Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

体外研究表明,IGFR / VEGFR受体串扰和联合抑制在小儿中枢神经系统非典型类畸形横纹肌瘤中的潜力

卷 20, 期 4, 2020

页: [295 - 305] 页: 11

弟呕挨: 10.2174/1568009619666191111153049

价格: $65

摘要

背景:中枢神经系统的非典型类畸胎瘤样横纹肌瘤(CNS ATRT)是一种恶性肿瘤,通常会影响幼儿。导致肿瘤侵袭性和对ATRT中常规疗法耐药的生物学机制尚不清楚。先前的研究表明,胰岛素样生长因子-I受体(IGF-1R)在ATRT肿瘤标本和细胞系中具有活性。在许多癌症类型中,IGF-1R已被证明与其他受体酪氨酸激酶(RTK)发生串扰,从而导致细胞增殖增强。 目的:本研究旨在评估IGF-1受体串扰在ATRT生物学中的作用以及治疗靶向的潜力。 方法:分析源自CNS ATRT标本的细胞系的IGF-1介导的细胞增殖。 IGF-1刺激后进行了全面的受体酪氨酸激酶(RTK)筛选。公开获得的癌症生长抑制数据的生物信息学分析,以鉴定VEGFR抑制剂的IC50与IGF-1R表达之间的相关性。 结果:全面的RTK筛选确定了IGF-1刺激后VEGFR-2的交叉激活。生物信息学分析表明,VEGFR抑制剂阿昔替尼的IC50值与IGF-1R表达呈正相关,支持了IGF-1R在调节抗血管生成疗法反应中的关键作用。 结论:总的来说,我们的数据提供了一种新颖的实验框架,用于评估和利用受体串扰机制来选择有效的药物和组合,以用于ATRT的未来治疗试验。

关键词: 串扰,ATRT,VEGFR,IGF-1R,药物组合,抗血管生成疗法。

图形摘要
[1]
Richardson, E.A.; Ho, B.; Huang, A. Atypical teratoid rhabdoid tumour: From tumours to therapies. J. Korean Neurosurg. Soc., 2018, 61(3), 302-311.
[http://dx.doi.org/10.3340/jkns.2018.0061] [PMID: 29742888]
[2]
Hilden, J.M.; Meerbaum, S.; Burger, P.; Finlay, J.; Janss, A.; Scheithauer, B.W.; Walter, A.W.; Rorke, L.B.; Biegel, J.A. Central nervous system atypical teratoid/rhabdoid tumor: Results of therapy in children enrolled in a registry. J. Clin. Oncol., 2004, 22(14), 2877-2884.
[http://dx.doi.org/10.1200/JCO.2004.07.073] [PMID: 15254056]
[3]
Biegel, J.A.; Tan, L.; Zhang, F.; Wainwright, L.; Russo, P.; Rorke, L.B. Alterations of the hSNF5/INI1 gene in central nervous system atypical teratoid/rhabdoid tumors and renal and extrarenal rhabdoid tumors. Clin. Cancer Res., 2002, 8(11), 3461-3467.
[PMID: 12429635]
[4]
Narendran, A.; Coppes, L.; Jayanthan, A.; Coppes, M.; Teja, B.; Bernoux, D.; George, D.; Strother, D. Establishment of atypical-teratoid/rhabdoid tumor (AT/RT) cell cultures from disseminated CSF cells: A model to elucidate biology and potential targeted therapeutics. J. Neurooncol., 2008, 90(2), 171-180.
[http://dx.doi.org/10.1007/s11060-008-9653-y] [PMID: 18651103]
[5]
Blume-Jensen, P.; Hunter, T. Oncogenic kinase signalling. Nature, 2001, 411(6835), 355-365.
[http://dx.doi.org/10.1038/35077225] [PMID: 11357143]
[6]
Pollak, M. Insulin and insulin-like growth factor signalling in neoplasia. Nat. Rev. Cancer, 2008, 8(12), 915-928.
[http://dx.doi.org/10.1038/nrc2536] [PMID: 19029956]
[7]
Renehan, A.G.; Zwahlen, M.; Minder, C.; O’Dwyer, S.T.; Shalet, S.M.; Egger, M. Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: Systematic review and meta-regression analysis. Lancet, 2004, 363(9418), 1346-1353.
[http://dx.doi.org/10.1016/S0140-6736(04)16044-3] [PMID: 15110491]
[8]
Playford, M.P.; Bicknell, D.; Bodmer, W.F.; Macaulay, V.M. Insulin-like growth factor 1 regulates the location, stability, and transcriptional activity of beta-catenin. Proc. Natl. Acad. Sci. USA, 2000, 97(22), 12103-12108.
[http://dx.doi.org/10.1073/pnas.210394297] [PMID: 11035789]
[9]
Shen, M.R.; Hsu, Y.M.; Hsu, K.F.; Chen, Y.F.; Tang, M.J.; Chou, C.Y. Insulin-like growth factor 1 is a potent stimulator of cervical cancer cell invasiveness and proliferation that is modulated by alphavbeta3 integrin signaling. Carcinogenesis, 2006, 27(5), 962-971.
[http://dx.doi.org/10.1093/carcin/bgi336] [PMID: 16400188]
[10]
Zhang, D.; Samani, A.A.; Brodt, P. The role of the IGF-I receptor in the regulation of matrix metalloproteinases, tumor invasion and metastasis. Horm. Metab. Res., 2003, 35(11-12), 802-808.
[PMID: 14710361]
[11]
Lee, O.H.; Bae, S.K.; Bae, M.H.; Lee, Y.M.; Moon, E.J.; Cha, H.J.; Kwon, Y.G.; Kim, K.W. Identification of angiogenic properties of insulin-like growth factor II in in vitro angiogenesis models. Br. J. Cancer, 2000, 82(2), 385-391.
[http://dx.doi.org/10.1054/bjoc.1999.0931] [PMID: 10646893]
[12]
Economou, M.A.; Andersson, S.; Vasilcanu, D.; All-Ericsson, C.; Menu, E.; Girnita, A.; Girnita, L.; Axelson, M.; Seregard, S.; Larsson, O. Oral picropodophyllin (PPP) is well tolerated in vivo and inhibits IGF-1R expression and growth of uveal melanoma. Invest. Ophthalmol. Vis. Sci., 2008, 49(6), 2337-2342.
[http://dx.doi.org/10.1167/iovs.07-0819] [PMID: 18515579]
[13]
Grulich-Henn, J.; Ritter, J.; Mesewinkel, S.; Heinrich, U.; Bettendorf, M.; Preissner, K.T. Transport of insulin-like growth factor-I across endothelial cell monolayers and its binding to the subendothelial matrix. Exp. Clin. Endocrinol. Diabetes, 2002, 110(2), 67-73.
[http://dx.doi.org/10.1055/s-2002-23488] [PMID: 11928068]
[14]
Treins, C.; Giorgetti-Peraldi, S.; Murdaca, J.; Monthouël-Kartmann, M.N.; Van Obberghen, E. Regulation of hypoxia-inducible factor (HIF)-1 activity and expression of HIF hydroxylases in response to insulin-like growth factor I. Mol. Endocrinol., 2005, 19(5), 1304-1317.
[http://dx.doi.org/10.1210/me.2004-0239] [PMID: 15695372]
[15]
Jayanthan, A.; Bernoux, D.; Bose, P.; Riabowol, K.; Narendran, A. Multi-tyrosine kinase inhibitors in preclinical studies for pediatric CNS AT/RT: Evidence for synergy with topoisomerase-I inhibition. Cancer Cell Int., 2011, 11(1), 44.
[http://dx.doi.org/10.1186/1475-2867-11-44] [PMID: 22206574]
[16]
Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res., 2010, 70(2), 440-446.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-1947] [PMID: 20068163]
[17]
Rasband, W.S.; Image, J. US National Institutes of Health, Bethesda, Maryland, USA. http://imagej.nih.gov/ij/
[18]
Rahimi, N.; Kazlauskas, A. A role for cadherin-5 in regulation of vascular endothelial growth factor receptor 2 activity in endothelial cells. Mol. Biol. Cell, 1999, 10(10), 3401-3407.
[http://dx.doi.org/10.1091/mbc.10.10.3401] [PMID: 10512875]
[19]
Rhodes, D.R.; Yu, J.; Shanker, K.; Deshpande, N.; Varambally, R.; Ghosh, D.; Barrette, T.; Pandey, A.; Chinnaiyan, A.M. ONCOMINE: A cancer microarray database and integrated data-mining platform. Neoplasia, 2004, 6(1), 1-6.
[http://dx.doi.org/10.1016/S1476-5586(04)80047-2] [PMID: 15068665]
[20]
Yang, W.; Soares, J.; Greninger, P.; Edelman, E.J.; Lightfoot, H.; Forbes, S.; Bindal, N.; Beare, D.; Smith, J.A.; Thompson, I.R.; Ramaswamy, S. Genomics of drug sensitivity in cancer (GDSC): A resource for biomarker discovery in cancer cells. Eur. J. Cancer, 2016, 69, S82.
[http://dx.doi.org/10.1016/S0959-8049(16)32839-8]
[21]
Semenza, G.L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer, 2003, 3(10), 721-732.
[http://dx.doi.org/10.1038/nrc1187] [PMID: 13130303]
[22]
Hirsilä, M.; Koivunen, P.; Xu, L.; Seeley, T.; Kivirikko, K.I.; Myllyharju, J. Effect of desferrioxamine and metals on the hydroxylases in the oxygen sensing pathway. FASEB J., 2005, 19(10), 1308-1310.
[http://dx.doi.org/10.1096/fj.04-3399fje] [PMID: 15941769]
[23]
LeRoith, D.; Roberts, C.T., Jr The insulin-like growth factor system and cancer. Cancer Lett., 2003, 195(2), 127-137.
[http://dx.doi.org/10.1016/S0304-3835(03)00159-9] [PMID: 12767520]
[24]
Ogino, S.; Cohen, M.L.; Abdul-Karim, F.W. Atypical teratoid/rhabdoid tumor of the CNS: Cytopathology and immunohistochemistry of insulin-like growth factor-II, insulin-like growth factor receptor type 1, cathepsin D, and Ki-67. Mod. Pathol., 1999, 12(4), 379-385.
[PMID: 10229502]
[25]
Jin, Q.; Esteva, F.J. Cross-talk between the ErbB/HER family and the type I insulin-like growth factor receptor signaling pathway in breast cancer. J. Mammary Gland Biol. Neoplasia, 2008, 13(4), 485-498.
[http://dx.doi.org/10.1007/s10911-008-9107-3] [PMID: 19034632]
[26]
D’cunja, J.; Shalaby, T.; Rivera, P.; von Büren, A.; Patti, R.; Heppner, F.L.; Arcaro, A.; Rorke-Adams, L.B.; Phillips, P.C.; Grotzer, M.A. Antisense treatment of IGF-IR induces apoptosis and enhances chemosensitivity in central nervous system atypical teratoid/rhabdoid tumours cells. Eur. J. Cancer, 2007, 43(10), 1581-1589.
[http://dx.doi.org/10.1016/j.ejca.2007.03.003] [PMID: 17446062]
[27]
Arcaro, A.; Doepfner, K.T.; Boller, D.; Guerreiro, A.S.; Shalaby, T.; Jackson, S.P.; Schoenwaelder, S.M.; Delattre, O.; Grotzer, M.A. and; Fischer, B. Novel role for insulin as an autocrine growth factor for malignant brain tumour cells. Biochem. J., 2007, 406(1), 57-66.
[http://dx.doi.org/10.1042/BJ20070309] [PMID: 17506723]
[28]
Punglia, R.S.; Lu, M.; Hsu, J.; Kuroki, M.; Tolentino, M.J.; Keough, K.; Levy, A.P.; Levy, N.S.; Goldberg, M.A.; D’Amato, R.J.; Adamis, A.P. Regulation of vascular endothelial growth factor expression by insulin-like growth factor I. Diabetes, 1997, 46(10), 1619-1626.
[http://dx.doi.org/10.2337/diacare.46.10.1619] [PMID: 9313759]
[29]
Fukuda, R.; Hirota, K.; Fan, F.; Jung, Y.D.; Ellis, L.M.; Semenza, G.L. Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J. Biol. Chem., 2002, 277(41), 38205-38211.
[http://dx.doi.org/10.1074/jbc.M203781200] [PMID: 12149254]
[30]
Bermont, L.; Lamielle, F.; Lorchel, F. Insulin up-regulates vascular endothelial growth factor and stabilizes its messengers in endometrial adenocarcinoma cells. J. Clin. Endocrinol. Metab., 2001, 86(1), 363-368.
[http://dx.doi.org/10.1210/jc.86.1.363] [PMID: 11232025]
[31]
Gruden, G.; Araf, S.; Zonca, S.; Burt, D.; Thomas, S.; Gnudi, L. and; Viberti, G. IGF-I induces vascular endothelial growth factor in human mesangial cells via a Src-dependent mechanism. Kidney Int., 2003, 63(4), 1249-1255.
[http://dx.doi.org/10.1046/j.1523-1755.2003.00857.x] [PMID: 12631341]
[32]
Mitsiades, N.; McMullan, C.J.; Poulaki, V.; Shringarpure, R.; Libermann, T.A.; Hideshima, T.; Chauhan, D.; Schlossman, R.L.; Richardson, P.G.; Munshi, N.C.; Garcia-Echeverria, C. NVP-AEW541: A selective small molecule IGF-1R tyrosine kinase inhibitor is active against multiple myeloma and other hematologic neoplasias and solid tumors. Blood, 2004, 104(11), 766-786.
[http://dx.doi.org/10.1182/blood.V104.11.766.766]
[33]
Moser, C.; Schachtschneider, P.; Lang, S.A.; Gaumann, A.; Mori, A.; Zimmermann, J.; Schlitt, H.J.; Geissler, E.K.; Stoeltzing, O. Inhibition of insulin-like growth factor-I receptor (IGF-IR) using NVP-AEW541, a small molecule kinase inhibitor, reduces orthotopic pancreatic cancer growth and angiogenesis. Eur. J. Cancer, 2008, 44(11), 1577-1586.
[http://dx.doi.org/10.1016/j.ejca.2008.04.003] [PMID: 18445520]
[34]
Catrina, S.B.; Botusan, I.R.; Rantanen, A. Hypoxia-inducible factor-1alpha and hypoxia-inducible factor-2alpha are expressed in kaposi sarcoma and modulated by insulin-like growth factor-I. Clin. Cancer Res., 2006, 12(15), 4506-4514.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2473] [PMID: 16899596]
[35]
Perrot-Applanat, M.; Di Benedetto, M. Autocrine functions of VEGF in breast tumor cells: Adhesion, survival, migration and invasion. Cell Adhes. Migr., 2012, 6(6), 547-553.
[http://dx.doi.org/10.4161/cam.23332] [PMID: 23257828]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy