Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

The Potential Use of Anticancer Peptides (ACPs) in the Treatment of Hepatocellular Carcinoma

Author(s): Chu Xin Ng and Sau Har Lee*

Volume 20, Issue 3, 2020

Page: [187 - 196] Pages: 10

DOI: 10.2174/1568009619666191111141032

Price: $65

Abstract

Peptides have acquired increasing interest as promising therapeutics, particularly as anticancer alternatives during recent years. They have been reported to demonstrate incredible anticancer potentials due to their low manufacturing cost, ease of synthesis and great specificity and selectivity. Hepatocellular carcinoma (HCC) is among the leading cause of cancer death globally, and the effectiveness of current liver treatment has turned out to be a critical issue in treating the disease efficiently. Hence, new interventions are being explored for the treatment of hepatocellular carcinoma. Anticancer peptides (ACPs) were first identified as part of the innate immune system of living organisms, demonstrating promising activity against infectious diseases. Differentiated beyond the traditional effort on endogenous human peptides, the discovery of peptide drugs has evolved to rely more on isolation from other natural sources or through the medicinal chemistry approach. Up to the present time, the pharmaceutical industry intends to conduct more clinical trials for the development of peptides as alternative therapy since peptides possess numerous advantages such as high selectivity and efficacy against cancers over normal tissues, as well as a broad spectrum of anticancer activity. In this review, we present an overview of the literature concerning peptide’s physicochemical properties and describe the contemporary status of several anticancer peptides currently engaged in clinical trials for the treatment of hepatocellular carcinoma.

Keywords: Hepatocellular carcinoma, liver cancer, anticancer peptides, clinical trials, drug resistance, therapeutic peptides.

[1]
Pushpanathan, M.; Gunasekaran, P.; Rajendhran, J. Antimicrobial peptides: Versatile biological properties. Int. J. Pept., 2013, 2013, 675391
[http://dx.doi.org/10.1155/2013/675391] [PMID: 23935642]
[2]
Seo, M-D.; Won, H-S.; Kim, J-H.; Mishig-Ochir, T.; Lee, B-J.; Seo, M-D.; Won, H-S.; Kim, J-H.; Mishig-Ochir, T.; Lee, B-J. Antimicrobial peptides for therapeutic applications: A review. Molecules, 2012, 17(10), 12276-12286.
[http://dx.doi.org/10.3390/molecules171012276] [PMID: 23079498]
[3]
Bahar, A.A.; Ren, D. Antimicrobial peptides. Pharmaceuticals (Basel), 2013, 6(12), 1543-1575.
[http://dx.doi.org/10.3390/ph6121543] [PMID: 24287494]
[4]
Felício, M.R.; Silva, O.N.; Gonçalves, S.; Santos, N.C.; Franco, O.L. Peptides with dual antimicrobial and anticancer activities. Front Chem., 2017, 5, 5.
[http://dx.doi.org/10.3389/fchem.2017.00005] [PMID: 28271058]
[5]
Wu, D.; Gao, Y.; Qi, Y.; Chen, L.; Ma, Y.; Li, Y. Peptide-based cancer therapy: Opportunity and challenge. Cancer Lett., 2014, 351(1), 13-22.
[http://dx.doi.org/10.1016/j.canlet.2014.05.002] [PMID: 24836189]
[6]
Deslouches, B.; Di, Y.P. Antimicrobial peptides with selective antitumor mechanisms: Prospect for anticancer applications. Oncotarget, 2017, 8(28), 46635-46651.
[http://dx.doi.org/10.18632/oncotarget.16743] [PMID: 28422728]
[7]
Lee, C-S.; Taib, N.A.M.; Ashrafzadeh, A.; Fadzli, F.; Harun, F.; Rahmat, K.; Hoong, S.M.; Abdul-Rahman, P.S.; Hashim, O.H. Unmasking heavily O-glycosylated serum proteins using perchloric acid: Identification of serum proteoglycan 4 and protease C1 inhibitor as molecular indicators for screening of breast cancer. PLoS One, 2016, 11(2), e0149551
[http://dx.doi.org/10.1371/journal.pone.0149551] [PMID: 26890881]
[8]
Le, C-F.; Fang, C-M.; Sekaran, S.D. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob. Agents Chemother., 2017, 61(4), e02340-e16.
[http://dx.doi.org/10.1128/AAC.02340-16] [PMID: 28167546]
[9]
Tirla, A.; Rivera-Fuentes, P. Peptide targeting of an intracellular receptor of the secretory pathway. Biochemistry, 2019, 58(9), 1184-1187.
[http://dx.doi.org/10.1021/acs.biochem.9b00029] [PMID: 30785735]
[10]
Teixeira, V.; Feio, M.J.; Bastos, M. Role of lipids in the interaction of antimicrobial peptides with membranes. Prog. Lipid Res., 2012, 51(2), 149-177.
[http://dx.doi.org/10.1016/j.plipres.2011.12.005] [PMID: 22245454]
[11]
Lee, E.; Koskimaki, J.E.; Pandey, N.B.; Popel, A.S. Inhibition of lymphangiogenesis and angiogenesis in breast tumor xenografts and lymph nodes by a peptide derived from transmembrane protein 45A. Neoplasia, 2013, 15(2), 112-124.
[http://dx.doi.org/10.1593/neo.121638] [PMID: 23441126]
[12]
Wu, D.; Gao, Y.; Chen, L.; Qi, Y.; Kang, Q.; Wang, H.; Zhu, L.; Ye, Y.; Zhai, M. Anti-tumor effects of a novel chimeric peptide on S180 and H22 xenografts bearing nude mice. Peptides, 2010, 31(5), 850-864.
[http://dx.doi.org/10.1016/j.peptides.2010.01.007] [PMID: 20132854]
[13]
Wang, W.; Chen, X.; Li, T.; Li, Y.; Wang, R.; He, D.; Luo, W.; Li, X.; Wu, X. Screening a phage display library for a novel FGF8b-binding peptide with anti-tumor effect on prostate cancer. Exp. Cell Res., 2013, 319(8), 1156-1164.
[http://dx.doi.org/10.1016/j.yexcr.2013.02.007] [PMID: 23466786]
[14]
Wu, X.; Huang, H.; Wang, C.; Lin, S.; Huang, Y.; Wang, Y.; Liang, G.; Yan, Q.; Xiao, J.; Wu, J.; Yang, Y.; Li, X. Identification of a novel peptide that blocks basic fibroblast growth factor-mediated cell proliferation. Oncotarget, 2013, 4(10), 1819-1828.
[http://dx.doi.org/10.18632/oncotarget.1312] [PMID: 24142482]
[15]
Murugaiyan, G.; Saha, B. IL-27 in tumor immunity and immunotherapy. Trends Mol. Med., 2013, 19(2), 108-116.
[http://dx.doi.org/10.1016/j.molmed.2012.12.002] [PMID: 23306374]
[16]
Ogawa, C.; Liu, Y.J.; Kobayashi, K.S. Muramyl dipeptide and its derivatives: Peptide adjuvant in immunological disorders and cancer therapy. Curr. Bioact. Compd., 2011, 7(3), 180-197.
[http://dx.doi.org/10.2174/157340711796817913] [PMID: 22180736]
[17]
Chernysh, S.; Kozuharova, I. Anti-tumor activity of a peptide combining patterns of insect alloferons and mammalian immunoglobulins in naïve and tumor antigen vaccinated mice. Int. Immunopharmacol., 2013, 17(4), 1090-1093.
[http://dx.doi.org/10.1016/j.intimp.2013.10.014] [PMID: 24183654]
[18]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[19]
Balogh, J.; Victor, D., III; Asham, E.H.; Burroughs, S.G.; Boktour, M.; Saharia, A.; Li, X.; Ghobrial, R.M.; Monsour, H.P., Jr; Monsour, H.P. Hepatocellular carcinoma: A review. J. Hepatocell. Carcinoma, 2016, 3, 41-53.
[http://dx.doi.org/10.2147/JHC.S61146] [PMID: 27785449]
[20]
Liu, Y.; Chang, C-C.H.; Marsh, G.M.; Wu, F. Population attributable risk of aflatoxin-related liver cancer: systematic review and meta-analysis. Eur. J. Cancer, 2012, 48(14), 2125-2136.
[http://dx.doi.org/10.1016/j.ejca.2012.02.009] [PMID: 22405700]
[21]
Corey, K.E.; Pratt, D.S. Current status of therapy for hepatocellular carcinoma. Therap. Adv. Gastroenterol., 2009, 2(1), 45-57.
[http://dx.doi.org/10.1177/1756283X08100328] [PMID: 21180533]
[22]
Hu, J.; Chen, C.; Zhang, S.; Zhao, X.; Xu, H.; Zhao, X.; Lu, J.R. Designed antimicrobial and antitumor peptides with high selectivity. Biomacromolecules, 2011, 12(11), 3839-3843.
[http://dx.doi.org/10.1021/bm201098j] [PMID: 21955251]
[23]
Fadnes, B.; Uhlin-Hansen, L.; Lindin, I.; Rekdal, Ø. Small lytic peptides escape the inhibitory effect of heparan sulfate on the surface of cancer cells. BMC Cancer, 2011, 11(1), 116.
[http://dx.doi.org/10.1186/1471-2407-11-116] [PMID: 21453492]
[24]
Segawa, K.; Nagata, S. An apoptotic ‘eat me’ signal: Phosphatidylserine exposure. Trends Cell Biol., 2015, 25(11), 639-650.
[http://dx.doi.org/10.1016/j.tcb.2015.08.003] [PMID: 26437594]
[25]
Gestin, M.; Dowaidar, M.; Langel, Ü. Uptake Mechanism of Cell-Penetrating Peptides; Springer: Cham, 2017, pp. 255-264.
[26]
Huang, Y.B.; Wang, X.F.; Wang, H.Y.; Liu, Y.; Chen, Y. Studies on mechanism of action of anticancer peptides by modulation of hydrophobicity within a defined structural framework. Mol. Cancer Ther., 2011, 10(3), 416-426.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0811] [PMID: 21252288]
[27]
Yang, Q-Z.; Wang, C.; Lang, L.; Zhou, Y.; Wang, H.; Shang, D-J. Design of potent, non-toxic anticancer peptides based on the structure of the antimicrobial peptide, temporin-1CEa. Arch. Pharm. Res., 2013, 36(11), 1302-1310.
[http://dx.doi.org/10.1007/s12272-013-0112-8] [PMID: 23609760]
[28]
Najjar, K.; Erazo-Oliveras, A.; Brock, D.J.; Wang, T-Y.; Pellois, J-P. An l- to d-amino acid conversion in an endosomolytic analog of the cell-penetrating peptide TAT influences proteolytic stability, endocytic uptake, and endosomal escape. J. Biol. Chem., 2017, 292(3), 847-861.
[http://dx.doi.org/10.1074/jbc.M116.759837] [PMID: 27923812]
[29]
Papo, N.; Shai, Y. New lytic peptides based on the D, L-amphipathic helix motif preferentially kill tumor cells compared to normal cells. Biochemistry, 2003, 42(31), 9346-9354.
[http://dx.doi.org/10.1021/bi027212o] [PMID: 12899621]
[30]
Roxin, Á.; Zheng, G. Flexible or fixed: A comparative review of linear and cyclic cancer-targeting peptides. Future Med. Chem., 2012, 4(12), 1601-1618.
[http://dx.doi.org/10.4155/fmc.12.75] [PMID: 22917248]
[31]
Rink, R.; Arkema-Meter, A.; Baudoin, I.; Post, E.; Kuipers, A.; Nelemans, S.A.; Akanbi, M.H.J.; Moll, G.N. To protect peptide pharmaceuticals against peptidases. J. Pharmacol. Toxicol. Methods, 2010, 61(2), 210-218.
[http://dx.doi.org/10.1016/j.vascn.2010.02.010] [PMID: 20176117]
[32]
Tørfoss, V.; Ausbacher, D.; Cavalcanti-Jacobsen, C. de A.; Hansen, T.; Brandsdal, B-O.; Havelkova, M.; Strøm, M.B. Synthesis of anticancer heptapeptides containing a unique lipophilic β(2,2) -amino acid building block. J. Pept. Sci., 2012, 18(3), 170-176.
[http://dx.doi.org/10.1002/psc.1434] [PMID: 22249949]
[33]
Li, J.; Koh, J-J.; Liu, S.; Lakshminarayanan, R.; Verma, C.S.; Beuerman, R.W. Membrane active antimicrobial peptides: Translating mechanistic insights to design. Front. Neurosci., 2017, 11, 73.
[http://dx.doi.org/10.3389/fnins.2017.00073] [PMID: 28261050]
[34]
Rosenberg, S.A.; Restifo, N.P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science, 2015, 348(6230), 62-68.
[http://dx.doi.org/10.1126/science.aaa4967] [PMID: 25838374]
[35]
Haney, E.F.; Hancock, R.E.W. Peptide design for antimicrobial and immunomodulatory applications. Biopolymers, 2013, 100(6), 572-583.
[http://dx.doi.org/10.1002/bip.22250] [PMID: 23553602]
[36]
Reeves, M.E.; Royal, R.E.; Lam, J.S.; Rosenberg, S.A.; Hwu, P.; Dissette, V.; Lee, E.; Glaspy, J.A.; McBride, W.H.; Economou, J.S. Retroviral transduction of human dendritic cells with a tumor-associated antigen gene. Cancer Res., 1996, 56(24), 5672-5677.
[PMID: 8971174]
[37]
Ribas, A.; Butterfield, L.H.; McBride, W.H.; Jilani, S.M.; Bui, L.A.; Vollmer, C.M.; Lau, R.; Dissette, V.B.; Hu, B.; Chen, A.Y.; Glaspy, J.A.; Economou, J.S. Genetic immunization for the melanoma antigen MART-1/Melan-A using recombinant adenovirus-transduced murine dendritic cells. Cancer Res., 1997, 57(14), 2865-2869.
[PMID: 9230191]
[38]
Butterfield, L.H.; Ribas, A.; Dissette, V.B.; Amarnani, S.N.; Vu, H.T.; Oseguera, D.; Wang, H-J.; Elashoff, R.M.; McBride, W.H.; Mukherji, B.; Cochran, A.J.; Glaspy, J.A.; Economou, J.S. Determinant spreading associated with clinical response in dendritic cell-based immunotherapy for malignant melanoma. Clin. Cancer Res., 2003, 9(3), 998-1008.
[PMID: 12631598]
[39]
Bos, J.L. Ras oncogenes in human cancer: A review. Cancer Res., 1989, 49(17), 4682-4689.
[PMID: 2547513]
[40]
Jardetzky, T.S.; Lane, W.S.; Robinson, R.A.; Madden, D.R.; Wiley, D.C. Identification of self peptides bound to purified HLA-B27. Nature, 1991, 353(6342), 326-329.
[http://dx.doi.org/10.1038/353326a0] [PMID: 1922338]
[41]
Rahma, O.E.; Hamilton, J.M.; Wojtowicz, M.; Dakheel, O.; Bernstein, S.; Liewehr, D.J.; Steinberg, S.M.; Khleif, S.N. The immunological and clinical effects of mutated ras peptide vaccine in combination with IL-2, GM-CSF, or both in patients with solid tumors. J. Transl. Med., 2014, 12, 55.
[http://dx.doi.org/10.1186/1479-5876-12-55] [PMID: 24565030]
[42]
Berinstein, N.L. Carcinoembryonic antigen as a target for therapeutic anticancer vaccines: A review. J. Clin. Oncol., 2002, 20(8), 2197-2207.
[http://dx.doi.org/10.1200/JCO.2002.08.017] [PMID: 11956282]
[43]
Lesterhuis, W.J.; De Vries, I.J.M.; Schreibelt, G.; Schuurhuis, D.H.; Aarntzen, E.H.; De Boer, A.; Scharenborg, N.M.; Van De Rakt, M.; Hesselink, E.J.; Figdor, C.G.; Adema, G.J.; Punt, C.J. Immunogenicity of dendritic cells pulsed with CEA peptide or transfected with CEA mRNA for vaccination of colorectal cancer patients. Anticancer Res., 2010, 30(12), 5091-5097.
[PMID: 21187495]
[44]
Epping, M.T.; Wang, L.; Edel, M.J.; Carlée, L.; Hernandez, M.; Bernards, R. The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling. Cell, 2005, 122(6), 835-847.
[http://dx.doi.org/10.1016/j.cell.2005.07.003] [PMID: 16179254]
[45]
Conway, R.E.; Petrovic, N.; Li, Z.; Heston, W.; Wu, D.; Shapiro, L.H. Prostate-specific membrane antigen regulates angiogenesis by modulating integrin signal transduction. Mol. Cell. Biol., 2006, 26(14), 5310-5324.
[http://dx.doi.org/10.1128/MCB.00084-06] [PMID: 16809768]
[46]
Weber, J.S.; Vogelzang, N.J.; Ernstoff, M.S.; Goodman, O.B.; Cranmer, L.D.; Marshall, J.L.; Miles, S.; Rosario, D.; Diamond, D.C.; Qiu, Z.; Obrocea, M.; Bot, A. A phase 1 study of a vaccine targeting preferentially expressed antigen in melanoma and prostate-specific membrane antigen in patients with advanced solid tumors. J. Immunother., 2011, 34(7), 556-567.
[http://dx.doi.org/10.1097/CJI.0b013e3182280db1] [PMID: 21760528]
[47]
Buonaguro, L.; Mayer-Mokler, A.; Accolla, R.; Ma, Y.T.; Heidenreich, R.; Avallone, A.; Simeone, E.; Koenigsrainer, A.; Loeffler, M.; Gouttefangeas, C. HepaVac-101 first-in-man therapeutic cancer vaccine phase I/II clinical trial for hepatocellular carcinoma patients. J. Clin. Oncol., 2018, 36(15_suppl), TPS3135-TPS3135.
[48]
Karlsson-Parra, A.; Kovacka, J.; Heimann, E.; Jorvid, M.; Zeilemaker, S.; Longhurst, S.; Suenaert, P. Ilixadencel - an allogeneic cell-based anticancer immune primer for intratumoral administration. Pharm. Res., 2018, 35(8), 156.
[http://dx.doi.org/10.1007/s11095-018-2438-x] [PMID: 29904904]
[49]
Harzke, A.J.; Goodman, K.J.; Mullen, P.D.; Baillargeon, J. Heterogeneity in hepatitis B virus (HBV) seroprevalence estimates from U.S. adult incarcerated populations. Ann. Epidemiol., 2009, 19(9), 647-650.
[http://dx.doi.org/10.1016/j.annepidem.2009.04.001] [PMID: 19596205]
[50]
Nakatsura, T.; Yoshitake, Y.; Senju, S.; Monji, M.; Komori, H.; Motomura, Y.; Hosaka, S.; Beppu, T.; Ishiko, T.; Kamohara, H.; Ashihara, H.; Katagiri, T.; Furukawa, Y.; Fujiyama, S.; Ogawa, M.; Nakamura, Y.; Nishimura, Y. Glypican-3, overexpressed specifically in human hepatocellular carcinoma, is a novel tumor marker. Biochem. Biophys. Res. Commun., 2003, 306(1), 16-25.
[http://dx.doi.org/10.1016/S0006-291X(03)00908-2] [PMID: 12788060]
[51]
Komori, H.; Nakatsura, T.; Senju, S.; Yoshitake, Y.; Motomura, Y.; Ikuta, Y.; Fukuma, D.; Yokomine, K.; Harao, M.; Beppu, T.; Matsui, M.; Torigoe, T.; Sato, N.; Baba, H.; Nishimura, Y. Identification of HLA-A2- or HLA-A24-restricted CTL epitopes possibly useful for glypican-3-specific immunotherapy of hepatocellular carcinoma. Clin. Cancer Res., 2006, 12(9), 2689-2697.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2267] [PMID: 16675560]
[52]
Nakatsura, T.; Komori, H.; Kubo, T.; Yoshitake, Y.; Senju, S.; Katagiri, T.; Furukawa, Y.; Ogawa, M.; Nakamura, Y.; Nishimura, Y. Mouse homologue of a novel human oncofetal antigen, glypican-3, evokes T-cell-mediated tumor rejection without autoimmune reactions in mice. Clin. Cancer Res., 2004, 10(24), 8630-8640.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1177] [PMID: 15623647]
[53]
Nobuoka, D.; Yoshikawa, T.; Sawada, Y.; Fujiwara, T.; Nakatsura, T. Peptide vaccines for hepatocellular carcinoma. Hum. Vaccin. Immunother., 2013, 9(1), 210-212.
[http://dx.doi.org/10.4161/hv.22473] [PMID: 23442593]
[54]
Bidwell, G.L., III; Raucher, D. Therapeutic peptides for cancer therapy. Part I peptide inhibitors of signal transduction cascades. Expert Opin. Drug Deliv., 2009, 6(10), 1033-1047.
[http://dx.doi.org/10.1517/17425240903143745] [PMID: 19637980]
[55]
Sehdev, A.; Karrison, T.; Zha, Y.; Janisch, L.; Turcich, M.; Cohen, E.E.W.; Maitland, M.; Polite, B.N.; Gajewski, T.F.; Salgia, R.; Pinto, N.; Bissonnette, M.B.; Fleming, G.F.; Ratain, M.J.; Sharma, M.R. A pharmacodynamic study of sirolimus and metformin in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2018, 82(2), 309-317.
[http://dx.doi.org/10.1007/s00280-018-3619-3] [PMID: 29948021]
[56]
Teesalu, T.; Sugahara, K.N.; Kotamraju, V.R.; Ruoslahti, E. C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc. Natl. Acad. Sci. USA, 2009, 106(38), 16157-16162.
[http://dx.doi.org/10.1073/pnas.0908201106] [PMID: 19805273]
[57]
Kaushal, V.; Mukunyadzi, P.; Dennis, R.A.; Siegel, E.R.; Johnson, D.E.; Kohli, M. Stage-specific characterization of the vascular endothelial growth factor axis in prostate cancer: expression of lymphangiogenic markers is associated with advanced-stage disease. Clin. Cancer Res., 2005, 11(2 Pt 1), 584-593.
[PMID: 15701844]
[58]
Butterfield, L.H.; Koh, A.; Meng, W.; Vollmer, C.M.; Ribas, A.; Dissette, V.; Lee, E.; Glaspy, J.A.; McBride, W.H.; Economou, J.S. Generation of human T-cell responses to an HLA-A2.1-restricted peptide epitope derived from alpha-fetoprotein. Cancer Res., 1999, 59(13), 3134-3142.
[PMID: 10397256]
[59]
Marr, A.K.; Gooderham, W.J.; Hancock, R.E. Antibacterial peptides for therapeutic use: Obstacles and realistic outlook. Curr. Opin. Pharmacol., 2006, 6(5), 468-472.
[http://dx.doi.org/10.1016/j.coph.2006.04.006] [PMID: 16890021]
[60]
Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des., 2013, 81(1), 136-147.
[http://dx.doi.org/10.1111/cbdd.12055] [PMID: 23253135]
[61]
Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem., 2018, 26(10), 2700-2707.
[http://dx.doi.org/10.1016/j.bmc.2017.06.052] [PMID: 28720325]
[62]
Drusano, G.L. Antimicrobial pharmacodynamics: Critical interactions of ‘bug and drug’. Nat. Rev. Microbiol., 2004, 2(4), 289-300.
[http://dx.doi.org/10.1038/nrmicro862] [PMID: 15031728]
[63]
Vlieghe, P.; Lisowski, V.; Martinez, J.; Khrestchatisky, M. Synthetic therapeutic peptides: Science and market. Drug Discov. Today, 2010, 15(1-2), 40-56.
[http://dx.doi.org/10.1016/j.drudis.2009.10.009] [PMID: 19879957]
[64]
Kaspar, A.A.; Reichert, J.M. Future directions for peptide therapeutics development. Drug Discov. Today, 2013, 18(17-18), 807-817.
[65]
Raucher, D.; Ryu, J.S. Cell-penetrating peptides: Strategies for anticancer treatment. Trends Mol. Med., 2015, 21(9), 560-570.
[http://dx.doi.org/10.1016/j.molmed.2015.06.005] [PMID: 26186888]
[66]
Böttger, R.; Hoffmann, R.; Knappe, D. Differential stability of therapeutic peptides with different proteolytic cleavage sites in blood, plasma and serum. PLoS One, 2017, 12(6), e0178943
[http://dx.doi.org/10.1371/journal.pone.0178943] [PMID: 28575099]
[67]
Sawada, Y.; Yoshikawa, T.; Nobuoka, D.; Shirakawa, H.; Kuronuma, T.; Motomura, Y.; Mizuno, S.; Ishii, H.; Nakachi, K.; Konishi, M.; Nakagohri, T.; Takahashi, S.; Gotohda, N.; Takayama, T.; Yamao, K.; Uesaka, K.; Furuse, J.; Kinoshita, T.; Nakatsura, T. Phase I trial of a glypican-3-derived peptide vaccine for advanced hepatocellular carcinoma: Immunologic evidence and potential for improving overall survival. Clin. Cancer Res., 2012, 18(13), 3686-3696.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-3044] [PMID: 22577059]
[68]
Imaging the Tumor Response to the Tumor-Penetrating Peptide IRGD;
[69]
Kelly, G.J.; Kia, A.F-A.; Hassan, F.; O’Grady, S.; Morgan, M.P.; Creaven, B.S.; McClean, S.; Harmey, J.H.; Devocelle, M. Polymeric prodrug combination to exploit the therapeutic potential of antimicrobial peptides against cancer cells. Org. Biomol. Chem., 2016, 14(39), 9278-9286.
[http://dx.doi.org/10.1039/C6OB01815G] [PMID: 27722734]
[70]
Dąbrowska, K.; Kaźmierczak, Z.; Majewska, J.; Miernikiewicz, P.; Piotrowicz, A.; Wietrzyk, J.; Lecion, D.; Hodyra, K.; Nasulewicz-Goldeman, A.; Owczarek, B.; Górski, A. Bacteriophages displaying anticancer peptides in combined antibacterial and anticancer treatment. Future Microbiol., 2014, 9(7), 861-869.
[http://dx.doi.org/10.2217/fmb.14.50] [PMID: 25156375]
[71]
Jeong, W-J.; Bu, J.; Kubiatowicz, L.J.; Chen, S.S.; Kim, Y.; Hong, S. Peptide-nanoparticle conjugates: A next generation of diagnostic and therapeutic platforms? Nano Converg., 2018, 5(1), 38.
[http://dx.doi.org/10.1186/s40580-018-0170-1] [PMID: 30539365]
[72]
Colombo, G.; Curnis, F.; De Mori, G.M.S.; Gasparri, A.; Longoni, C.; Sacchi, A.; Longhi, R.; Corti, A. Structure-activity relationships of linear and cyclic peptides containing the NGR tumor-homing motif. J. Biol. Chem., 2002, 277(49), 47891-47897.
[http://dx.doi.org/10.1074/jbc.M207500200] [PMID: 12372830]
[73]
Murphy, E.A.; Majeti, B.K.; Barnes, L.A.; Makale, M.; Weis, S.M.; Lutu-Fuga, K.; Wrasidlo, W.; Cheresh, D.A. Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc. Natl. Acad. Sci. USA, 2008, 105(27), 9343-9348.
[http://dx.doi.org/10.1073/pnas.0803728105] [PMID: 18607000]
[74]
Lesterhuis, W.J.; de Vries, I.J.M.; Schuurhuis, D.H.; Boullart, A.C.I.; Jacobs, J.F.M.; de Boer, A.J.; Scharenborg, N.M.; Brouwer, H.M.H.; van de Rakt, M.W.M.M.; Figdor, C.G.; Ruers, T.J.; Adema, G.J.; Punt, C.J. Vaccination of colorectal cancer patients with CEA-loaded dendritic cells: Antigen-specific T cell responses in DTH skin tests. Ann. Oncol., 2006, 17(6), 974-980.
[http://dx.doi.org/10.1093/annonc/mdl072] [PMID: 16600979]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy