Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

C-Methylation of Organic Substrates: A Comprehensive Overview. Part I. Methane as a Methylating Agent

Author(s): Saad Moulay*

Volume 17, Issue 7, 2020

Page: [805 - 813] Pages: 9

DOI: 10.2174/1570193X16666191023143652

Price: $65

Abstract

A literature survey on C-methylation of organic substrates with methane as a methylating agent is analyzed. Of the substrates that undergo C-methylation are benzene, naphthalenes, toluene, alkanes, alkenes, acetonitrile, and other functionalized organic compounds. None of these methylation reactions occur in the absence of a catalyst. A direct introduction of a methyl group on the carbon sites of a molecule is concomitant with the formation of other products, as a result of either a possible rearrangement or a further reaction with methane. Mechanistically, the C-methylation with methane proceeds oxidatively. The products selectivities depend on several factors, mainly on the acid/ base character of the solid catalyst.

Keywords: Benzene, catalyst, methane, methylating agent, methylation, toluene.

Graphical Abstract
[1]
Moulay, S. O-methylation of hydroxyl-containing organic substrates: A comprehensive overview. Curr. Org. Chem., 2018, 22(20), 1986-2016.
[http://dx.doi.org/10.2174/1385272822666180910140543]
[2]
Moulay, S. N-methylation of nitrogen-containing organic substrates: A comprehensive overview. Curr. Org. Chem., 2019, 23(16), 1695-1737.
[http://dx.doi.org/10.2174/1385272823666190823114547]
[3]
Chen, Y. Recent advances in methylation: A guide for selecting methylation reagents. Chemistry, 2019, 25(14), 3405-3439.
[http://dx.doi.org/10.1002/chem.201803642] [PMID: 30328642]
[4]
Yan, G.; Borah, A.J.; Wang, L.; Yang, M. Recent advances in transition metal-catalyzed methylation reactions. Adv. Synth. Catal., 2015, 357(7), 1333-1350.
[http://dx.doi.org/10.1002/adsc.201400984]
[5]
Moulay, S. Methyl, the smallest alkyl groups with stunning effects. Khimiya, 2018, 27(5), 759-770.
[6]
Guerrero Peña, G.D.J.; Alrefaai, M.M.; Yeon, S.Y.; Raj, A.; Brito, J.L.; Stephen, S.; Anjana, T.; Pillai, V.; Al Shoaibi, A.; Ho, C.S. Effects of methyl group on aromatic hydrocarbons on the nanostructures and oxidative reactivity of combustion-generated soot. Combust. Flame, 2016, 172, 1-12.
[http://dx.doi.org/10.1016/j.combustflame.2016.06.026]
[7]
Barreiro, E.J.; Kümmerle, A.E.; Fraga, C.A.M. The methylation effect in medicinal chemistry. Chem. Rev., 2011, 111(9), 5215-5246.
[http://dx.doi.org/10.1021/cr200060g] [PMID: 21631125]
[8]
Schönherr, H.; Cernak, T. Profound methyl effects in drug discovery and a call for new C-H methylation reactions. Angew. Chem. Int. Ed. Engl., 2013, 52(47), 12256-12267.
[http://dx.doi.org/10.1002/anie.201303207] [PMID: 24151256]
[9]
Tang, P.; Zhu, Q.; Wu, Z.; Ma, D. Methane activation: The past and future. Energy Environ. Sci., 2014, 7(8), 2580-2591.
[http://dx.doi.org/10.1039/C4EE00604F]
[10]
Ovalles, C.; Hamana, A.; Rojas, I.; Bolívar, R.A. Upgrading of extra-heavy crude oil by direct use of methane in the presence of water: Deuterium-labelled experiments and mechanistic considerations. Fuel, 1995, 74(8), 1162-1168.
[http://dx.doi.org/10.1016/0016-2361(95)00071-C]
[11]
He, S.J.X.; Long, M.A.; Wilson, M.A.; Gorbarty, M.L.; Maa, P.S. Methylation of benzene by methane-13C over zeolitic catalysts at 400 degree. C. Energ. Fuel., 1995, 9(4), 616-619.
[http://dx.doi.org/10.1021/ef00052a007]
[12]
Adebajo, M.; Long, M.A.; Howe, R.F. Methane activation over zeolite catalysts: The methylation of benzene. Res. Chem. Intermed., 2000, 26(2), 185-191.
[http://dx.doi.org/10.1163/156856700X00228]
[13]
Adebajo, M.O.; Howe, R.F.; Long, M.A. The methylation of benzene with methane over zeolite catalysts: Effect of hydrocarbon impurities. Catal. Lett., 2001, 72(3-4), 221-224.
[http://dx.doi.org/10.1023/A:1009064627230]
[14]
Adebajo, M.O.; Long, M.A.; Frost, R.L. Further evidence for the oxidative methylation of benzene with methane over zeolite catalysts. Catal. Commun., 2004, 5(3), 125-130.
[http://dx.doi.org/10.1016/j.catcom.2003.12.006]
[15]
Adebajo, M.O. Green chemistry perspectives of methane conversion via oxidative methylation of aromatics over zeolite catalysts. Green Chem., 2007, 9(6), 526-539.
[http://dx.doi.org/10.1039/b614281h]
[16]
Adebajo, M.O.; Long, M.A.; Frost, R.L. Spectroscopic and XRD characterisation of zeolite catalysts active for the oxidative methylation of benzene with methane. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2004, 60(4), 791-799.
[http://dx.doi.org/10.1016/S1386-1425(03)00302-0] [PMID: 15036089]
[17]
Adebajo, M.O.; Frost, R.L. Oxidative benzene methylation with methane over MCM-41 and zeolite catalysts: Effect of framework alumi-num, SiO2/Al2O3 ratio, and zeolite pore structure. Energy Fuels, 2005, 19(3), 783-790.
[http://dx.doi.org/10.1021/ef049789f]
[18]
Wang, X.; Xu, J.; Qi, G.; Li, B.; Wang, C.; Deng, F. Alkylation of benzene with methane over ZnZSM-5 Zeolites studied with solid-state NMR spectroscopy. J. Phys. Chem. C, 2013, 117(8), 4018-4023.
[http://dx.doi.org/10.1021/jp310872a]
[19]
Lukyanov, D.B.; Vazhnova, T. Selective and stable benzene alkylation with methane into toluene over PtH-MFI bifunctional catalyst. J. Mol. Catal. Chem., 2009, 305(1-2), 95-99.
[http://dx.doi.org/10.1016/j.molcata.2008.11.026]
[20]
Nakamura, K.; Okuda, A.; Ohta, K.; Matsubara, H.; Okumura, K.; Yamamoto, K.; Itagaki, R.; Suganuma, S.; Tsuji, E.; Katada, N. Direct methylation of benzene with methane catalyzed by Co/MFI zeolite. ChemCatChem, 2018, 10(17), 3806-3812.
[http://dx.doi.org/10.1002/cctc.201800724] [PMID: 30546494]
[21]
Matsubara, H.; Tsuji, E.; Moriwaki, Y.; Okumura, K.; Yamamoto, K.; Nakamura, K.; Suganuma, S.; Katada, N. Selective formation of active cobalt species for direct methylation of benzene with methane on MFI zeolite by co-presence of secondary elements. Catal. Lett., 2019, 149(9), 2627-2635.
[http://dx.doi.org/10.1007/s10562-019-02855-y]
[22]
He, S.J.X.; Long, M.A. Methylation of naphthalene by methane over substituted aluminophosphate molecular sieves. Energy Fuels, 1992, 6(4), 498-502.
[http://dx.doi.org/10.1021/ef00034a022]
[23]
He, S.J.X.; Long, M.A.; Attalla, M.I.; Wilson, M.A. Methylation of naphthalene by methane-carbon-13 over copper-exchanged silico-aluminophosphate. Energy Fuels, 1994, 8(1), 286-287.
[http://dx.doi.org/10.1021/ef00043a044]
[24]
Long, M.A.; He, S.J.X.; Attalla, M.I.; Wilson, M.A.; Smith, D.R. Methylation of organic model compounds by methane over substituted aluminophosphate molecular sieves. Stud. Surf. Sci. Catal., 1994, 81, 509-514.
[http://dx.doi.org/10.1016/S0167-2991(08)63921-X]
[25]
Khan, A.Z.; Ruckenstein, E. Oxidative methylation of toluene with methane over superbasic catalysts: A selective route to styrene and ethylbenzene through alternative feedstocks. J. Catal., 1993, 143(1), 1-21.
[http://dx.doi.org/10.1006/jcat.1993.1249]
[26]
Zhou, L.; Li, W.; Su, M.; Li, H.; Tao, K.; Hattori, H. Promotion effects of alkali metal halides on the oxidative methylation of toluene with methane over KY zeolite catalysts. Appl. Catal. A Gen., 1999, 181(1), L1-L4.
[http://dx.doi.org/10.1016/S0926-860X(98)00431-1]
[27]
Kovacheva, P.; Arishtirova, K.; Predoeva, A. Basic zeolite and zeolite-type catalysts for the oxidative methylation of toluene with methane. React. Kinet. Catal. Lett., 2003, 79(1), 149-155.
[http://dx.doi.org/10.1023/A:1024176121544]
[28]
Kovacheva, P.; Arishtirova, K.; Vassilev, S. MgO/NaX zeolite as basic catalyst for oxidative methylation of toluene with methane. Appl. Catal. A Gen., 2001, 210(1-2), 391-395.
[http://dx.doi.org/10.1016/S0926-860X(00)00832-2]
[29]
Arishtirova, K.; Kovacheva, P.; Vassilev, S. BaO/NaX zeolite as a basic catalyst for oxidative methylation of toluene with methane. Appl. Catal. A Gen., 2001, 213(2), 197-202.
[http://dx.doi.org/10.1016/S0926-860X(00)00890-5]
[30]
Kovacheva, P.; Predoeva, A.; Arishtirova, K.; Vassilev, S. Oxidative methylation of toluene with methane using X zeolite catalyst modified with alkali earth oxides. Appl. Catal. A Gen., 2002, 223(1-2), 121-128.
[http://dx.doi.org/10.1016/S0926-860X(01)00756-6]
[31]
Arishtirova, K.; Kovacheva, P.; Predoeva, A. Effect of structural analogy between ZSM-5 and silicalite catalysts on the oxidative methylation of toluene with methane. React. Kinet. Catal. Lett., 2005, 84(1), 53-59.
[http://dx.doi.org/10.1007/s11144-005-0190-9]
[32]
Arishtirova, K.; Kovacheva, P.; Davidova, N. Effect of preparation of a CsX zeolite catalyst on the oxidative methylation of toluene with methane. Appl. Catal. A Gen., 1998, 167(2), 271-276.
[http://dx.doi.org/10.1016/S0926-860X(97)00313-X]
[33]
Arishtirova, K.; Kovacheva, P.; Davidova, N. Oxidative methylation of toluene with methane over alkali modified X zeolite catalysts. Stud. Surf. Sci. Catal., 1999, 125, 489-494.
[http://dx.doi.org/10.1016/S0167-2991(99)80250-X]
[34]
Kovacheva, P.; Arishtirova, K.; Davidova, N. Oxidative methylation of toluene with methane catalyzed by cesium modified molecular sieves. Appl. Catal. A Gen., 1999, 178(1), 111-115.
[http://dx.doi.org/10.1016/S0926-860X(98)00277-4]
[35]
Kovacheva, P.; Arishtirova, K.; Davidova, N. Oxidative methylation of toluene with methane catalyzed by lithium modified molecular sieves. React. Kinet. Catal. Lett., 1999, 67(2), 261-266.
[http://dx.doi.org/10.1007/BF02475769]
[36]
Kim, H.; Suh, H.M.; Paik, H. Oxidative methylation of toluene with methane over lead-lithium-magnesium oxide catalysts. Appl. Catal. A Gen., 1992, 87(1), 115-127.
[http://dx.doi.org/10.1016/0926-860X(92)80176-D]
[37]
Suh, H-M.; Kim, H. Paik. H. Oxidative methylation of toluene with methane over Li/MgO promoted by Pb3(PO4)2. Appl. Catal. A Gen., 1993, 96(2), L7-L11.
[http://dx.doi.org/10.1016/0926-860X(90)80002-V]
[38]
Kim, H.; Han, Y.; Suh, H.M. Paik. H. Stabilization of Sm2O3 based catalysts in oxidative methylation of toluene. Appl. Catal. A Gen., 1993, 105(2), L135-L139.
[http://dx.doi.org/10.1016/0926-860X(93)80243-J]
[39]
Suzuki, T.; Wada, K.; Watanabe, Y. Oxidative methylation of toluene with methane over alkali metal bromide loaded rare earth oxides. Appl. Catal., 1989, 53(1), L19-L21.
[http://dx.doi.org/10.1016/S0166-9834(00)80004-4]
[40]
Suzuki, T.; Wada, K.; Watanabe, Y. Oxidative methylation of toluene with methane over basic oxide catalysts promoted with alkali metal bromide. Ind. Eng. Chem. Res., 1991, 30(8), 1719-1725.
[http://dx.doi.org/10.1021/ie00056a007]
[41]
Osada, Y.; Enomoto, K.; Fukushima, T.; Ogasawara, S.; Shikada, T.; Ikariya, T. Oxidative methylation of toluene with methane over alka-li-promoted Y2O3-CaO catalysts. J. Chem. Soc. Chem. Commun., 1989, 16, 1156-1157.
[http://dx.doi.org/10.1039/C39890001156]
[42]
Osada, Y.; Okino, N.; Ogasawara, S.; Fukushima, T.; Shikada, T.; Ikariya, T. A selective formation of styrene by oxidative methylation of toluene with methane over a PbO/MgO catalyst. Chem. Lett., 1990, 19(2), 281-282.
[http://dx.doi.org/10.1246/cl.1990.281]
[43]
Colmenares, J.C.; Kijenski, J.; Arévalo-García, E.B. Chemical trapping studies to the determination of surface species under reaction conditions for the catalytic side-chain oxidative alkylation of toluene by methane. J. Mol. Catal. Chem., 2009, 309(1-2), 21-27.
[http://dx.doi.org/10.1016/j.molcata.2009.04.010]
[44]
Khan, A.Z.; Ruckenstein, E. Synergistic effect of bialkali-promoted MgO or CaO on oxidative methylation of toluene with methane: A selective route to styrene and ethylbenzene. J. Chem. Soc. Chem. Commun., 1993, 7, 587-589.
[http://dx.doi.org/10.1039/c39930000587]
[45]
Ruckenstein, E.; Khan, A.Z. Effects of superbasic catalysts prepared by promoting MgO with bialkali metal compounds on the oxidative coupling of methane. J. Catal., 1993, 141(2), 628-647.
[http://dx.doi.org/10.1006/jcat.1993.1169]
[46]
Ruckenstein, E.; Khan, A.Z. Synergistic effect of bialkali metal chlorides promoted magnesia on oxidative coupling of methane. Catal. Lett., 1993, 18(1), 27-35.
[http://dx.doi.org/10.1007/BF00769495]
[47]
Lunsford, J.H.; Qiu, P.; Michael, P.; Rosynek, P.; Yu, Z. Catalytic conversion of methane and ethylene to propylene. J. Phys. Chem. B, 1998, 102(1), 167-173.
[http://dx.doi.org/10.1021/jp9723628]
[48]
Wada, K.; Watanabe, Y.; Saitoh, F.; Suzuki, T. Oxidative methylation of ethane with methane to propane and propene using rare earth oxide-based catalysts. Appl. Catal. A Gen., 1992, 88(1), 23-38.
[http://dx.doi.org/10.1016/0926-860X(92)80194-H]
[49]
Sodesawa, T.; Matsubara, M.; Satoh, S. Nozaki. F. Formation of C4-hydrocarbons by oxidative methylation of propylene with methane over various metal oxide catalysts. Chem. Lett., 1987, 16(8), 1513-1514.
[http://dx.doi.org/10.1246/cl.1987.1513]
[50]
Sodesawa, T.; Sato, S.; Nozaki, F. Oxidative methylation of hydrocarbons with methane over rare-earth metal oxide catalysts. In: Natural Gas Conversion; Holmen, A., Ed.; Elsevier Science Publishers B.V.: Amsterdam, 1991; pp. 161-163.
[http://dx.doi.org/10.1016/S0167-2991(08)60076-2]
[51]
Baba, T. Conversion of methane over Ag+-exchanged zeolite in the presence of ethene. Catal. Surv. Asia, 2005, 9(3), 147-154.
[http://dx.doi.org/10.1007/s10563-005-7551-2]
[52]
Ruckenstein, E.; Khan, A.Z. Selective formation of acrylonitrile via oxidative methylation of acetonitrile with methane over superbasic catalysts. J. Chem. Soc. Chem. Commun., 1993, 16, 1290-1292.
[http://dx.doi.org/10.1039/c39930001290]
[53]
Ruckenstein, E.; Khan, A.Z. Synergistic effects of superbasic catalysts on the selective formation of acrylonitrile via oxidative methylation of acetonitrile with methane. J. Catal., 1994, 145(2), 390-401.
[http://dx.doi.org/10.1006/jcat.1994.1049]
[54]
Smirniotis, P.G.; Zhang, W. Study of the oxidative methylation of acetonitrile to acrylonitrile with CH4 over Li/MgO catalysts. Appl. Catal. A Gen., 1999, 176(1), 63-73.
[http://dx.doi.org/10.1016/S0926-860X(98)00226-9]
[55]
Zhang, W.; Smirniotis, P.G. Study of oxide-based catalysts for the oxidative transformation of acetonitrile to acrylonitrile with CH4. J. Catal., 1999, 182(1), 70-81.
[http://dx.doi.org/10.1006/jcat.1998.2327]
[56]
Bothe-Almquist, C.L.; Ettireddy, R.P.; Bobst, A. Smirniotis. P.G. An XRD, XPS, and EPR study of Li/MgO catalysts: Case of the oxidative methylation of acetonitrile to acrylonitrile with CH4. J. Catal., 2000, 192(1), 174-184.
[http://dx.doi.org/10.1006/jcat.2000.2852]
[57]
Reddy, B.M.; Ruckenstein, E. Oxidative methylation of organic compounds with methane over alkali promoted MgO catalysts. Appl. Catal. A Gen., 1995, 121(1), 159-167.
[http://dx.doi.org/10.1016/0926-860X(95)85017-1]
[58]
Ruckenstein, E.; Reddy, B.M. Oxidative methylation of α-, β- and γ-picolines with methane vinylpyridines and ethylpyridines over mono and bialkali promoted magnesia catalysts. Catal. Lett., 1994, 29(1-2), 217-224.
[http://dx.doi.org/10.1007/BF00814267]
[59]
Koerts, T.; van Santen, R.A. Reaction sequence for the alkylation of alkenes with methane. J. Chem. Soc. Chem. Commun., 1992, 4, 345-346.
[http://dx.doi.org/10.1039/c39920000345]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy