Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Comparative Study on the Antibacterial Properties of Nanoemulsion of Zataria multiflora Essential Oil Fortified with Cinnamaldehyde Against Common Foodborne Pathogens

Author(s): Shahnaz Soufi, Majid Aminzare*, Hassan Hassanzad Azar and Koorosh Kamali

Volume 10, Issue 5, 2020

Page: [631 - 641] Pages: 11

DOI: 10.2174/2210315509666191111105918

Price: $65

Abstract

Background: Nowadays, the application of several and natural preservatives in small quantity is a more preferred approach. In this regard, one of the effective methods is the formation of nanoemulsion of essential oils.

Objective: The objective of this study was to compare the in vitro antibacterial activities of cinnamaldehyde (CIN) and Zataria multiflora essential oil in conventional (ZEO), nanoemulsion (NZEO) and fortified nanoemulsion (NZEOC) forms against common foodborne pathogens.

Methods: Firstly, the Zataria multiflora essential oil was analyzed by GC-MS. The nanoemulsion of Z. multiflora essential oil was then prepared alone and fortified with cinnamaldehyde. Finally, their antimicrobial activity against Listeria monocytogenes, Staphylococcus aureus, Salmonella enteritidis and Escherichia coli was evaluated.

Results: Based on the results, carvacrol (36.62%) was found to be the most important compound of essential oil. In disc diffusion and micro-dilution methods, the addition of CIN to ZEO during nanoemulsion formation (NZEOC) showed more antibacterial activity when compared to the individual addition of NZEO and CIN (NZEO+CIN). However, according to the vapor phase diffusion method, nano-treatments exhibited less inhibitory effects than the other treatments.

Conclusion: It can be concluded that the fortification of essential oils with their derived pure compounds during nanoemulsion formation, can be used as a suitable alternative to chemical antibacterial compounds in the food industry.

Keywords: Natural preservative, vapor phase diffusion, Zataria multiflora essential oil, cinnamaldehyde, nanoemulsion, foodborne pathogen.

Graphical Abstract
[1]
Alizade, O.; Ehsani, A.; Hashemi, M.; Mohamadi, S.; Khalili, S. Comparative antibacterial effects of essential oils of Melissa officinalis and Deracocephalum moldavica L. against some pathogenic bacteria in food in vitro. Shahrekord Univ. Med. Sci. J., 2015, 17(4), 80-87.
[2]
Tauxe, R.V. Emerging foodborne pathogens. Int. J. Food Microbiol., 2002, 78(1-2), 31-41.
[http://dx.doi.org/10.1016/S0168-1605(02)00232-5 ] [PMID: 12222636]
[3]
Swartz, M.N. Human diseases caused by foodborne pathogens of animal origin. Clinical. Infect. Dis., 2002, 34(3), S111-S22.
[http://dx.doi.org/10.1086/340248]
[4]
Davidson, P.; Cekmer, H.B.; Monu, E.; Techathuvanan, C. The use of natural antimicrobials in food: An overview. Hand-book Nat. Antimicrob. Food Safety Qual; , 2014, pp. 1-19.
[5]
Basti, A.A.; Misaghi, A.; Khaschabi, D. Growth response and modelling of the effects of Zataria multiflora Boiss. essential oil, pH and temperature on Salmonella typhimurium and Staphylococcus aureus. Lebensm. Wiss. Technol., 2007, 40(6), 973-981.
[http://dx.doi.org/10.1016/j.lwt.2006.07.007]
[6]
Sharififar, F.; Moshafi, M.; Mansouri, S.; Khodashenas, M.; Khoshnoodi, M. In vitro evaluation of antibacterial and antioxidant activities of the essential oil and methanol extract of endemic Zataria multiflora Boiss. Food Control, 2007, 18(7), 800-805.
[http://dx.doi.org/10.1016/j.foodcont.2006.04.002]
[7]
Rahimi Ahar, L.; Rahimi Ahar, Z. Solvents effects: Density functional theory studies of trans-cinnamaldehyde. J. Appl. Chem., 2016, 11(40), 23-32.
[8]
Fujita, N.; Tanaka, E.; Murata, M. Cinnamaldehyde inhibits phenylalanine ammonia-lyase and enzymatic browning of cut lettuce. Biosci. Biotechnol. Biochem., 2006, 70(3), 672-676.
[http://dx.doi.org/10.1271/bbb.70.672 ] [PMID: 16556984]
[9]
Adams, T.B.; Cohen, S.M.; Doull, J.; Feron, V.J.; Goodman, J.I.; Marnett, L.J.; Munro, I.C.; Portoghese, P.S.; Smith, R.L.; Waddell, W.J.; Wagner, B.M. The FEMA GRAS assessment of cinnamyl derivatives used as flavor ingredients. Food Chem. Toxicol., 2004, 42(2), 157-185.
[http://dx.doi.org/10.1016/j.fct.2003.08.021 ] [PMID: 14667463]
[10]
Friedman, M. Chemistry, antimicrobial mechanisms, and antibiotic activities of cinnamaldehyde against pathogenic bacteria in animal feeds and human foods. J. Agric. Food Chem., 2017, 65(48), 10406-10423.
[http://dx.doi.org/10.1021/acs.jafc.7b04344 ] [PMID: 29155570]
[11]
Firmino, D.F.; Cavalcante, T.T.; Gomes, G.A.; Firmino, N.; Rosa, L.D. Antibacterial and antibiofilm activities of Cinnamomum Sp. essential oil and cinnamaldehyde: Antimicrobial activities. Scient. World J., 2018.
[12]
Utchariyakiat, I.; Surassmo, S.; Jaturanpinyo, M.; Khuntayaporn, P.; Chomnawang, M.T. Efficacy of cinnamon bark oil and cinnamaldehyde on anti-multidrug resistant Pseudomonas aeruginosa and the synergistic effects in combination with other antimicrobial agents. BMC Complement. Altern. Med., 2016, 16(1), 158.
[http://dx.doi.org/10.1186/s12906-016-1134-9 ] [PMID: 27245046]
[13]
Valero, M.; Francés, E. Synergistic bactericidal effect of carvacrol, cinnamaldehyde or thymol and refrigeration to inhibit Bacillus cereus in carrot broth. Food Microbiol., 2006, 23(1), 68-73.
[http://dx.doi.org/10.1016/j.fm.2005.01.016 ] [PMID: 16942988]
[14]
Chau, C-F.; Wu, S-H.; Yen, G.-C. The development of regulations for food nanotechnology. Trends Food Sci. Technol., 2007, 18(5), 269-280.
[http://dx.doi.org/10.1016/j.tifs.2007.01.007]
[15]
Xue, J.; Michael Davidson, P.; Zhong, Q. Antimicrobial activity of thyme oil co-nanoemulsified with Sodium caseinate and lecithin. Int. J. Food Microbiol., 2015, 210, 1-8.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2015.06.003 ] [PMID: 26082324]
[16]
Roy, A.; Guha, P. Formulation and characterization of betel leaf (Piper betel L.) essential oil based nanoemulsion and its in vitro antibacterial efficacy against selected food pathogens. J. Food Process. Preserv., 2018, 42(6), e13617.
[http://dx.doi.org/10.1111/jfpp.13617]
[17]
Nirmal, N.P.; Mereddy, R.; Li, L.; Sultanbawa, Y. Formulation, characterisation and antibacterial activity of lemon myrtle and anise myrtle essential oil in water nanoemulsion. Food Chem., 2018, 254, 1-7.
[http://dx.doi.org/10.1016/j.foodchem.2018.01.173 ] [PMID: 29548427]
[18]
Chang, Y.; McLandsborough, L.; McClements, D.J. Physicochemical properties and antimicrobial efficacy of carvacrol nanoemulsions formed by spontaneous emulsification. J. Agric. Food Chem., 2013, 61(37), 8906-8913.
[http://dx.doi.org/10.1021/jf402147p ] [PMID: 23998790]
[19]
Jo, Y-J.; Chun, J-Y.; Kwon, Y-J.; Min, S-G.; Hong, G-P.; Choi, M.-J. Physical and antimicrobial properties of transcinnamaldehyde nanoemulsions in water melon juice. Lebensm. Wiss. Technol., 2015, 60(1), 444-451.
[http://dx.doi.org/10.1016/j.lwt.2014.09.041]
[20]
Hashemi, M.; Ehsani, A.; Jazani, N.H.; Aliakbarlu, J.; Mahmoudi, R. Chemical composition and in vitro antibacterial activity of essential oil and methanol extract of Echinophora platyloba DC against some of food-borne pathogenic bacteria. Veterinary Research Forum, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran, 2013.
[21]
Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, 2007.
[22]
Hashemi Gahruie, H.; Ziaee, E.; Eskandari, M.H.; Hosseini, S.M.H. Characterization of basil seed gum-based edible films incorporated with Zataria multiflora essential oil nanoemulsion. Carbohydr. Polym., 2017, 166, 93-103.
[http://dx.doi.org/10.1016/j.carbpol.2017.02.103 ] [PMID: 28385252]
[23]
Abdollahzadeh, E.; Rezaei, M.; Hosseini, H. Antibacterial activity of plant essential oils and extracts: The role of thyme essential oil, nisin, and their combination to control Listeria monocytogenes inoculated in minced fish meat. Food Control 2014, 35, 1, 177-.
[http://dx.doi.org/10.1016/j.foodcont.2013.07.004]
[24]
Weerakkody, N.S.; Caffin, N.; Turner, M.S.; Dykes, G.A. In vitro antimicrobial activity of less-utilized spice and herb extracts against selected food-borne bacteria. Food Control, 2010, 21(10), 1408-1414.
[http://dx.doi.org/10.1016/j.foodcont.2010.04.014]
[25]
Alizadeh Sani, M.; Ehsani, A.; Hashemi, M. Whey protein isolate/cellulose nanofibre/TiO2 nanoparticle/rosemary essential oil nanocomposite film: Its effect on microbial and sensory quality of lamb meat and growth of common foodborne pathogenic bacteria during refrigeration. Int. J. Food Microbiol., 2017, 251, 8-14.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2017.03.018 ] [PMID: 28376399]
[26]
Masoomi, V.; Tajik, H.; Moradi, M.; Forough, M.; Shahabi, N. Antimicrobial effects of Zataria multiflora boiss. Essential oil nanoemulsion against Escherichia coli O157: H7. J. Urmia Uni. Med. Sci., 2016, 27(7), 608-617.
[27]
Ziaee, E.; Razmjooei, M.; Shad, E.; Eskandari, M.H. Antibacterial mechanisms of Zataria multiflora Boiss. essential oil against Lactobacillus curvatus. LWT, 2018, 87, 406-412.
[http://dx.doi.org/10.1016/j.lwt.2017.08.089]
[28]
Mahmoudvand, H.; Mirbadie, S.R.; Sadooghian, S.; Harandi, M.F.; Jahanbakhsh, S.; Saedi Dezaki, E. Chemical composition and scolicidal activity of Zataria multiflora Boiss essen-tial oil. J. Essent. Oil Res., 2017, 29(1), 42-47.
[http://dx.doi.org/10.1080/10412905.2016.1201546]
[29]
Tiwari, B.K.; Valdramidis, V.P.; O’Donnell, C.P.; Muthukumarappan, K.; Bourke, P.; Cullen, P.J. Application of natural antimicrobials for food preservation. J. Agric. Food Chem., 2009, 57(14), 5987-6000.
[http://dx.doi.org/10.1021/jf900668n ] [PMID: 19548681]
[30]
Ultee, A.; Slump, R.A.; Steging, G.; Smid, E.J. Antimicrobial activity of carvacrol toward Bacillus cereus on rice. J. Food Prot., 2000, 63(5), 620-624.
[http://dx.doi.org/10.1021/jf900668n ] [PMID: 19548681]
[31]
Ramalingam, K.; Amaechi, B.T.; Ralph, R.H.; Lee, V.A. Antimicrobial activity of nanoemulsion on cariogenic planktonic and biofilm organisms. Arch. Oral Biol., 2012, 57(1), 15-22.
[http://dx.doi.org/10.1016/j.archoralbio.2011.07.001 ] [PMID: 21807359]
[32]
Noori, S.; Zeynali, F.; Almasi, H. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control, 2018, 84, 312-320.
[http://dx.doi.org/10.1016/j.foodcont.2017.08.015]
[33]
Miri, M.; Koocheki, A.; Mohebbi, M.; Najafi, M. Effect of maltodextrin and whey protein concentrate on thyme essential oil nanoemulsion; , 2017, pp. 149-160.
[34]
Ozogul, Y.; Yuvka, İ.; Ucar, Y.; Durmus, M.; Kösker, A.R.; Öz, M. Evaluation of effects of nanoemulsion based on herb essential oils (rosemary, laurel, thyme and sage) on sensory, chemical and microbiological quality of rainbow trout (Oncorhynchus mykiss) fillets during ice storage. LWT, 2017, 75, 677-684.
[http://dx.doi.org/10.1016/j.lwt.2016.10.009]
[35]
Trajkoska-Bojadziska, E.; Simonovska, J.; Popovska, O.; Knez, Ž.; Kavrakovski, Z.; Bauer, B. Development of nanoemulsion formulations of wild oregano essential oil using low energy methods. Macedonian Pharmaceutical Association and Faculty of Pharmacy; Ss Cyril and Methodius University: Skopje, 2016, p. 397.
[36]
Tang, S.Y.; Manickam, S.; Wei, T.K.; Nashiru, B. Formulation development and optimization of a novel Cremophore EL-based nanoemulsion using ultrasound cavitation. Ultrason. Sonochem., 2012, 19(2), 330-345.
[http://dx.doi.org/10.1016/j.ultsonch.2011.07.001 ] [PMID: 21835676]
[37]
Okeke, M.I.; Iroegbu, C.U.; Eze, E.N.; Okoli, A.S.; Esimone, C.O. Evaluation of extracts of the root of Landolphia owerrience for antibacterial activity. J. Ethnopharmacol., 2001, 78(2-3), 119-127.
[http://dx.doi.org/10.1016/S0378-8741(01)00307-5 ] [PMID: 11694355]
[38]
Sato, M.; Tanaka, H.; Fujiwara, S.; Hirata, M.; Yamaguchi, R.; Etoh, H.; Tokuda, C. Antibacterial property of isoflavonoids isolated from Erythrina variegata against cariogenic oral bacteria. Phytomedicine, 2003, 10(5), 427-433.
[http://dx.doi.org/10.1078/0944-7113-00225 ] [PMID: 12834009]
[39]
Ma, Q.; Davidson, P.M.; Zhong, Q. Antimicrobial properties of microemulsions formulated with essential oils, soybean oil, and Tween 80. Int. J. Food Microbiol., 2016, 226, 20-25.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2016.03.011 ] [PMID: 27016636]
[40]
Shahnia, M.; Khaksar, R. Antimicrobial effects and determination of minimum inhibitory concentration (MIC) methods of essential oils against pathogenic bacteria. Iran. J. Nutr. Sci. Food Technol., 2013, 7(5), 949-955.
[41]
Burt, S. Essential oils: their antibacterial properties and potential applications in foods-A review. Int. J. Food Microbiol., 2004, 94(3), 223-253.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2004.03.022 ] [PMID: 15246235]
[42]
Lv, F.; Liang, H.; Yuan, Q.; Li, C. In vitro antimicrobial ef-fects and mechanism of action of selected plant essential oil combinations against four food-related microorganisms. Food Res. Int., 2011, 44(9), 3057-3064.
[http://dx.doi.org/10.1016/j.foodres.2011.07.030]
[43]
Espina, L.; Somolinos, M.; Lorán, S.; Conchello, P.; García, D.; Pagán, R. Chemical composition of commercial citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined processes. Food Control, 2011, 22(6), 896-902.
[http://dx.doi.org/10.1016/j.foodcont.2010.11.021]
[44]
Shahabi, N.; Tajik, H.; Moradi, M.; Forough, M.; Ezati, P. Physical, antimicrobial and antibiofilm properties of Zataria multiflora Boiss essential oil nanoemulsion. Int. J. Food Sci. Technol., 2017, 52(7), 1645-1652.
[http://dx.doi.org/10.1111/ijfs.13438]
[45]
Sandri, I.; Zacaria, J.; Fracaro, F.; Delamare, A.; Echever-rigaray, S. Antimicrobial activity of the essential oils of Brazilian species of the genus Cunila against foodborne pathogens and spoiling bacteria. Food Chem., 2007, 103(3), 823-828.
[http://dx.doi.org/10.1016/j.foodchem.2006.09.032]
[46]
Donsì, F.; Annunziata, M.; Sessa, M.; Ferrari, G. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. Lebensm. Wiss. Technol., 2011, 44(9), 1908-1914.
[http://dx.doi.org/10.1016/j.lwt.2011.03.003]
[47]
Moghimi, R.; Ghaderi, L.; Rafati, H.; Aliahmadi, A.; McClements, D.J. Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli. Food Chem., 2016, 194, 410-415.
[http://dx.doi.org/10.1016/j.foodchem.2015.07.139 ] [PMID: 26471573]
[48]
Chang, Y.; McLandsborough, L.; McClements, D.J. Fabrication, stability and efficacy of dual-component antimicrobial nanoemulsions: Essential oil (thyme oil) and cationic surfactant (Lauric arginate). Food Chem., 2015, 172, 298-304.
[http://dx.doi.org/10.1016/j.foodchem.2014.09.081 ] [PMID: 25442557]
[49]
Naseri, M.; Arouiee, H.; Golmohammadzadeh, S.; Jafari, M. nemati H. Effect of solid lipid nanoparticle containing essential oil of Zataria multiflora on the inhibitory growth of Aspergillus ochraceus, Aspergillus niger and Aspergillus flavus. J. Appl. Res. Plant Protect., 2017, 5(2), 161-174.
[50]
Santiesteban-López, A.; Palou, E.; López-Malo, A. Susceptibility of food-borne bacteria to binary combinations of antimicrobials at selected a (w) and pH. J. Appl. Microbiol., 2007, 102(2), 486-497.
[http://dx.doi.org/10.1111/j.1365-2672.2006.03092.x ] [PMID: 17241355]
[51]
Bassolé, I.H.N.; Juliani, H.R. Essential oils in combination and their antimicrobial properties. Molecules, 2012, 17(4), 3989-4006.
[http://dx.doi.org/10.3390/molecules17043989 ] [PMID: 22469594]
[52]
Soltan Dallal, M.; Bayat, M.; Yazdi, M.; Aghaamiri, S.; Mash-kani, M.; Mohtasab, T. Antimicrobial effect of Zataria multiflora on antibiotic-resistant Staphylococcus aureus strains isolated from food. Majallah-i Ilmi-i Danishgah-i Ulum-i Pizishki-i Kurdistan, 2012, 17(2)
[53]
Ghosh, V.; Mukherjee, A.; Chandrasekaran, N. Formulation and characterization of plant essential oil based nanoemulsion: Evaluation of its larvicidal activity against Aedes aegypti. Asian J. Chem., 2013, 25(Supplementary Issue), S321.
[54]
Bullerman, L.; Lieu, F.; Seier, S.A. Inhibition of growth and aflatoxin production by cinnamon and clove oils, Cinnamic aldehyde and eugenol. J. Food Sci., 1977, 42(4), 1107-1109.
[http://dx.doi.org/10.1111/j.1365-2621.1977.tb12677.x]
[55]
Shahabi, N.; Tajik, H.; Moradi, M.; Forough, M. Antibacterial Properties of Zataria multiflora Boiss. Essential oil nanoemulsion formed by emulsion phase inversion. J. Food Microbiol., 2016, 3(3), 45-56.
[56]
Shiravani, Z.; Aliakbarlu, J.; Tajik, H. Antibacterial effects of cinnamaldehyde and organic acids, alone and in combination, against listeria monocytogenes. Majallah-i Danishgah-i Ulum-i Pizishki-i Mazandaran, 2016, 26(138), 77-84.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy