Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Understanding the Binding Mechanism of Antagonist (AZD3293) Against BACE-1: Molecular Insights into Alzheimer’s Drug Discovery

Author(s): Sphelele Sosibo*, Daniel Gyamfi Amoako, Anou Moise Somboro, Darren Delai Sun, Jane Catherine Ngila and Hezekiel Kumalo*

Volume 17, Issue 7, 2020

Page: [850 - 857] Pages: 8

DOI: 10.2174/1570180816666191029142640

Price: $65

Abstract

Background: β-site amyloid precursor protein cleaving enzyme (BACE 1) is the ratelimiting enzyme in the formation of neurotoxic β-amyloid (Aβ) residues (Aβ1-40 or Aβ1-42) considered as key players in the onset of Alzheimer’s Disease (AD). Consequently, BACE 1 is one of the principal targets of anti-AD therapy with many small molecule BACE 1 inhibitors (BACE 1Is) in clinical trials. AZD3293 (Lanabecestat) is a BACE 1I that concluded in phase 2/3 clinical trials. Due to the limited knowledge about the interaction of this drug with the BACE 1 enzyme, in the present study, we performed comprehensive Molecular Dynamics (MD) analysis to understand the binding mechanism of AZD3293 to BACE 1.

Methods: A production run of 120 ns is carried out and results are analysed using Root Mean Square Deviation (RMSD), root mean square fluctuation (RMSF), and radius of gyration (Rg) to explain the stability of enzyme ligand complex. Further, the distance (d1) between the flap tip (Thr72) and the hinge residue of the flexible loop (Thr328), in relation to θ1 (Thr72–Asp228- Thr328), and to the dihedral angle δ (Thr72-Asp35-Asp228-Thr328) were measured.

Results: The presence of the ligand within the active site restricted conformational changes as shown by decreased values of RMSF and average RMSD of atomic positions when compared to the values of the apoenzyme. Further analysis via the flap dynamics approach revealed that the AZD3293 decreases the flexibility of binding residues and made them rigid by altering the conformational changes.

Conclusion: The prospective binding modes of AZD3293 from this study may extend the knowledge of the BACE 1-drug interaction and pave the way to design analogues with similar inhibitory properties needed to slow the progression of Alzheimer’s disease.

Keywords: Alzheimer's disease, molecular dynamics, antagonist, AZD3293, BACE-1, binding mechanism.

Graphical Abstract
[1]
Singh, D.; Gupta, M.; Kesharwani, R.; Sagar, M.; Dwivedi, S.; Misra, K. Molecular drug targets and therapies for Alzheimer’s disease. Transl. Neurosci., 2014, 5, 203-217.
[http://dx.doi.org/10.2478/s13380-014-0222-x]
[2]
Becker, G.; Streichenberger, N.; Billard, T.; Newman-Tancredi, A.; Zimmer, L. A postmortem study to compare agonist and antagonist 5-HT1A receptor-binding sites in Alzheimer’s disease. CNS Neurosci. Ther., 2014, 20(10), 930-934.
[http://dx.doi.org/10.1111/cns.12306] [PMID: 25041947]
[3]
Barage, S.H.; Sonawane, K.D. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides, 2015, 52, 1-18.
[http://dx.doi.org/10.1016/j.npep.2015.06.008] [PMID: 26149638]
[4]
Penke, B.; Bogár, F.; Fülöp, L. β-Amyloid and the Pathomechanisms of Alzheimer’s Disease: A Comprehensive View. Molecules, 2017, 22(10), 1692.
[http://dx.doi.org/10.3390/molecules22101692] [PMID: 28994715]
[5]
World Health Organization and Alzheimer’s Disease International Dementia. a public health priority.In, 2012.
[6]
Ballard, C.; Gauthier, S.; Corbett, A.; Brayne, C.; Aarsland, D.; Jones, E. Alzheimer’s disease. Lancet, 2011, 377(9770), 1019-1031.
[http://dx.doi.org/10.1016/S0140-6736(10)61349-9] [PMID: 21371747]
[7]
Wang, J-C.; Alinaghi, S.; Tafakhori, A.; Sikora, E.; Azcona, L.J.; Karkheiran, S.; Goate, A.; Paisán-Ruiz, C.; Darvish, H. Genetic screening in two Iranian families with early-onset Alzheimer’s disease identified a novel PSEN1 mutation. Neurobiol. Aging, 2018, 62, 244.e15-244.e17.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.10.011] [PMID: 29175279]
[8]
Cruchaga, C.; Del-Aguila, J.L.; Saef, B.; Black, K.; Fernandez, M.V.; Budde, J.; Ibanez, L.; Deming, Y.; Kapoor, M.; Tosto, G.; Mayeux, R.P.; Holtzman, D.M.; Fagan, A.M.; Morris, J.C.; Bateman, R.J.; Goate, A.M.; Harari, O. Dominantly Inherited Alzheimer Network (DIAN); Disease Neuroimaging Initiative (ADNI); NIA-LOAD family study. Polygenic risk score of sporadic late-onset Alzheimer’s disease reveals a shared architecture with the familial and early-onset forms. Alzheimers Dement., 2018, 14(2), 205-214.
[http://dx.doi.org/10.1016/j.jalz.2017.08.013] [PMID: 28943286]
[9]
Shao, W.; Peng, D.; Wang, X. Genetics of Alzheimer’s disease: From pathogenesis to clinical usage. J. Clin. Neurosci., 2017, 45, 1-8.
[http://dx.doi.org/10.1016/j.jocn.2017.06.074] [PMID: 28869135]
[10]
Karch, C.M.; Cruchaga, C.; Goate, A.M. Alzheimer’s disease genetics: from the bench to the clinic. Neuron, 2014, 83(1), 11-26.
[http://dx.doi.org/10.1016/j.neuron.2014.05.041] [PMID: 24991952]
[11]
Giri, M.; Zhang, M.; Lü, Y. Genes associated with Alzheimer’s disease: an overview and current status. Clin. Interv. Aging, 2016, 11, 665-681.
[http://dx.doi.org/10.2147/CIA.S105769] [PMID: 27274215]
[12]
Panza, F.; Solfrizzi, V.; Frisardi, V.; Capurso, C.D.; Colacicco, A. ʼIntrono, A. M.; Capurso, G.; Vendemiale, A.; Imbimbo, B. P Disease-Modifying Approach to the Treatment of Alzheimerʼs Disease. Drugs Aging, 2009.
[http://dx.doi.org/10.2165/11315770-000000000-00000]
[13]
Kumar, K.; Kumar, A.; Keegan, R.M.; Deshmukh, R. Recent advances in the neurobiology and neuropharmacology of Alzheimer’s disease. Biomed. Pharmacother., 2018, 98, 297-307.
[http://dx.doi.org/10.1016/j.biopha.2017.12.053] [PMID: 29274586]
[14]
Ghosh, A.K.; Osswald, H.L. BACE1 (β-secretase) inhibitors for the treatment of Alzheimer’s disease. Chem. Soc. Rev., 2014, 43(19), 6765-6813.
[http://dx.doi.org/10.1039/C3CS60460H] [PMID: 24691405]
[15]
Polgár, T.; Keseru, G.M. Structure-based β-secretase (BACE1) inhibitors. Curr. Pharm. Des., 2014, 20(20), 3373-3379.
[http://dx.doi.org/10.2174/13816128113199990607] [PMID: 23947643]
[16]
Yan, R.; Vassar, R. Targeting the β secretase BACE1 for Alzheimer’s disease therapy. Lancet Neurol., 2014, 13(3), 319-329.
[http://dx.doi.org/10.1016/S1474-4422(13)70276-X] [PMID: 24556009]
[17]
May, P.C.; Willis, B.A.; Lowe, S.L.; Dean, R.A.; Monk, S.A.; Cocke, P.J.; Audia, J.E.; Boggs, L.N.; Borders, A.R.; Brier, R.A.; Calligaro, D.O.; Day, T.A.; Ereshefsky, L.; Erickson, J.A.; Gevorkyan, H.; Gonzales, C.R.; James, D.E.; Jhee, S.S.; Komjathy, S.F.; Li, L.; Lindstrom, T.D.; Mathes, B.M.; Martényi, F.; Sheehan, S.M.; Stout, S.L.; Timm, D.E.; Vaught, G.M.; Watson, B.M.; Winneroski, L.L.; Yang, Z.; Mergott, D.J. The potent BACE1 inhibitor LY2886721 elicits robust central Aβ pharmacodynamic responses in mice, dogs, and humans. J. Neurosci., 2015, 35(3), 1199-1210.
[http://dx.doi.org/10.1523/JNEUROSCI.4129-14.2015] [PMID: 25609634]
[18]
Semighini, E.P. In Silico Design of Beta-Secretase Inhibitors in Alzheimer’s Disease. Chem. Biol. Drug Des., 2015, 86(3), 284-290.
[http://dx.doi.org/10.1111/cbdd.12492] [PMID: 25476252]
[19]
Ghosh, A.K.; Brindisi, M.; Tang, J. Developing β-secretase inhibitors for treatment of Alzheimer’s disease. J. Neurochem., 2012, 120(Suppl. 1), 71-83.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07476.x] [PMID: 22122681]
[20]
Rampa, A.; Gobbi, S.; Belluti, F.; Bisi, A. Emerging targets in neurodegeneration: new opportunities for Alzheimer’s disease treatment? Curr. Top. Med. Chem., 2013, 13(15), 1879-1904.
[http://dx.doi.org/10.2174/15680266113139990143] [PMID: 23931436]
[21]
Hampel, H.; Vergallo, A.; Aguilar, L.F.; Benda, N.; Broich, K.; Cuello, A.C.; Cummings, J.; Dubois, B.; Federoff, H.J.; Fiandaca, M.; Genthon, R.; Haberkamp, M.; Karran, E.; Mapstone, M.; Perry, G.; Schneider, L.S.; Welikovitch, L.A.; Woodcock, J.; Baldacci, F.; Lista, S. Alzheimer Precision Medicine Initiative (APMI). Precision pharmacology for Alzheimer’s disease. Pharmacol. Res., 2018, 130, 331-365.
[http://dx.doi.org/10.1016/j.phrs.2018.02.014] [PMID: 29458203]
[22]
Barão, S.; Moechars, D.; Lichtenthaler, S.F.; De Strooper, B. BACE1 Physiological Functions May Limit Its Use as Therapeutic Target for Alzheimer’s Disease. Trends Neurosci., 2016, 39(3), 158-169.
[http://dx.doi.org/10.1016/j.tins.2016.01.003] [PMID: 26833257]
[23]
Kumalo, H.M.; Soliman, M.E. A comparative molecular dynamics study on BACE1 and BACE2 flap flexibility. J. Recept. Signal Transduct. Res., 2016, 36(5), 505-514.
[http://dx.doi.org/10.3109/10799893.2015.1130058] [PMID: 26804314]
[24]
Palakurti, R.; Vadrevu, R. Pharmacophore based 3D-QSAR modeling, virtual screening and docking for identification of potential inhibitors of β-secretase. Comput. Biol. Chem., 2017, 68, 107-117.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.03.001] [PMID: 28288354]
[25]
Eketjäll, S.; Janson, J.; Kaspersson, K.; Bogstedt, A.; Jeppsson, F.; Fälting, J.; Haeberlein, S.B.; Kugler, A.R.; Alexander, R.C.; Cebers, G. AZD3293: a novel, orally active BACE1 inhibitor with high potency and permeability and markedly slow off-rate kinetics. J. Alzheimers Dis., 2016, 50(4), 1109-1123.
[http://dx.doi.org/10.3233/JAD-150834] [PMID: 26890753]
[26]
Meng, E.C.; Pettersen, E.F.; Couch, G.S.; Huang, C.C.; Ferrin, T.E. Tools for integrated sequence-structure analysis with UCSF Chimera. BMC Bioinformatics, 2006, 7, 339.
[http://dx.doi.org/10.1186/1471-2105-7-339] [PMID: 16836757]
[27]
Götz, A.W.; Williamson, M.J.; Xu, D.; Poole, D.; Le Grand, S.; Walker, R.C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born. J. Chem. Theory Comput., 2012, 8(5), 1542-1555.
[http://dx.doi.org/10.1021/ct200909j] [PMID: 22582031]
[28]
Salomon-Ferrer, R.; Götz, A.W.; Poole, D.; Le Grand, S.; Walker, R.C. Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. J. Chem. Theory Comput., 2013, 9(9), 3878-3888.
[http://dx.doi.org/10.1021/ct400314y] [PMID: 26592383]
[29]
Salomon-Ferrer, R.; Case, D.A.; Walker, R.C. An overview of the Amber biomolecular simulation package. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2013, 3, 198-210.
[http://dx.doi.org/10.1002/wcms.1121]
[30]
Sprenger, K.G.; Jaeger, V.W.; Pfaendtner, J. The general AMBER force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids. J. Phys. Chem. B, 2015, 119(18), 5882-5895.
[http://dx.doi.org/10.1021/acs.jpcb.5b00689] [PMID: 25853313]
[31]
Wang, L-P.; McKiernan, K.A.; Gomes, J.; Beauchamp, K.A.; Head-Gordon, T.; Rice, J.E.; Swope, W.C.; Martínez, T.J.; Pande, V.S. Building a More Predictive Protein Force Field: A Systematic and Reproducible Route to AMBER-FB15. J. Phys. Chem. B, 2017, 121(16), 4023-4039.
[http://dx.doi.org/10.1021/acs.jpcb.7b02320] [PMID: 28306259]
[32]
Le Grand, S.; Götz, A.W.; Walker, R.C. SPFP: Speed without compromise - A mixed precision model for GPU accelerated molecular dynamics simulations. Comput. Phys. Commun., 2013.
[http://dx.doi.org/10.1016/j.cpc.2012.09.022]
[33]
Somboro, A.M.; Amoako, D.G.; Osei Sekyere, J.; Kumalo, H.M.; Khan, R.; Bester, L.A.; Essack, S.Y. 1,4,7-Triazacyclononane Restores the Activity of β-Lactam Antibiotics against Metallo-β-Lactamase-Producing Enterobacteriaceae: Exploration of Potential Metallo-β-Lactamase Inhibitors. Appl. Environ. Microbiol., 2019, 85(3), e02077-e18.
[PMID: 30478231]
[34]
Kufareva, I.; Abagyan, R. Methods of Protein Structure Comparison., 2011.
[http://dx.doi.org/10.1007/978-1-61779-588-6_10]
[35]
Finger, L.D.; Atack, J.M.; Tsutakawa, S.; Classen, S.; Tainer, J.; Grasby, J.; Shen, B. The Wonders of Flap Endonucleases., 2012, 301-326.
[36]
Kumalo, H.M.; Bhakat, S.; Soliman, M.E. Investigation of flap flexibility of β-secretase using molecular dynamic simulations. J. Biomol. Struct. Dyn., 2016, 34(5), 1008-1019.
[http://dx.doi.org/10.1080/07391102.2015.1064831] [PMID: 26208540]
[37]
Xu, Y.; Li, M.J.; Greenblatt, H.; Chen, W.; Paz, A.; Dym, O.; Peleg, Y.; Chen, T.; Shen, X.; He, J.; Jiang, H.; Silman, I.; Sussman, J.L. Flexibility of the flap in the active site of BACE1 as revealed by crystal structures and molecular dynamics simulations. Acta Crystallogr. D Biol. Crystallogr., 2012, 68(Pt 1), 13-25.
[http://dx.doi.org/10.1107/S0907444911047251] [PMID: 22194329]
[38]
Hong, L.; Tang, J. Flap position of free memapsin 2 (β-secretase), a model for flap opening in aspartic protease catalysis. Biochemistry, 2004, 43(16), 4689-4695.
[http://dx.doi.org/10.1021/bi0498252] [PMID: 15096037]
[39]
Gorfe, A.A.; Caflisch, A. Functional plasticity in the substrate binding site of β-secretase. Structure, 2005, 13(10), 1487-1498.
[http://dx.doi.org/10.1016/j.str.2005.06.015] [PMID: 16216580]
[40]
Patel, S.; Vuillard, L.; Cleasby, A.; Murray, C.W.; Yon, J. Apo and inhibitor complex structures of BACE (β-secretase). J. Mol. Biol., 2004, 343(2), 407-416.
[http://dx.doi.org/10.1016/j.jmb.2004.08.018] [PMID: 15451669]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy