Metab., 2012, 13(5), 577-598.
[http://dx.doi.org/10.2174/1389200211209050577] [PMID: 22292787]
[26]
Lee, J-Y. Pharmacodynamic and pharmacokinetic interactions between herbs andwestern drugs. Orient. Pharm. Exp. Med., 2008, 8, 207-214.
[http://dx.doi.org/10.3742/OPEM.2008.8.3.207]
[27]
Oga, E.F.; Sekine, S.; Shitara, Y.; Horie, T. Pharmacokinetic herb-drug interactions: insight into mechanisms and consequences. Eur. J. Drug Metab. Pharmacokinet., 2016, 41(2), 93-108.
[http://dx.doi.org/10.1007/s13318-015-0296-z] [PMID: 26311243]
[28]
Verma, A.; Gupta, A.K.; Kumar, A.; Khan, P.K. Cytogenetic toxicity of Aloe vera (a medicinal plant). Drug Chem. Toxicol., 2012, 35(1), 32-35.
[http://dx.doi.org/10.3109/01480545.2011.567273] [PMID: 21830935]
[29]
Woolf, A.D.; Watson, W.A.; Smolinske, S.; Litovitz, T. The severity of toxic reactions to ephedra: comparisons to other botanical products and national trends from 1993-2002. Clin. Toxicol. (Phila.), 2005, 43(5), 347-355.
[http://dx.doi.org/10.1081/CLT-200066075] [PMID: 16235509]
[30]
Sierpina, V.S.; Wollschlaeger, B.; Blumenthal, M. Ginkgo biloba. Am. Fam. Physician, 2003, 68(5), 923-926.
[PMID: 13678141]
[31]
Celik, M.M.; Karakus, A.; Zeren, C.; Demir, M.; Bayarogullari, H.; Duru, M.; Al, M. Licorice induced hypokalemia, edema, and thrombocytopenia. Hum. Exp. Toxicol., 2012, 31(12), 1295-1298.
[http://dx.doi.org/10.1177/0960327112446843] [PMID: 22653692]
[32]
Gregoretti, B.; Stebel, M.; Candussio, L.; Crivellato, E.; Bartoli, F.; Decorti, G. Toxicity of Hypericum perforatum (St. John’s wort) administered during pregnancy and lactation in rats. Toxicol. Appl. Pharmacol., 2004, 200(3), 201-205.
[http://dx.doi.org/10.1016/j.taap.2004.04.020] [PMID: 15504456]
[33]
Arteaga, S.; Andrade-Cetto, A.; Cárdenas, R. Larrea tridentata (Creosote bush), an abundant plant of Mexican and US-American deserts and its metabolite nordihydroguaiaretic acid. J. Ethnopharmacol., 2005, 98(3), 231-239.
[http://dx.doi.org/10.1016/j.jep.2005.02.002] [PMID: 15814253]
[34]
Chan, P.; Fu, P.P. Toxicity of Panax genseng - an herbal medicine and dietary supplement. JFDA, 2007, 15, 416-427.
[35]
Gow, P.J.; Sood, S.; Angus, P.W. Serum phosphate as a predictor of outcome in acetaminophen-induced fulminant hepatic failure. Hepatology, 2003, 37(3), 711-712.
[http://dx.doi.org/10.1053/jhep.2003.50040] [PMID: 12601369]
[36]
Wang, B. -.Q. Salvia Miltiorrhiza: Chemical and Pharmacological Review of a Medicinal Plant. JMPR, 2010, 4, 2813-2820.
[37]
Barbosa-Ferreira, M.; Dagli, M.L.Z.; Maiorka, P.C.; Górniak, S.L. Sub-acute intoxication by Senna occidentalis seeds in rats. Food Chem. Toxicol., 2005, 43(4), 497-503.
[http://dx.doi.org/10.1016/j.fct.2004.11.017] [PMID: 15721195]
[38]
Stickel, F.; Seitz, H.K. The efficacy and safety of comfrey. Public Health Nutr., 2000, 3(4A), 501-508.
[http://dx.doi.org/10.1017/S1368980000000586] [PMID: 11276298]
[39]
Matthews, M.K. Jr Association of Ginkgo biloba with intracerebral hemorrhage. Neurology, 1998, 50(6), 1933-1934.
[http://dx.doi.org/10.1212/WNL.50.6.1933] [PMID: 9633781]
[40]
Huang, S.H.; Duke, R.K.; Chebib, M.; Sasaki, K.; Wada, K.; Johnston, G.A.R. Ginkgolides, diterpene trilactones of Ginkgo biloba, as antagonists at recombinant α1β2γ2L GABAA receptors. Eur. J. Pharmacol., 2004, 494(2-3), 131-138.
[http://dx.doi.org/10.1016/j.ejphar.2004.04.051] [PMID: 15212966]
[41]
Westendorf, J. Anthranoid Derivatives — General Discussion. In: Adverse Effects of Herbal Drugs; Springerlink: New York, 1993; pp. 105-118.
[http://dx.doi.org/10.1007/978-3-642-48906-8_3]
[42]
Fugh-Berman, A. Herb-drug interactions. Lancet, 2000, 355(9198), 134-138.
[http://dx.doi.org/10.1016/S0140-6736(99)06457-0] [PMID: 10675182]
[43]
Chan, K.; Cheung, L. Examples of interactions between Chinese herbal medicinal products and orthodox drugs. In: Interactions between Chinese Herbal Medicinal Products and Orthodox Drugs, 1st ed; Routledge: Abingdon, 2000; pp. 57-97.
[44]
Zhou, S.; Lim, L.Y.; Chowbay, B. Herbal modulation of P-glycoprotein. Drug Metab. Rev., 2004, 36(1), 57-104.
[http://dx.doi.org/10.1081/DMR-120028427] [PMID: 15072439]
[45]
Horn, J.R.; Hansten, P.D. Drug interactions: answers to frequently asked questions. Pharm. Times, 2002, 68, 67-78.
[46]
Manzi, S.F.; Shannon, M. Drug Interactions—A Review. Clin. Pediatr. Emerg. Med., 2005, 6, 93-102.
[http://dx.doi.org/10.1016/j.cpem.2005.04.006]
[47]
Ioannides, C. Pharmacokinetic interactions between herbal remedies and medicinal drugs. Xenobiotica, 2002, 32(6), 451-478.
[http://dx.doi.org/10.1080/00498250210124147] [PMID: 12160480]
[48]
Clement, Y.N.; Williams, A.F.; Khan, K.; Bernard, T.; Bhola, S.; Fortuné, M.; Medupe, O.; Nagee, K.; Seaforth, C.E. A gap between acceptance and knowledge of herbal remedies by physicians: the need for educational intervention. BMC Complement. Altern. Med., 2005, 5, 20.
[http://dx.doi.org/10.1186/1472-6882-5-20] [PMID: 16297236]
[49]
Fakeye, T.O.; Onyemadu, O. Evaluation of knowledge base of hospital pharmacists and physicians on herbal medicines in Southwestern Nigeria. Pharm. Pract. (Granada), 2008, 6(2), 88-92.
[http://dx.doi.org/10.4321/S1886-36552008000200005] [PMID: 25157286]
[50]
de Sousa, S.A.; de Sousa, S.A.; Pascoa, H.; da Conceição, E.C.; Alves, S.F.; Diniz, D.G.A.; de Paula, J.R.; Bara, M.T.F. Dissolution Test of Herbal Medicines Containing Paullinia Cupana: Validation of Methods for Quantification and Assessment of Dissolution. Braz. J. Pharm. Sci., 2011, 47, 269-277.
[http://dx.doi.org/10.1590/S1984-82502011000200008]
[51]
Isah, T. Rethinking Ginkgo biloba L.: Medicinal uses and conservation. Pharmacogn. Rev., 2015, 9(18), 140-148.
[http://dx.doi.org/10.4103/0973-7847.162137] [PMID: 26392712]
[52]
Singh, B.; Kaur, P. Gopichand; Singh, R.D.; Ahuja, P.S. Biology and chemistry of Ginkgo biloba. Fitoterapia, 2008, 79(6), 401-418.
[http://dx.doi.org/10.1016/j.fitote.2008.05.007] [PMID: 18639617]
[53]
Diamond, B.J.; Mondragon, A. Ginkgo Biloba; Complementary and Integrative Treatments in Psychiatric Practice, 2017, p. 149.
[54]
Shu, Z.; Hussain Sh, A.; Shahen, M.; Wang, H.; Alagawany, M.; Abd El-Hac, M.E.; Ali Kalhor, S.; Rashid, M.; Ali Shar, P. Pharmacological uses of Ginkgo biloba extracts for cardiovascular disease and coronary heart diseases. Int. J. Pharmacol., 2019, 15, 1-9.
[http://dx.doi.org/10.3923/ijp.2019.1.9]
[55]
Chassagne, F.; Huang, X.; Lyles, J.T.; Quave, C.L. Validation of a 16th century traditional chinese medicine use of Ginkgo biloba as a topical antimicrobial. Front. Microbiol., 2019, 10, 775.
[http://dx.doi.org/10.3389/fmicb.2019.00775] [PMID: 31057504]
[56]
Gertz, H-J.; Kiefer, M. Review about Ginkgo biloba special extract EGb 761 (Ginkgo). Curr. Pharm. Des., 2004, 10(3), 261-264.
[http://dx.doi.org/10.2174/1381612043386437] [PMID: 14754386]
[57]
Weinmann, S.; Roll, S.; Schwarzbach, C.; Vauth, C.; Willich, S.N. Effects of Ginkgo biloba in dementia: systematic review and meta-analysis. BMC Geriatr., 2010, 10, 14.
[http://dx.doi.org/10.1186/1471-2318-10-14] [PMID: 20236541]
[58]
Wójcicki, J.; Gawrońska-Szklarz, B.; Bieganowski, W.; Patalan, M.; Smulski, H.K.; Samochowiec, L.; Zakrzewski, J. Comparative pharmacokinetics and bioavailability of flavonoid glycosides of Ginkgo biloba after a single oral administration of three formulations to healthy volunteers. Mater. Med. Pol., 1995, 27(4), 141-146.
[PMID: 9000837]
[59]
Drago, F.; Floriddia, M.L.; Cro, M.; Giuffrida, S. Pharmacokinetics and bioavailability of a Ginkgo biloba extract. J. Ocul. Pharmacol. Ther., 2002, 18(2), 197-202.
[http://dx.doi.org/10.1089/108076802317373941] [PMID: 12002672]
[60]
Wang, F.M.; Yao, T.W.; Zeng, S. Determination of quercetin and kaempferol in human urine after orally administrated tablet of Ginkgo biloba extract by HPLC. J. Pharm. Biomed. Anal., 2003, 33(2), 317-321.
[http://dx.doi.org/10.1016/S0731-7085(03)00255-3] [PMID: 12972097]
[61]
Ohnishi, N.; Kusuhara, M.; Yoshioka, M.; Kuroda, K.; Soga, A.; Nishikawa, F.; Koishi, T.; Nakagawa, M.; Hori, S.; Matsumoto, T.; Yamashita, M.; Ohta, S.; Takara, K.; Yokoyama, T. Studies on interactions between functional foods or dietary supplements and medicines. I. Effects of Ginkgo biloba leaf extract on the pharmacokinetics of diltiazem in rats. Biol. Pharm. Bull., 2003, 26(9), 1315-1320.
[http://dx.doi.org/10.1248/bpb.26.1315] [PMID: 12951478]
[62]
Hellum, B.H.; Nilsen, O.G. In vitro inhibition of CYP3A4 metabolism and P-glycoprotein-mediated transport by trade herbal products. Basic Clin. Pharmacol. Toxicol., 2008, 102(5), 466-475.
[http://dx.doi.org/10.1111/j.1742-7843.2008.00227.x] [PMID: 18331390]
[63]
Tang, J.; Sun, J.; Zhang, Y.; Li, L.; Cui, F.; He, Z. Herb-drug interactions: Effect of Ginkgo biloba extract on the pharmacokinetics of theophylline in rats. Food Chem. Toxicol., 2007, 45(12), 2441-2445.
[http://dx.doi.org/10.1016/j.fct.2007.05.023] [PMID: 17681658]
[64]
Uchida, S.; Yamada, H.; Li, X.D.; Maruyama, S.; Ohmori, Y.; Oki, T.; Watanabe, H.; Umegaki, K.; Ohashi, K.; Yamada, S. Effects of Ginkgo biloba extract on pharmacokinetics and pharmacodynamics of tolbutamide and midazolam in healthy volunteers. J. Clin. Pharmacol., 2006, 46(11), 1290-1298.
[http://dx.doi.org/10.1177/0091270006292628] [PMID: 17050793]
[65]
Robertson, S.M.; Davey, R.T.; Voell, J.; Formentini, E.; Alfaro, R.M.; Penzak, S.R. Effect of Ginkgo biloba extract on lopinavir, midazolam and fexofenadine pharmacokinetics in healthy subjects. Curr. Med. Res. Opin., 2008, 24(2), 591-599.
[http://dx.doi.org/10.1185/030079908X260871] [PMID: 18205997]
[66]
Na, D.H.; Ji, H.Y.; Park, E.J.; Kim, M.S.; Liu, K-H.; Lee, H.S. Evaluation of metabolism-mediated herb-drug interactions. Arch. Pharm. Res., 2011, 34(11), 1829-1842.
[http://dx.doi.org/10.1007/s12272-011-1105-0] [PMID: 22139684]
[67]
Fan, L.; Tao, G-Y.; Wang, G.; Chen, Y.; Zhang, W.; He, Y-J.; Li, Q.; Lei, H-P.; Jiang, F.; Hu, D-L.; Huang, Y-F.; Zhou, H-H. Effects of Ginkgo biloba extract ingestion on the pharmacokinetics of talinolol in healthy Chinese volunteers. Ann. Pharmacother., 2009, 43(5), 944-949.
[http://dx.doi.org/10.1345/aph.1L656] [PMID: 19401473]
[68]
Xiang, X.Y.; Shang, H.C.; Gao, X.M.; Zhang, B.L. A comparison of the ancient use of ginseng in traditional Chinese medicine with modern pharmacological experiments and clinical trials. Phytother. Res., 2008, 22(7), 851-858.
[http://dx.doi.org/10.1002/ptr.2384] [PMID: 18567057]
[69]
Liu, C.X.; Xiao, P.G. Recent advances on ginseng research in China. J. Ethnopharmacol., 1992, 36(1), 27-38.
[http://dx.doi.org/10.1016/0378-8741(92)90057-X] [PMID: 1501490]
[70]
Blumenthal, M. Herb Sales down 7.4 Percent in Mainstream Market - Garlic Is Top-Selling Herb; Herb Combinations See Increase, 2005.
[71]
Bahrke, M.S.; Morgan, W.R. Evaluation of the ergogenic properties of ginseng: an update. Sports Med., 2000, 29(2), 113-133.
[http://dx.doi.org/10.2165/00007256-200029020-00004] [PMID: 10701714]
[72]
Xue, J.F.; Liu, Z.J.; Hu, J.F.; Chen, H.; Zhang, J.T.; Chen, N.H. Ginsenoside Rb1 promotes neurotransmitter release by modulating phosphorylation of synapsins through a cAMP-dependent protein kinase pathway. Brain Res., 2006, 1106(1), 91-98.
[http://dx.doi.org/10.1016/j.brainres.2006.05.106] [PMID: 16836988]
[73]
Lee, H.; Gonzalez, F.J.; Yoon, M. Ginsenoside Rf, a component of ginseng, regulates lipoprotein metabolism through peroxisome proliferator-activated receptor α. Biochem. Biophys. Res. Commun., 2006, 339(1), 196-203.
[http://dx.doi.org/10.1016/j.bbrc.2005.10.197] [PMID: 16297877]
[74]
Rivera, E.; Ekholm Pettersson, F.; Inganäs, M.; Paulie, S.; Grönvik, K.O. The Rb1 fraction of ginseng elicits a balanced Th1 and Th2 immune response. Vaccine, 2005, 23(46-47), 5411-5419.
[http://dx.doi.org/10.1016/j.vaccine.2005.04.007] [PMID: 16286158]
[75]
Lim, J.H.; Wen, T.C.; Matsuda, S.; Tanaka, J.; Maeda, N.; Peng, H.; Aburaya, J.; Ishihara, K.; Sakanaka, M. Protection of ischemic hippocampal neurons by ginsenoside Rb1, a main ingredient of ginseng root. Neurosci. Res., 1997, 28(3), 191-200.
[http://dx.doi.org/10.1016/S0168-0102(97)00041-2] [PMID: 9237267]
[76]
Park, K-H.; Shin, H-J.; Song, Y-B.; Hyun, H-C.; Cho, H-J.; Ham, H-S.; Yoo, Y-B.; Ko, Y-C.; Jun, W-T.; Park, H-J. Possible role of ginsenoside Rb1 on regulation of rat liver triglycerides. Biol. Pharm. Bull., 2002, 25(4), 457-460.
[http://dx.doi.org/10.1248/bpb.25.457] [PMID: 11995924]
[77]
Cho, J.; Park, W.; Lee, S.; Ahn, W.; Lee, Y. Ginsenoside-Rb1 fromPanax Ginseng C.A. MeyerActivates Estrogen Receptor-α and -β. Independent of Ligand Binding. J. Clin. Endocrinol. Metab., 2004, 89, 3510-3515.
[http://dx.doi.org/10.1210/jc.2003-031823] [PMID: 15240639]
[78]
Jeong, C.S.; Hyun, J.E.; Kim, Y.S.; Lee, E-S. Ginsenoside Rb1: the anti-ulcer constituent from the head of Panax ginseng. Arch. Pharm. Res., 2003, 26(11), 906-911.
[http://dx.doi.org/10.1007/BF02980198] [PMID: 14661855]
[79]
Choi, S. Epidermis proliferative effect of the Panax ginseng ginsenoside Rb2. Arch. Pharm. Res., 2002, 25(1), 71-76.
[http://dx.doi.org/10.1007/BF02975265] [PMID: 11885696]
[80]
Lee, Y.J.; Jin, Y.R.; Lim, W.C.; Ji, S.M.; Cho, J.Y.; Ban, J.J.; Lee, S.K. Ginsenoside Rc and Re stimulate c-fos expression in MCF-7 human breast carcinoma cells. Arch. Pharm. Res., 2003, 26(1), 53-57.
[http://dx.doi.org/10.1007/BF03179932] [PMID: 12568359]
[81]
Kim, H.S.; Hwang, S.L.; Oh, S. Ginsenoside Rc and Rg1 differentially modulate NMDA receptor subunit mRNA levels after intracerebroventricular infusion in rats. Neurochem. Res., 2000, 25(8), 1149-1154.
[http://dx.doi.org/10.1023/A:1007634432095] [PMID: 11055754]
[82]
Yokozawa, T.; Satoh, A.; Cho, E.J. Ginsenoside-Rd attenuates oxidative damage related to aging in senescence-accelerated mice. J. Pharm. Pharmacol., 2004, 56(1), 107-113.
[http://dx.doi.org/10.1211/0022357022449] [PMID: 14980007]
[83]
Min, J.K.; Kim, J.H.; Cho, Y.L.; Maeng, Y.S.; Lee, S.J.; Pyun, B.J.; Kim, Y.M.; Park, J.H.; Kwon, Y.G. 20(S)-Ginsenoside Rg3 prevents endothelial cell apoptosis via inhibition of a mitochondrial caspase pathway. Biochem. Biophys. Res. Commun., 2006, 349(3), 987-994.
[http://dx.doi.org/10.1016/j.bbrc.2006.08.129] [PMID: 16962070]
[84]
Yue, P.Y.K.; Wong, D.Y.L.; Wu, P.K.; Leung, P.Y.; Mak, N.K.; Yeung, H.W.; Liu, L.; Cai, Z.; Jiang, Z.H.; Fan, T.P.D.; Wong, R.N.S. The angiosuppressive effects of 20(R)- ginsenoside Rg3. Biochem. Pharmacol., 2006, 72(4), 437-445.
[http://dx.doi.org/10.1016/j.bcp.2006.04.034] [PMID: 16793023]
[85]
Keum, Y.S.; Han, S.S.; Chun, K.S.; Park, K.K.; Lee, S.K.; Surh, Y.K. Inhibitory effects of the ginsenoside Rg3 on phorbol ester-induced cyclooxygenase-2 expression, NF-kappaB activation and tumor promotion. Mutat. Res., 2003, 523-524, 75-85.
[http://dx.doi.org/10.1016/S0027-5107(02)00323-8] [PMID: 12628505]
[86]
Tian, J.; Fu, F.; Geng, M.; Jiang, Y.; Yang, J.; Jiang, W.; Wang, C.; Liu, K. Neuroprotective effect of 20(S)-ginsenoside Rg3 on cerebral ischemia in rats. Neurosci. Lett., 2005, 374(2), 92-97.
[http://dx.doi.org/10.1016/j.neulet.2004.10.030] [PMID: 15644271]
[87]
Mannaa, F.; Abdel-Wahhab, M.A.; Ahmed, H.H.; Park, M.H. Protective role of Panax ginseng extract standardized with ginsenoside Rg3 against acrylamide-induced neurotoxicity in rats. J. Appl. Toxicol., 2006, 26(3), 198-206.
[http://dx.doi.org/10.1002/jat.1128] [PMID: 16389659]
[88]
Kim, N.D.; Kim, E.M.; Kang, K.W.; Cho, M.K.; Choi, S.Y.; Kim, S.G. Ginsenoside Rg3 inhibits phenylephrine-induced vascular contraction through induction of nitric oxide synthase. Br. J. Pharmacol., 2003, 140(4), 661-670.
[http://dx.doi.org/10.1038/sj.bjp.0705490] [PMID: 14534150]
[89]
Zhang, H.; Zhou, Q-M.; Li, X-D.; Xie, Y.; Duan, X.; Min, F-L.; Liu, B.; Yuan, Z-G. Ginsenoside R(e) increases fertile and asthenozoospermic infertile human sperm motility by induction of nitric oxide synthase. Arch. Pharm. Res., 2006, 29(2), 145-151.
[http://dx.doi.org/10.1007/BF02974276] [PMID: 16526279]
[90]
Zhang, H.; Zhou, Q.; Li, X.; Zhao, W.; Wang, Y.; Liu, H.; Li, N. Ginsenoside Re promotes human sperm capacitation through nitric oxide-dependent pathway. Mol. Reprod. Dev., 2007, 74(4), 497-501.
[http://dx.doi.org/10.1002/mrd.20583] [PMID: 17013883]
[91]
Bai, C-X.; Sunami, A.; Namiki, T.; Sawanobori, T.; Furukawa, T. Electrophysiological effects of ginseng and ginsenoside Re in guinea pig ventricular myocytes. Eur. J. Pharmacol., 2003, 476(1-2), 35-44.
[http://dx.doi.org/10.1016/S0014-2999(03)02174-5] [PMID: 12969747]
[92]
Chan, L.Y.; Chiu, P.Y.; Lau, T.K. Embryotoxicity study of ginsenoside Rc and Re in in vitro rat whole embryo culture. Reprod. Toxicol., 2004, 19(1), 131-134.
[http://dx.doi.org/10.1016/j.reprotox.2004.06.001] [PMID: 15336721]
[93]
Ji, Z.N.; Dong, T.T.X.; Ye, W.C.; Choi, R.C.; Lo, C.K.; Tsim, K.W.K. Ginsenoside Re attenuate β-amyloid and serum-free induced neurotoxicity in PC12 cells. J. Ethnopharmacol., 2006, 107(1), 48-52.
[http://dx.doi.org/10.1016/j.jep.2006.02.004] [PMID: 16564145]
[94]
Huang, Y.C.; Chen, C.T.; Chen, S.C.; Lai, P.H.; Liang, H.C.; Chang, Y.; Yu, L.C.; Sung, H.W. A natural compound (ginsenoside Re) isolated from Panax ginseng as a novel angiogenic agent for tissue regeneration. Pharm. Res., 2005, 22(4), 636-646.
[http://dx.doi.org/10.1007/s11095-005-2500-3] [PMID: 15846472]
[95]
Sala, F.; Mulet, J.; Choi, S.; Jung, S.Y.; Nah, S.Y.; Rhim, H.; Valor, L.M.; Criado, M.; Sala, S. Effects of ginsenoside Rg2 on human neuronal nicotinic acetylcholine receptors. J. Pharmacol. Exp. Ther., 2002, 301(3), 1052-1059.
[http://dx.doi.org/10.1124/jpet.301.3.1052] [PMID: 12023537]
[96]
Liu, H.; Yang, J.; Du, F.; Gao, X.; Ma, X.; Huang, Y.; Xu, F.; Niu, W.; Wang, F.; Mao, Y.; Sun, Y.; Lu, T.; Liu, C.; Zhang, B.; Li, C. Absorption and disposition of ginsenosides after oral administration of Panax notoginseng extract to rats. Drug Metab. Dispos., 2009, 37(12), 2290-2298.
[http://dx.doi.org/10.1124/dmd.109.029819] [PMID: 19786509]
[97]
Li, X.; Wang, G.; Sun, J.; Hao, H.; Xiong, Y.; Yan, B.; Zheng, Y.; Sheng, L. Pharmacokinetic and absolute bioavailability study of total panax notoginsenoside, a typical multiple constituent traditional chinese medicine (TCM) in rats. Biol. Pharm. Bull., 2007, 30(5), 847-851.
[http://dx.doi.org/10.1248/bpb.30.847] [PMID: 17473424]
[98]
Odani, T.; Tanizawa, H.; Takino, Y. Studies on the absorption, distribution, excretion and metabolism of ginseng saponins. II. The absorption, distribution and excretion of ginsenoside Rg1 in the rat. Chem. Pharm. Bull. (Tokyo), 1983, 31(1), 292-298.
[http://dx.doi.org/10.1248/cpb.31.292] [PMID: 6850945]
[99]
Odani, T.; Tanizawa, H.; Takino, Y. Studies on the absorption, distribution, excretion and metabolism of ginseng saponins. III. The absorption, distribution and excretion of ginsenoside Rb1 in the rat. Chem. Pharm. Bull. (Tokyo), 1983, 31(3), 1059-1066 b.
[http://dx.doi.org/10.1248/cpb.31.1059] [PMID: 6883602]
[100]
Xu, Q.F.; Fang, X.L.; Chen, D.F. Pharmacokinetics and bioavailability of ginsenoside Rb1 and Rg1 from Panax notoginseng in rats. J. Ethnopharmacol., 2003, 84(2-3), 187-192.
[http://dx.doi.org/10.1016/S0378-8741(02)00317-3] [PMID: 12648814]
[101]
Lai, L.; Hao, H.; Liu, Y.; Zheng, C.; Wang, Q.; Wang, G.; Chen, X. Characterization of pharmacokinetic profiles and metabolic pathways of 20(S)-ginsenoside Rh1 in vivo and in vitro. Planta Med., 2009, 75(8), 797-802.
[http://dx.doi.org/10.1055/s-0029-1185400] [PMID: 19266426]
[102]
Joo, K-M.; Lee, J-H.; Jeon, H-Y.; Park, C-W.; Hong, D-K.; Jeong, H-J.; Lee, S.J.; Lee, S-Y.; Lim, K-M. Pharmacokinetic study of ginsenoside Re with pure ginsenoside Re and ginseng berry extracts in mouse using ultra performance liquid chromatography/mass spectrometric method. J. Pharm. Biomed. Anal., 2010, 51(1), 278-283.
[http://dx.doi.org/10.1016/j.jpba.2009.08.013] [PMID: 19729261]
[103]
Gu, Y.; Wang, G-J.; Sun, J-G.; Jia, Y-W.; Wang, W.; Xu, M-J.; Lv, T.; Zheng, Y-T.; Sai, Y. Pharmacokinetic characterization of ginsenoside Rh2, an anticancer nutrient from ginseng, in rats and dogs. Food Chem. Toxicol., 2009, 47(9), 2257-2268.
[http://dx.doi.org/10.1016/j.fct.2009.06.013] [PMID: 19524010]
[104]
Tawab, M.A.; Bahr, U.; Karas, M.; Wurglics, M.; Schubert-Zsilavecz, M. Degradation of ginsenosides in humans after oral administration. Drug Metab. Dispos., 2003, 31(8), 1065-1071.
[http://dx.doi.org/10.1124/dmd.31.8.1065] [PMID: 12867496]
[105]
Ren, H.C.; Sun, J.G.; Wang, G.J. A, J.Y.; Xie, H.T.; Zha, W.B.; Yan, B.; Sun, F.Z.; Hao, H.P.; Gu, S.H.; Sheng, L.S.; Shao, F.; Shi, J.; Zhou, F. Sensitive determination of 20(S)-protopanaxadiol in rat plasma using HPLC-APCI-MS: application of pharmacokinetic study in rats. J. Pharm. Biomed. Anal., 2008, 48(5), 1476-1480.
[http://dx.doi.org/10.1016/j.jpba.2008.09.045] [PMID: 19022601]
[106]
Wang, W.; Wang, G.J.; Xie, H.T.; Sun, J.G.; Zhao, S.; Jiang, X.L.; Li, H.; Lv, H.; Xu, M.J.; Wang, R. Determination of ginsenoside Rd in dog plasma by liquid chromatography-mass spectrometry after solid-phase extraction and its application in dog pharmacokinetics studies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 852(1-2), 8-14.
[http://dx.doi.org/10.1016/j.jchromb.2006.12.046] [PMID: 17267298]
[107]
Kasai, R.; Hara, K.; Dokan, R.; Suzuki, N.; Mizutare, T.; Yoshihara, S.; Yamasaki, K. Major metabolites of ginseng sapogenins formed by rat liver microsomes. Chem. Pharm. Bull. (Tokyo), 2000, 48(8), 1226-1227.
[http://dx.doi.org/10.1248/cpb.48.1226] [PMID: 10959594]
[108]
Paek, I.B.; Moon, Y.; Kim, J.; Ji, H.Y.; Kim, S.A.; Sohn, D.H.; Kim, J.B.; Lee, H.S. Pharmacokinetics of a ginseng saponin metabolite compound K in rats. Biopharm. Drug Dispos., 2006, 27(1), 39-45.
[http://dx.doi.org/10.1002/bdd.481] [PMID: 16302287]
[109]
Qian, T.; Cai, Z.; Wong, R.N.; Mak, N.K.; Jiang, Z-H. In vivo rat metabolism and pharmacokinetic studies of ginsenoside Rg3. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, 816(1-2), 223-232.
[http://dx.doi.org/10.1016/j.jchromb.2004.11.036] [PMID: 15664354]
[110]
Li, L.; Chen, X.; Li, D.; Zhong, D. Identification of 20(S)-protopanaxadiol metabolites in human liver microsomes and human hepatocytes. Drug Metab. Dispos., 2011, 39(3), 472-483.
[http://dx.doi.org/10.1124/dmd.110.036723] [PMID: 21139039]
[111]
Hao, H.; Lai, L.; Zheng, C.; Wang, Q.; Yu, G.; Zhou, X.; Wu, L.; Gong, P.; Wang, G. Microsomal cytochrome p450-mediated metabolism of protopanaxatriol ginsenosides: metabolite profile, reaction phenotyping, and structure-metabolism relationship. Drug Metab. Dispos., 2010, 38(10), 1731-1739.
[http://dx.doi.org/10.1124/dmd.110.033845] [PMID: 20639434]
[112]
Yang, L.; Deng, Y.; Xu, S.; Zeng, X. In vivo pharmacokinetic and metabolism studies of ginsenoside Rd. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 854(1-2), 77-84.
[http://dx.doi.org/10.1016/j.jchromb.2007.04.014] [PMID: 17526438]
[113]
Yang, L.; Xu, S.; Liu, C.; Su, Z. In vivo metabolism study of ginsenoside Re in rat using high-performance liquid chromatography coupled with tandem mass spectrometry. Anal. Bioanal. Chem., 2009, 395(5), 1441-1451.
[http://dx.doi.org/10.1007/s00216-009-3121-1] [PMID: 19774367]
[114]
Kaminsky, L.S.; Zhang, Z.Y. Human P450 metabolism of warfarin. Pharmacol. Ther., 1997, 73(1), 67-74.
[http://dx.doi.org/10.1016/S0163-7258(96)00140-4] [PMID: 9014207]
[115]
Jiang, X.; Williams, K.M.; Liauw, W.S.; Ammit, A.J.; Roufogalis, B.D.; Duke, C.C.; Day, R.O.; McLachlan, A.J. Effect of St John’s wort and ginseng on the pharmacokinetics and pharmacodynamics of warfarin in healthy subjects. Br. J. Clin. Pharmacol., 2004, 57(5), 592-599.
[http://dx.doi.org/10.1111/j.1365-2125.2003.02051.x] [PMID: 15089812]
[116]
Zhang, J.; Zhou, F.; Wu, X.; Gu, Y.; Ai, H.; Zheng, Y.; Li, Y.; Zhang, X.; Hao, G.; Sun, J.; Peng, Y.; Wang, G. 20(S)-ginsenoside Rh2 noncompetitively inhibits P-glycoprotein in vitro and in vivo: a case for herb-drug interactions. Drug Metab. Dispos., 2010, 38(12), 2179-2187.
[http://dx.doi.org/10.1124/dmd.110.034793] [PMID: 20837659]
[117]
Ahmed, S.; Stepp, J.R.; Orians, C.; Griffin, T.; Matyas, C.; Robbat, A.; Cash, S.; Xue, D.; Long, C.; Unachukwu, U.; Buckley, S.; Small, D.; Kennelly, E. Effects of extreme climate events on tea (Camellia sinensis) functional quality validate indigenous farmer knowledge and sensory preferences in tropical China. PLoS One, 2014, 9(10)e109126
[http://dx.doi.org/10.1371/journal.pone.0109126] [PMID: 25286362]
[118]
Kitani, K.; Yokozawa, T.; Osawa, T. Interventions in aging and age-associated pathologies by means of nutritional approaches. Ann. N. Y. Acad. Sci., 2004, 1019, 424-426.
[http://dx.doi.org/10.1196/annals.1297.075] [PMID: 15247057]
[119]
Levites, Y.; Amit, T.; Mandel, S.; Youdim, M.B.H. Neuroprotection and neurorescue against Abeta toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (-)-epigallocatechin-3-gallate. FASEB J., 2003, 17(8), 952-954.
[http://dx.doi.org/10.1096/fj.02-0881fje] [PMID: 12670874]
[120]
Jeon, S.Y.; Bae, K.; Seong, Y.H.; Song, K.S. Green tea catechins as a BACE1 (β-secretase) inhibitor. Bioorg. Med. Chem. Lett., 2003, 13(22), 3905-3908.
[http://dx.doi.org/10.1016/j.bmcl.2003.09.018] [PMID: 14592472]
[121]
Onisi, M.; Shimura, N.; Nakamura, C.; Sato, M. A Field Test on the Caries Preventive Effect of Tea Drinking. Conn. Dent. Stud. J., 1981, 31, 13-19.
[http://dx.doi.org/10.5834/jdh.31.13]
[122]
Sakanaka, S.; Mujo, K.I.M.; Taniguchi, M.; Yamamoto, T. Antibacterial Substances in Japanese Green Tea Extract against Streptococcus Mutans, a Cariogenic Bacterium. Agric. Biol. Chem., 1989, 53, 2307-2311.
[http://dx.doi.org/10.1271/bbb1961.53.2307]
[123]
Namita, P.; Mukesh, R.; Vijay, K.J. Camellia Sinensis (green Tea): A Review. Glob. J. Pharmacol., 2012, 6, 52-59.
[124]
Chung, F-L.; Schwartz, J.; Herzog, C.R.; Yang, Y-M. Tea and cancer prevention: studies in animals and humans. J. Nutr., 2003, 133(10), 3268S-3274S.
[http://dx.doi.org/10.1093/jn/133.10.3268S] [PMID: 14519825]
[125]
Tsuneki, H.; Ishizuka, M.; Terasawa, M.; Wu, J.B.; Sasaoka, T.; Kimura, I. Effect of green tea on blood glucose levels and serum proteomic patterns in diabetic (db/db) mice and on glucose metabolism in healthy humans. BMC Pharmacol., 2004, 4, 18.
[http://dx.doi.org/10.1186/1471-2210-4-18] [PMID: 15331020]
[126]
Kuriyama, S.; Shimazu, T.; Ohmori, K.; Kikuchi, N.; Nakaya, N.; Nishino, Y.; Tsubono, Y.; Tsuji, I. Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: the Ohsaki study. JAMA, 2006, 296(10), 1255-1265.
[http://dx.doi.org/10.1001/jama.296.10.1255] [PMID: 16968850]
[127]
Sato, Y.; Nakatsuka, H.; Watanabe, T.; Hisamichi, S.; Shimizu, H.; Fujisaku, S.; Ichinowatari, Y.; Ida, Y.; Suda, S.; Kato, K. Possible contribution of green tea drinking habits to the prevention of stroke. Tohoku J. Exp. Med., 1989, 157(4), 337-343.
[http://dx.doi.org/10.1620/tjem.157.337] [PMID: 2741170]
[128]
Arab, L.; Liu, W.; Elashoff, D. Green and black tea consumption and risk of stroke: a meta-analysis. Stroke, 2009, 40(5), 1786-1792.
[http://dx.doi.org/10.1161/STROKEAHA.108.538470] [PMID: 19228856]
[129]
He, S.M.; Li, C.G.; Liu, J.P.; Chan, E.; Duan, W.; Zhou, S.F. Disposition pathways and pharmacokinetics of herbal medicines in humans. Curr. Med. Chem., 2010, 17(33), 4072-4113.
[http://dx.doi.org/10.2174/092986710793205336] [PMID: 20939821]
[130]
Henning, S.M.; Niu, Y.; Lee, N.H.; Thames, G.D.; Minutti, R.R.; Wang, H.; Go, V.L.W.; Heber, D. Bioavailability and antioxidant activity of tea flavanols after consumption of green tea, black tea, or a green tea extract supplement. Am. J. Clin. Nutr., 2004, 80(6), 1558-1564.
[http://dx.doi.org/10.1093/ajcn/80.6.1558] [PMID: 15585768]
[131]
Henning, S.M.; Niu, Y.; Liu, Y.; Lee, N.H.; Hara, Y.; Thames, G.D.; Minutti, R.R.; Carpenter, C.L.; Wang, H.; Heber, D. Bioavailability and antioxidant effect of epigallocatechin gallate administered in purified form versus as green tea extract in healthy individuals. J. Nutr. Biochem., 2005, 16(10), 610-616.
[http://dx.doi.org/10.1016/j.jnutbio.2005.03.003] [PMID: 16081270]
[132]
Jang, E.H.; Choi, J.Y.; Park, C.S.; Lee, S.K.; Kim, C.E.; Park, H.J.; Kang, J.S.; Lee, J.W.; Kang, J.H. Effects of green tea extract administration on the pharmacokinetics of clozapine in rats. J. Pharm. Pharmacol., 2005, 57(3), 311-316.
[http://dx.doi.org/10.1211/0022357055687] [PMID: 15807986]
[133]
Chow, H.S.; Hakim, I.A.; Vining, D.R.; Crowell, J.A.; Cordova, C.A.; Chew, W.M.; Xu, M.J.; Hsu, C.H.; Ranger-Moore, J.; Alberts, D.S. Effects of repeated green tea catechin administration on human cytochrome P450 activity. Cancer Epidemiol. Biomarkers Prev., 2006, 15(12), 2473-2476.
[http://dx.doi.org/10.1158/1055-9965.EPI-06-0365] [PMID: 17164372]
[134]
Donovan, J.L.; Chavin, K.D.; Devane, C.L.; Taylor, R.M.; Wang, J.S.; Ruan, Y.; Markowitz, J.S. Green tea (Camellia sinensis) extract does not alter cytochrome p450 3A4 or 2D6 activity in healthy volunteers. Drug Metab. Dispos., 2004, 32(9), 906-908.
[http://dx.doi.org/10.1124/dmd.104.000083] [PMID: 15319329]
[135]
Taylor, J.R.; Wilt, V.M. Probable antagonism of warfarin by green tea. Ann. Pharmacother., 1999, 33(4), 426-428.
[http://dx.doi.org/10.1345/aph.18238] [PMID: 10332534]
[136]
Bahmani, M.; Rafieian-Kopaei, M.; Jeloudari, M.; Eftekhari, Z.; Delfan, B.; Zargaran, A.; Forouzan, S. A Review of the Health Effects and Uses of Drugs of Plant Licorice (Glycyrrhiza Glabra L.) in Iran. Asian Pac. J. Trop. Dis., 2014, 4, S847-S849.
[http://dx.doi.org/10.1016/S2222-1808(14)60742-8]
[137]
Zargaran, A.; Zarshenas, M.M.; Mehdizadeh, A.; Mohagheghzadeh, A. Management of tremor in medieval Persia. J. Hist. Neurosci., 2013, 22(1), 53-61.
[http://dx.doi.org/10.1080/0964704X.2012.670475] [PMID: 23323532]
[138]
Kaur, R.; Kaur, H.; Dhindsa, A.S. Glycyrrhiza Glabra: a phytopharmacological review. IJPSR, 2013, 4, 2470.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.4(7).2470-77]
[139]
Parvaiz, M.; Hussain, K.; Khalid, S.; Hussnain, N.; Iram, N.; Hussain, Z.; Ali, M.A.A. Review: Medicinal Importance of Glycyrrhiza Glabra L. (Fabaceae Family). Glob. J. Pharmacol., 2014, 8, 8-13.
[http://dx.doi.org/10.5829/idosi.gjp.2014.8.1.81179]
[140]
Wang, Z.H.; Hsieh, C.H.; Liu, W.H.; Yin, M.C. Glycyrrhizic acid attenuated glycative stress in kidney of diabetic mice through enhancing glyoxalase pathway. Mol. Nutr. Food Res., 2014, 58(7), 1426-1435.
[http://dx.doi.org/10.1002/mnfr.201300910] [PMID: 24585461]
[141]
Awad, V.; Kuvalekar, A.; Harsulkar, A. microbial elicitation in root cultures of taverniera cuneifolia (ROTH) arn. for elevated glycyrrhizic acid production. Ind. Crops Prod., 2014, 54, 13-16.
[http://dx.doi.org/10.1016/j.indcrop.2013.12.036]
[142]
Evans, W.C.; Evans, D. The Scope and practice of pharmacognosy.Trease and Evans’ Pharmacognosy, 16th ed; Elsevier: London, 2009, pp. 5-7.
[http://dx.doi.org/10.1016/B978-0-7020-2933-2.00002-2]
[143]
Biondi, D.M.; Rocco, C.; Ruberto, G. New dihydrostilbene derivatives from the leaves of Glycyrrhiza glabra and evaluation of their antioxidant activity. J. Nat. Prod., 2003, 66(4), 477-480.
[http://dx.doi.org/10.1021/np020365s] [PMID: 12713396]
[144]
Hayashi, H.; Hattori, S.; Inoue, K.; Khodzhimatov, O.; Ashurmetov, O.; Ito, M.; Honda, G. Field survey of glycyrrhiza plants in central asia (3). chemical characterization of g. glabra collected in Uzbekistan. Chem. Pharm. Bull. (Tokyo), 2003, 51(11), 1338-1340.
[http://dx.doi.org/10.1248/cpb.51.1338] [PMID: 14600388]
[145]
Oganesyan, K.R. Antioxidant effect of licorice root on blood catalase activity in vibration stress. Bull. Exp. Biol. Med., 2002, 134(2), 135-136.
[http://dx.doi.org/10.1023/A:1021123928740] [PMID: 12459833]
[146]
Alekperov, U.K. Plant antimutagens and their mixtures in inhibition of genotoxic effects of xenobiotics and aging processes. Eur. J. Cancer Prev., 2002, 11(Suppl. 2), S8-S11.
[PMID: 12570329]
[147]
Al-Qarawi, A.A.; Abdel-Rahman, H.A.; Ali, B.H.; El Mougy, S.A. Liquorice (Glycyrrhiza glabra) and the adrenal-kidney-pituitary axis in rats. Food Chem. Toxicol., 2002, 40(10), 1525-1527.
[http://dx.doi.org/10.1016/S0278-6915(02)00080-7] [PMID: 12387318]
[148]
Mendes-Silva, W.; Assafim, M.; Ruta, B.; Monteiro, R.Q.; Guimarães, J.A.; Zingali, R.B. Antithrombotic effect of Glycyrrhizin, a plant-derived thrombin inhibitor. Thromb. Res., 2003, 112(1-2), 93-98.
[http://dx.doi.org/10.1016/j.thromres.2003.10.014] [PMID: 15013279]
[149]
Tang, W.; Eisenbrand, G. Chinese Drugs of Plant Origin: Chemistry, Pharmacology, and Use in Traditional and Modern Medicine; Springer: Berlin, 1992, pp. 568-588.
[http://dx.doi.org/10.1007/978-3-642-73739-8]
[150]
Wang, Z.; Kurosaki, Y.; Nakayama, T.; Kimura, T. Mechanism of gastrointestinal absorption of glycyrrhizin in rats. Biol. Pharm. Bull., 1994, 17(10), 1399-1403.
[http://dx.doi.org/10.1248/bpb.17.1399] [PMID: 7874064]
[151]
Takeda, S.; Ishthara, K.; Wakui, Y.; Amagaya, S.; Maruno, M.; Akao, T.; Kobashi, K. Bioavailability study of glycyrrhetic acid after oral administration of glycyrrhizin in rats; relevance to the intestinal bacterial hydrolysis. J. Pharm. Pharmacol., 1996, 48(9), 902-905.
[http://dx.doi.org/10.1111/j.2042-7158.1996.tb05998.x] [PMID: 8910850]
[152]
Ishida, S.; Sakiya, Y.; Ichikawa, T.; Taira, Z. Dose-dependent pharmacokinetics of glycyrrhizin in rats. Chem. Pharm. Bull. (Tokyo), 1992, 40(7), 1917-1920.
[http://dx.doi.org/10.1248/cpb.40.1917] [PMID: 1394714]
[153]
Tsai, T.H.; Liao, J.F.; Shum, A.Y.C.; Chen, C.F. Pharmacokinetics of glycyrrhizin after intravenous administration to rats. J. Pharm. Sci., 1992, 81(9), 961-963.
[http://dx.doi.org/10.1002/jps.2600810925] [PMID: 1432649]
[154]
Yamamura, Y.; Kawakami, J.; Santa, T.; Kotaki, H.; Uchino, K.; Sawada, Y.; Tanaka, N.; Iga, T. Pharmacokinetic profile of glycyrrhizin in healthy volunteers by a new high-performance liquid chromatographic method. J. Pharm. Sci., 1992, 81(10), 1042-1046.
[http://dx.doi.org/10.1002/jps.2600811018] [PMID: 1432618]
[155]
Tanaka, N.; Yamamura, Y.; Santa, T.; Kotaki, H.; Uchino, K.; Sawada, Y.; Aikawa, T.; Osuga, T.; Iga, T. Pharmacokinetic profiles of glycyrrhizin in patients with chronic hepatitis. Biopharm. Drug Dispos., 1993, 14(7), 609-614.
[http://dx.doi.org/10.1002/bdd.2510140707] [PMID: 8251615]
[156]
Krähenbühl, S.; Hasler, F.; Frey, B.M.; Frey, F.J.; Brenneisen, R.; Krapf, R. Kinetics and dynamics of orally administered 18 beta-glycyrrhetinic acid in humans. J. Clin. Endocrinol. Metab., 1994, 78(3), 581-585.
[http://dx.doi.org/10.1210/jc.78.3.581] [PMID: 8126129]
[157]
Cantelli-Forti, G.; Raggi, M.A.; Bugamelli, F.; Maffei, F.; Villari, A.; Trieff, N.M. Toxicological assessment of liquorice: biliary excretion in rats. Pharmacol. Res., 1997, 35(5), 463-470.
[http://dx.doi.org/10.1006/phrs.1997.0169] [PMID: 9299212]
[158]
Shibata, N.; Shimokawa, T.; Jiang, Z.; Jeong, Y.; Ohno, T.; Kimura, G.; Yoshikawa, Y.; Koga, K.; Murakami, M.; Takada, K. Characteristics of intestinal absorption and disposition of glycyrrhizin in mice. Biopharm. Drug Dispos., 2000, 21(3), 95-101.
[http://dx.doi.org/10.1002/1099-081X(200004)21:3<95:AID-BDD221>3.0.CO;2-9] [PMID: 11113882]
[159]
Sasaki, K.; Yonebayashi, S.; Yoshida, M.; Shimizu, K.; Aotsuka, T.; Takayama, K. Improvement in the bioavailability of poorly absorbed glycyrrhizin via various non-vascular administration routes in rats. Int. J. Pharm., 2003, 265(1-2), 95-102.
[http://dx.doi.org/10.1016/S0378-5173(03)00407-1] [PMID: 14522122]
[160]
Ichikawa, T.; Ishida, S.; Sakiya, Y.; Akada, Y. High-performance liquid chromatographic determination of glycyrrhizin and glycyrrhetinic acid in biological materials. Chem. Pharm. Bull. (Tokyo), 1984, 32(9), 3734-3738.
[http://dx.doi.org/10.1248/cpb.32.3734] [PMID: 6525662]
[161]
Zeng, C.X.; Yang, Q.; Hu, Q. A comparison of the distribution of two glycyrrhizic acid epimers in rat tissues. Eur. J. Drug Metab. Pharmacokinet., 2006, 31(4), 253-258.
[http://dx.doi.org/10.1007/BF03190464] [PMID: 17315535]
[162]
Yamamura, Y.; Kawakami, J.; Santa, T.; Kotaki, H.; Uchino, K.; Sawada, Y.; Iga, T. Selective high-performance liquid chromatographic method for the determination of glycyrrhizin and glycyrrhetic acid-3-O-glucuronide in biological fluids: application of ion-pair extraction and fluorescence labelling agent. J. Chromatogr. A, 1991, 567(1), 151-160.
[http://dx.doi.org/10.1016/0378-4347(91)80319-8] [PMID: 1918242]
[163]
Ichikawa, T.; Ishida, S.; Sakiya, Y.; Sawada, Y.; Hanano, M. Biliary excretion and enterohepatic cycling of glycyrrhizin in rats. J. Pharm. Sci., 1986, 75(7), 672-675.
[http://dx.doi.org/10.1002/jps.2600750711] [PMID: 3761168]
[164]
Hasler, F.; Krapf, R.; Brenneisen, R.; Bourquin, D.; Krähenbühl, S. Determination of 18 β-glycyrrhetinic acid in biological fluids from humans and rats by solid-phase extraction and high-performance liquid chromatography. J. Chromatogr. A, 1993, 620(1), 73-82.
[http://dx.doi.org/10.1016/0378-4347(93)80053-7] [PMID: 8106594]
[165]
Lu, Y.; Zhu, J.; Chen, X.; Li, N.; Fu, F.; He, J.; Wang, G.; Zhang, L.; Zheng, Y.; Qiu, Z.; Yu, X.; Han, D.; Wu, L. Identification of human UDP-glucuronosyltransferase isoforms responsible for the glucuronidation of glycyrrhetinic acid. Drug Metab. Pharmacokinet., 2009, 24(6), 523-528.
[http://dx.doi.org/10.2133/dmpk.24.523] [PMID: 20045987]
[166]
Akao, T.; Akao, T.; Kobashi, K. Metabolism of glycyrrhetic acid by rat liver microsomes: glycyrrhetinate dehydrogenase. Biochim. Biophys. Acta, 1990, 1042(2), 241-246.
[http://dx.doi.org/10.1016/0005-2760(90)90015-P] [PMID: 2405913]
[167]
Akao, T.; Aoyama, M.; Akao, T.; Hattori, M.; Imai, Y.; Namba, T.; Tezuka, Y.; Kikuchi, T.; Kobashi, K. Metabolism of glycyrrhetic acid by rat liver microsomes-II. 22 alpha- and 24-hydroxylation. Biochem. Pharmacol., 1990, 40(2), 291-296.
[http://dx.doi.org/10.1016/0006-2952(90)90690-M] [PMID: 2375768]
[168]
Tu, J.H.; He, Y.J.; Chen, Y.; Fan, L.; Zhang, W.; Tan, Z.R.; Huang, Y.F.; Guo, D.; Hu, D.L.; Wang, D.; Zhou, H.H. Effect of glycyrrhizin on the activity of CYP3A enzyme in humans. Eur. J. Clin. Pharmacol., 2010, 66(8), 805-810.
[http://dx.doi.org/10.1007/s00228-010-0814-5] [PMID: 20393696]
[169]
Lee, K-J.; Park, H-J.; Shin, Y-H.; Lee, C-H. Effect of glycyrrhizic acid on protein binding of diltiazem, verapamil, and nifedipine. Arch. Pharm. Res., 2004, 27(9), 978-983.
[http://dx.doi.org/10.1007/BF02975854] [PMID: 15473671]
[170]
Paolini, M.; Pozzetti, L.; Sapone, A.; Cantelli-Forti, G. Effect of licorice and glycyrrhizin on murine liver CYP-dependent monooxygenases. Life Sci., 1998, 62(6), 571-582.
[http://dx.doi.org/10.1016/S0024-3205(97)01154-5] [PMID: 9464470]
[171]
Paolini, M.; Barillari, J.; Broccoli, M.; Pozzetti, L.; Perocco, P.; Cantelli-Forti, G. Effect of liquorice and glycyrrhizin on rat liver carcinogen metabolizing enzymes. Cancer Lett., 1999, 145(1-2), 35-42.
[http://dx.doi.org/10.1016/S0304-3835(99)00225-6] [PMID: 10530767]
[172]
Yoshida, N.; Koizumi, M.; Adachi, I.; Kawakami, J. Inhibition of P-glycoprotein-mediated transport by terpenoids contained in herbal medicines and natural products. Food Chem. Toxicol., 2006, 44(12), 2033-2039.
[http://dx.doi.org/10.1016/j.fct.2006.07.003] [PMID: 16904803]
[173]
Lin, S.P.; Tsai, S.Y.; Hou, Y.C.; Chao, P.D. Glycyrrhizin and licorice significantly affect the pharmacokinetics of methotrexate in rats. J. Agric. Food Chem., 2009, 57(5), 1854-1859.
[http://dx.doi.org/10.1021/jf8029918] [PMID: 19209930]
[174]
Kumar, S.; Narain, U.; Tripathi, S.; Misra, K. Syntheses of Curcumin Bioconjugates and Study of Their Antibacterial Activities against β-Lactamase-Producing Microorganisms. Bioconjug. Chem., 2001, 12(4), 464-469.
[http://dx.doi.org/10.1021/bc0000482] [PMID: 11459448]
[175]
Rathaur, P.; Raja, W.; Ramteke, P.W.; John, S.A. Turmeric: The Golden Spice of Life. IJPSR, 2012, 3, 1987.
[176]
Jayaprakasha, G.K.; Negi, P.S.; Anandharamakrishnan, C.; Sakariah, K.K. Chemical composition of turmeric oil--a byproduct from turmeric oleoresin industry and its inhibitory activity against different fungi. Z. Natforsch. C J. Biosci., 2001, 56(1-2), 40-44.
[http://dx.doi.org/10.1515/znc-2001-1-207] [PMID: 11302211]
[177]
Chan, A.T.; Manson, J.E.; Albert, C.M.; Chae, C.U.; Rexrode, K.M.; Curhan, G.C.; Rimm, E.B.; Willett, W.C.; Fuchs, C.S. Nonsteroidal antiinflammatory drugs, acetaminophen, and the risk of cardiovascular events. Circulation, 2006, 113(12), 1578-1587.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.595793] [PMID: 16534006]
[178]
Dogné, J-M.; Hanson, J.; Supuran, C.; Pratico, D. Coxibs and cardiovascular side-effects: from light to shadow. Curr. Pharm. Des., 2006, 12(8), 971-975.
[http://dx.doi.org/10.2174/138161206776055949] [PMID: 16533164]
[179]
Bush, J.A.; Cheung, K-J.J., Jr; Li, G. Curcumin induces apoptosis in human melanoma cells through a Fas receptor/caspase-8 pathway independent of p53. Exp. Cell Res., 2001, 271(2), 305-314.
[http://dx.doi.org/10.1006/excr.2001.5381] [PMID: 11716543]
[180]
Saikia, A.P.; Ryakala, V.K.; Sharma, P.; Goswami, P.; Bora, U. Ethnobotany of medicinal plants used by Assamese people for various skin ailments and cosmetics. J. Ethnopharmacol., 2006, 106(2), 149-157.
[http://dx.doi.org/10.1016/j.jep.2005.11.033] [PMID: 16473486]
[181]
Phan, T.T.; See, P.; Lee, S.T.; Chan, S.Y. Protective effects of curcumin against oxidative damage on skin cells in vitro: its implication for wound healing. J. Trauma, 2001, 51(5), 927-931.
[http://dx.doi.org/10.1097/00005373-200111000-00017] [PMID: 11706342]
[182]
Suryanarayana, P.; Saraswat, M.; Mrudula, T.; Krishna, T.P.; Krishnaswamy, K.; Reddy, G.B. Curcumin and turmeric delay streptozotocin-induced diabetic cataract in rats. Invest. Ophthalmol. Vis. Sci., 2005, 46(6), 2092-2099.
[http://dx.doi.org/10.1167/iovs.04-1304] [PMID: 15914628]
[183]
Thiyagarajan, M.; Sharma, S.S. Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci., 2004, 74(8), 969-985.
[http://dx.doi.org/10.1016/j.lfs.2003.06.042] [PMID: 14672754]
[184]
Chainani-Wu, N. Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J. Altern. Complement. Med., 2003, 9(1), 161-168.
[http://dx.doi.org/10.1089/107555303321223035] [PMID: 12676044]
[185]
Platel, K.; Srinivasan, K. Influence of dietary spices or their active principles on digestive enzymes of small intestinal mucosa in rats. Int. J. Food Sci. Nutr., 1996, 47(1), 55-59.
[http://dx.doi.org/10.3109/09637489609028561] [PMID: 8616674]
[186]
Begum, A.N.; Jones, M.R.; Lim, G.P.; Morihara, T.; Kim, P.; Heath, D.D.; Rock, C.L.; Pruitt, M.A.; Yang, F.; Hudspeth, B.; Hu, S.; Faull, K.F.; Teter, B.; Cole, G.M.; Frautschy, S.A. Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J. Pharmacol. Exp. Ther., 2008, 326(1), 196-208.
[http://dx.doi.org/10.1124/jpet.108.137455] [PMID: 18417733]
[187]
Garcea, G.; Jones, D.J.L.; Singh, R.; Dennison, A.R.; Farmer, P.B.; Sharma, R.A.; Steward, W.P.; Gescher, A.J.; Berry, D.P. Detection of curcumin and its metabolites in hepatic tissue and portal blood of patients following oral administration. Br. J. Cancer, 2004, 90(5), 1011-1015.
[http://dx.doi.org/10.1038/sj.bjc.6601623] [PMID: 14997198]
[188]
Tamvakopoulos, C.; Dimas, K.; Sofianos, Z.D.; Hatziantoniou, S.; Han, Z.; Liu, Z.L.; Wyche, J.H.; Pantazis, P. Metabolism and anticancer activity of the curcumin analogue, dimethoxycurcumin. Clin. Cancer Res., 2007, 13(4), 1269-1277.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1839] [PMID: 17317839]
[189]
Sharma, R.A.; Euden, S.A.; Platton, S.L.; Cooke, D.N.; Shafayat, A.; Hewitt, H.R.; Marczylo, T.H.; Morgan, B.; Hemingway, D.; Plummer, S.M.; Pirmohamed, M.; Gescher, A.J.; Steward, W.P. Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin. Cancer Res., 2004, 10(20), 6847-6854.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0744] [PMID: 15501961]
[190]
Sharma, R.A.; Steward, W.P.; Gescher, A.J. Pharmacokinetics and Pharmacodynamics of curcumin. Adv. Exp. Med. Biol., 2007, 595, 453-470.
[http://dx.doi.org/10.1007/978-0-387-46401-5_20]
[191]
Dhillon, N.; Aggarwal, B.B.; Newman, R.A.; Wolff, R.A.; Kunnumakkara, A.B.; Abbruzzese, J.L.; Ng, C.S.; Badmaev, V.; Kurzrock, R.; Phase, I.I. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin. Cancer Res., 2008, 14(14), 4491-4499.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0024] [PMID: 18628464]
[192]
Kessler, D.A. Cancer and herbs. N. Engl. J. Med., 2000, 342(23), 1742-1743.
[http://dx.doi.org/10.1056/NEJM200006083422309] [PMID: 10841878]
[193]
Ernst, E. Adverse effects of herbal drugs in dermatology. Br. J. Dermatol., 2000, 143(5), 923-929.
[http://dx.doi.org/10.1046/j.1365-2133.2000.03822.x] [PMID: 11069498]
[194]
Jha, V. Herbal medicines and chronic kidney disease. Nephrology (Carlton), 2010, 15(Suppl. 2), 10-17.
[http://dx.doi.org/10.1111/j.1440-1797.2010.01305.x] [PMID: 20586941]
[195]
Stickel, F.; Patsenker, E.; Schuppan, D. Herbal hepatotoxicity. J. Hepatol., 2005, 43(5), 901-910.
[http://dx.doi.org/10.1016/j.jhep.2005.08.002] [PMID: 16171893]
[196]
Anderson, I.B.; Mullen, W.H.; Meeker, J.E. Khojasteh-BakhtSC; Oishi, S.; Nelson, S.D.; Blanc, P.D. Pennyroyal toxicity: measurement of toxic metabolite levels in two cases and review of the literature. Ann. Intern. Med., 1996, 124(8), 726-734.
[http://dx.doi.org/10.7326/0003-4819-124-8-199604150-00004] [PMID: 8633832]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy