Generic placeholder image

Current Pediatric Reviews

Editor-in-Chief

ISSN (Print): 1573-3963
ISSN (Online): 1875-6336

Review Article

Pediatric Acute-onset Neuropsychiatric Syndrome and Mycoplasma Pneumoniae Infection: A Case Report Analysis with a Metabolomics Approach

Author(s): Cristina Piras, Roberta Pintus, Dario Pruna, Angelica Dessì, Luigi Atzori and Vassilios Fanos*

Volume 16, Issue 3, 2020

Page: [183 - 193] Pages: 11

DOI: 10.2174/1573396315666191022102925

Abstract

Pediatric Acute-onset Neuropsychiatric Syndrome (PANS) is a clinical condition characterized by a sudden and dramatic obsessive-compulsive disorder with a suggested post-infectious immune-mediated etiology. This condition is accompanied by an extensive series of relatively serious neuropsychiatric symptoms. The diagnosis of PANS is made by "exclusion", as the individual PANS symptoms overlap with a multiplicity of psychiatric disorders with the onset in childhood. A number of researchers accumulated evidence to support the hypothesis that PANS was closely associated with a number of infections.

In the last decade, metabolomics played an essential role in improving the knowledge of complex biological systems and identifying potential new biomarkers as indicators of pathological progressions or pharmacologic responses to therapy. The metabolome is considered the most predictive phenotype, capable of recognizing epigenetic differences, reflecting more closely the clinical reality at any given moment and thus providing extremely dynamic data. In the present work, the most recent hypothesis and suggested mechanisms of this condition are reviewed and the case of a 10 - year-old girl with PANS is described, before and after clarithromycin treatment. The main results of this case report are discussed from a metabolomics point of view. The alteration of several metabolic pathways concerning the microbial activity highlights the possible role of the microbiome in the development of PANS. Furthermore, different metabolic perturbations at the level of protein biosynthesis, energy and amino acid metabolisms are observed and discussed. Based on our observations, it is believed that metabolomics is a promising technology to unravel the mysteries of PANS in the near future.

Keywords: Pediatric Acute-onset Neuropsychiatric Syndrome (PANS), metabolomics, Proton Nuclear Magnetic Resonance (1H-NMR), mycoplasma pneumoniae, urine, infection.

Graphical Abstract
[1]
Hesselmark E, Bejerot S. Patient Satisfaction and Treatments Offered to Swedish Patients with Suspected Pediatric Acute-Onset Neuropsychiatric Syndrome and Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infections. J Child Adolesc Psychopharmacol 2019; 1-8.
[http://dx.doi.org/10.1089/cap.2018.0141] [PMID: 31009235]
[2]
Swedo SE, Leckman JF, Rose NR. From Research Subgroup to Clinical Syndrome: Modifying the PANDAS Criteria to Describe PANS (Pediatric Acute-onset Neuropsychiatric Syndrome). Pediatr Therapeut 2012; 2(2): 1-8.
[http://dx.doi.org/10.4172/2161-0665.1000113]
[3]
Thienemann M, Murphy T, Leckman J, et al. Clinical Management of Pediatric Acute-Onset Neuropsychiatric Syndrome: Part I-Psychiatric and Behavioral Interventions. J Child Adolesc Psychopharmacol 2017; 27(7): 566-73.
[http://dx.doi.org/10.1089/cap.2016.0145] [PMID: 28722481]
[4]
Chang K, Frankovich J, Cooperstock M, et al. PANS Collaborative Consortium. Clinical evaluation of youth with pediatric acute-onset neuropsychiatric syndrome (PANS): recommendations from the 2013 PANS Consensus Conference. J Child Adolesc Psychopharmacol 2015; 25(1): 3-13.
[http://dx.doi.org/10.1089/cap.2014.0084] [PMID: 25325534]
[5]
Swedo SE, Leonard HL, Garvey M, et al. Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections: clinical description of the first 50 cases. Am J Psychiatry 1998; 155(2): 264-71.
[6]
Allen AJ, Leonard HL, Swedo SE. Case study: a new infection-triggered, autoimmune subtype of pediatric OCD and Tourette’s syndrome. J Am Acad Child Adolesc Psychiatry 1995; 34(3): 307-11.
[http://dx.doi.org/10.1097/00004583-199503000-00015] [PMID: 7896671]
[7]
Garvey MA, Giedd J, Swedo SE. PANDAS: the search for environmental triggers of pediatric neuropsychiatric disorders. Lessons from rheumatic fever. J Child Neurol 1998; 13(9): 413-23.
[http://dx.doi.org/10.1177/088307389801300901] [PMID: 9733286]
[8]
Hoekstra PJ, Manson WL, Steenhuis MP, Kallenberg CGM, Minderaa RB. Association of common cold with exacerbations in pediatric but not adult patients with tic disorder: a prospective longitudinal study. J Child Adolesc Psychopharmacol 2005; 15(2): 285-92.
[http://dx.doi.org/10.1089/cap.2005.15.285] [PMID: 15910212]
[9]
Murphy ML, Pichichero ME. Prospective identification and treatment of children with pediatric autoimmune neuropsychiatric disorder associated with group A streptococcal infection (PANDAS). Arch Pediatr Adolesc Med 2002; 156(4): 356-61.
[http://dx.doi.org/10.1001/archpedi.156.4.356] [PMID: 11929370]
[10]
Müller N, Riedel M, Blendinger C, Oberle K, Jacobs E, Abele-Horn M. Mycoplasma pneumoniae infection and Tourette’s syndrome. Psychiatry Res 2004; 129(2): 119-25.
[http://dx.doi.org/10.1016/j.psychres.2004.04.009] [PMID: 15590039]
[11]
Narita M. Pathogenesis of neurologic manifestations of Mycoplasma pneumoniae infection. Pediatr Neurol 2009; 41(3): 159-66.
[http://dx.doi.org/10.1016/j.pediatrneurol.2009.04.012] [PMID: 19664529]
[12]
Molina V, Shoenfeld Y. Infection, vaccines and other environmental triggers of autoimmunity. Autoimmunity 2005; 38(3): 235-45.
[http://dx.doi.org/10.1080/08916930500050277] [PMID: 16126512]
[13]
Zibordi F, Zorzi G, Carecchio M, Nardocci N. CANS: Childhood acute neuropsychiatric syndromes. Eur J Paediatr Neurol 2018; 22(2): 316-20.
[http://dx.doi.org/10.1016/j.ejpn.2018.01.011] [PMID: 29398245]
[14]
Swedo SE, Leonard HL, Rapoport JL. The pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection (PANDAS) subgroup: separating fact from fiction. Pediatrics 2004; 113(4): 907-11.
[http://dx.doi.org/10.1542/peds.113.4.907] [PMID: 15060242]
[15]
Kim SW, Grant JE, Kim SI, et al. A possible association of recurrent streptococcal infections and acute onset of obsessive-compulsive disorder. J Neuropsychiatry Clin Neurosci 2004; 16(3): 252-60.
[http://dx.doi.org/10.1176/jnp.16.3.252] [PMID: 15377732]
[16]
Yavlovich A, Tarshis M, Rottem S. Internalization and intracellular survival of Mycoplasma pneumoniae by non-phagocytic cells. FEMS Microbiol Lett 2004; 233(2): 241-6.
[http://dx.doi.org/10.1111/j.1574-6968.2004.tb09488.x] [PMID: 15063492]
[17]
Sánchez-Vargas FM, Gómez-Duarte OG. Mycoplasma pneumoniae-an emerging extra-pulmonary pathogen. Clin Microbiol Infect 2008; 14(2): 105-17.
[http://dx.doi.org/10.1111/j.1469-0691.2007.01834.x] [PMID: 17949442]
[18]
Narita M. Classification of Extrapulmonary Manifestations Due to Mycoplasma pneumoniae Infection on the Basis of Possible Pathogenesis. Front Microbiol 2016; 7: 23.
[http://dx.doi.org/10.3389/fmicb.2016.00023] [PMID: 26858701]
[19]
Yang J, Hooper WC, Phillips DJ, Talkington DF. Cytokines in Mycoplasma pneumoniae infections. Cytokine Growth Factor Rev 2004; 15(2-3): 157-68.
[http://dx.doi.org/10.1016/j.cytogfr.2004.01.001] [PMID: 15110799]
[20]
Meseguer MA, Alvarez A, Rejas MT, Sánchez C, Pérez-Díaz JC, Baquero F. Mycoplasma pneumoniae: a reduced-genome intracellular bacterial pathogen. Infect Genet Evol 2003; 3(1): 47-55.
[http://dx.doi.org/10.1016/S1567-1348(02)00151-X] [PMID: 12797972]
[21]
Kuwahara M, Samukawa M, Ikeda T, et al. Characterization of the neurological diseases associated with Mycoplasma pneumoniae infection and anti-glycolipid antibodies. J Neurol 2017; 264(3): 467-75.
[http://dx.doi.org/10.1007/s00415-016-8371-1] [PMID: 28025664]
[22]
Bitnun A, Ford-Jones EL, Petric M, et al. Acute childhood encephalitis and Mycoplasma pneumoniae. Clin Infect Dis 2001; 32(12): 1674-84.
[http://dx.doi.org/10.1086/320748] [PMID: 11360206]
[23]
Hynson JL, Kornberg AJ, Coleman LT, Shield L, Harvey AS, Kean MJ. Clinical and neuroradiologic features of acute disseminated encephalomyelitis in children. Neurology 2001; 56(10): 1308-12.
[http://dx.doi.org/10.1212/WNL.56.10.1308] [PMID: 11376179]
[24]
Esposito S, Di Pietro GM, Madini B, Mastrolia MV, Rigante D. A spectrum of inflammation and demyelination in acute disseminated encephalomyelitis (ADEM) of children. Autoimmun Rev 2015; 14(10): 923-9.
[http://dx.doi.org/10.1016/j.autrev.2015.06.002] [PMID: 26079482]
[25]
Kornreich L, Shkalim-Zemer V, Levinsky Y, Abdallah W, Ganelin-Cohen E, Straussberg R. Acute Cerebellitis in Children: A Many-Faceted Disease. J Child Neurol 2016; 31(8): 991-7.
[http://dx.doi.org/10.1177/0883073816634860] [PMID: 26961264]
[26]
Schneider T, Thomalla G, Goebell E, Piotrowski A, Yousem DM. Magnetic resonance imaging findings in patients presenting with (sub)acute cerebellar ataxia. Neuroradiology 2015; 57(6): 551-9.
[http://dx.doi.org/10.1007/s00234-015-1496-6] [PMID: 25686577]
[27]
Diaco M, Ancarini F, Montalto M, et al. Association of myasthenia gravis and antisynthetase syndrome: a case report. Int J Immunopathol Pharmacol 2004; 17(3): 395-9.
[http://dx.doi.org/10.1177/039463200401700320] [PMID: 15461874]
[28]
Tay CG, Fong CY, Ong LC. Transient parkinsonism following mycoplasma pneumoniae infection with normal brain magnetic resonance imaging (MRI). J Child Neurol 2014; 29(12): NP193-5.
[http://dx.doi.org/10.1177/0883073813510741] [PMID: 24309239]
[29]
Müller N, Riedel M, Förderreuther S, Blendinger C, Abele-Horn M. Tourette’s syndrome and mycoplasma pneumoniae infection. Am J Psychiatry 2000; 157(3): 481-2.
[http://dx.doi.org/10.1176/appi.ajp.157.3.481-a] [PMID: 10698843]
[30]
Williams KA, Swedo SE. Post-infectious autoimmune disorders: Sydenham’s chorea, PANDAS and beyond. Brain Res 2015; 1617: 144-54.
[http://dx.doi.org/10.1016/j.brainres.2014.09.071] [PMID: 25301689]
[31]
Spinello C, Laviola G, Macrì S. Pediatric Autoimmune Disorders Associated with Streptococcal Infections and Tourette’s Syndrome in Preclinical Studies. Front Neurosci 2016; 10: 310.
[http://dx.doi.org/10.3389/fnins.2016.00310] [PMID: 27445678]
[32]
Kirvan CA, Swedo SE, Snider LA, Cunningham MW. Antibody-mediated neuronal cell signaling in behavior and movement disorders. J Neuroimmunol 2006; 179(1-2): 173-9.
[http://dx.doi.org/10.1016/j.jneuroim.2006.06.017] [PMID: 16875742]
[33]
Lotan D, Benhar I, Alvarez K, et al. Behavioral and neural effects of intra-striatal infusion of anti-streptococcal antibodies in rats. Brain Behav Immun 2014; 38: 249-62.
[http://dx.doi.org/10.1016/j.bbi.2014.02.009] [PMID: 24561489]
[34]
Kirvan CA, Swedo SE, Heuser JS, Cunningham MW. Mimicry and autoantibody-mediated neuronal cell signaling in Sydenham chorea. Nat Med 2003; 9(7): 914-20.
[http://dx.doi.org/10.1038/nm892] [PMID: 12819778]
[35]
Calaprice D, Tona J, Murphy TK. Treatment of Pediatric Acute-Onset Neuropsychiatric Disorder in a Large Survey Population. J Child Adolesc Psychopharmacol 2018; 28(2): 92-103.
[http://dx.doi.org/10.1089/cap.2017.0101] [PMID: 28832181]
[36]
Walls A, Cubangbang M, Wang H, et al. Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcus Immunology: A Pilot Study. Otolaryngol Head Neck Surg 2015; 153(1): 130-6.
[http://dx.doi.org/10.1177/0194599815577784] [PMID: 25832830]
[37]
Dileepan T, Linehan JL, Moon JJ, Pepper M, Jenkins MK, Cleary PP. Robust antigen specific th17 T cell response to group A Streptococcus is dependent on IL-6 and intranasal route of infection. PLoS Pathog 2011; 7(9) e1002252
[http://dx.doi.org/10.1371/journal.ppat.1002252] [PMID: 21966268]
[38]
Dileepan T, Smith ED, Knowland D, et al. Group A Streptococcus intranasal infection promotes CNS infiltration by streptococcal-specific Th17 cells. J Clin Invest 2016; 126(1): 303-17.
[http://dx.doi.org/10.1172/JCI80792] [PMID: 26657857]
[39]
Clapp M, Aurora N, Herrera L, Bhatia M, Wilen E, Wakefield S. Gut microbiota’s effect on mental health: The gut-brain axis. Clin Pract 2017; 7(4): 987.
[http://dx.doi.org/10.4081/cp.2017.987] [PMID: 29071061]
[40]
Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 2015; 28(2): 203-9.
[PMID: 25830558]
[41]
Foster JA, McVey Neufeld KA. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 2013; 36(5): 305-12.
[http://dx.doi.org/10.1016/j.tins.2013.01.005] [PMID: 23384445]
[42]
Karlsson F, Tremaroli V, Nielsen J, Bäckhed F. Assessing the human gut microbiota in metabolic diseases. Diabetes 2013; 62(10): 3341-9.
[http://dx.doi.org/10.2337/db13-0844] [PMID: 24065795]
[43]
Putignani L, Del Chierico F, Vernocchi P, Cicala M, Cucchiara S, Dallapiccola B. Dysbiotrack Study Group. Gut Microbiota Dysbiosis as Risk and Premorbid Factors of IBD and IBS Along the Childhood-Adulthood Transition. Inflamm Bowel Dis 2016; 22(2): 487-504.
[http://dx.doi.org/10.1097/MIB.0000000000000602] [PMID: 26588090]
[44]
Li Q, Zhou JM. The microbiota-gut-brain axis and its potential therapeutic role in autism spectrum disorder. Neuroscience 2016; 324: 131-9.
[http://dx.doi.org/10.1016/j.neuroscience.2016.03.013] [PMID: 26964681]
[45]
Rachid R, Chatila TA. The role of the gut microbiota in food allergy. Curr Opin Pediatr 2016; 28(6): 748-53.
[http://dx.doi.org/10.1097/MOP.0000000000000427] [PMID: 27749359]
[46]
Biesmans S, Bouwknecht JA, Ver Donck L, et al. Peripheral Administration of Tumor Necrosis Factor-Alpha Induces Neuroinflammation and Sickness but Not Depressive-Like Behavior in Mice. BioMed Res Int 2015. 2015716920
[http://dx.doi.org/10.1155/2015/716920] [PMID: 26290874]
[47]
Quagliariello A, Del Chierico F, Russo A, et al. Gut Microbiota Profiling and Gut-Brain Crosstalk in Children Affected by Pediatric Acute-Onset Neuropsychiatric Syndrome and Pediatric Autoimmune Neuropsychiatric Disorders Associated With Streptococcal Infections. Front Microbiol 2018; 9: 675.
[http://dx.doi.org/10.3389/fmicb.2018.00675] [PMID: 29686658]
[48]
Sethi S, Brietzke E. Omics-Based Biomarkers: Application of Metabolomics in Neuropsychiatric Disorders. Int J Neuropsychopharmacol 2015; 19(3) pyv096
[http://dx.doi.org/10.1093/ijnp/pyv096] [PMID: 26453695]
[49]
Aronson JK. Biomarkers and surrogate endpoints. Br J Clin Pharmacol 2005; 59(5): 491-4.
[http://dx.doi.org/10.1111/j.1365-2125.2005.02435.x] [PMID: 15842546]
[50]
Strimbu K, Tavel JA. What are biomarkers? Curr Opin HIV AIDS 2010; 5(6): 463-6.
[http://dx.doi.org/10.1097/COH.0b013e32833ed177] [PMID: 20978388]
[51]
Fanos V, Van den Anker J, Noto A, Mussap M, Atzori L. Metabolomics in neonatology: fact or fiction? Semin Fetal Neonatal Med 2013; 18(1): 3-12.
[http://dx.doi.org/10.1016/j.siny.2012.10.014] [PMID: 23195852]
[52]
Oliver SG, Winson MK, Kell DB, Baganz F. Systematic functional analysis of the yeast genome. Trends Biotechnol 1998; 16(9): 373-8.
[http://dx.doi.org/10.1016/S0167-7799(98)01214-1] [PMID: 9744112]
[53]
Noto A, Fanos V, Barberini L, et al. The urinary metabolomics profile of an Italian autistic children population and their unaffected siblings. J Matern Fetal Neonatal Med 2014; 27(Suppl. 2): 46-52.
[http://dx.doi.org/10.3109/14767058.2014.954784] [PMID: 25284177]
[54]
Yap IKS, Angley M, Veselkov KA, Holmes E, Lindon JC, Nicholson JK. Urinary metabolic phenotyping differentiates children with autism from their unaffected siblings and age-matched controls. J Proteome Res 2010; 9(6): 2996-3004.
[http://dx.doi.org/10.1021/pr901188e] [PMID: 20337404]
[55]
Shaw W. Increased urinary excretion of a 3-(3-hydroxyphenyl)-3-hydroxypropionic acid (HPHPA), an abnormal phenylalanine metabolite of Clostridia spp. in the gastrointestinal tract, in urine samples from patients with autism and schizophrenia. Nutr Neurosci 2010; 13(3): 135-43.
[http://dx.doi.org/10.1179/147683010X12611460763968] [PMID: 20423563]
[56]
Lussu M, Noto A, Masili A, et al. The urinary 1H-NMR metabolomics profile of an italian autistic children population and their unaffected siblings. Autism Res 2017; 10(6): 1058-66.
[http://dx.doi.org/10.1002/aur.1748] [PMID: 28296209]
[57]
van De Sande MMH, van Buul VJ, Brouns FJPH. Autism and nutrition: the role of the gut-brain axis. Nutr Res Rev 2014; 27(2): 199-214.
[http://dx.doi.org/10.1017/S0954422414000110] [PMID: 25004237]
[58]
Murgia F, Svegliati S, Poddighe S, et al. Metabolomic profile of systemic sclerosis patients. Sci Rep 2018; 8(1): 7626.
[http://dx.doi.org/10.1038/s41598-018-25992-7] [PMID: 29769578]
[59]
Lorefice L, Murgia F, Fenu G, et al. Assessing the Metabolomic Profile of Multiple Sclerosis Patients Treated with Interferon Beta 1a by 1H-NMR Spectroscopy Neurother J Am Soc Exp Neurother 2019.
[60]
Fiandaca MS, Gross TJ, Johnson TM, et al. Potential Metabolomic Linkage in Blood between Parkinson’s Disease and Traumatic Brain Injury. Metabolites 2018; 8(3) E50
[http://dx.doi.org/10.3390/metabo8030050] [PMID: 30205491]
[61]
Wilbur C, Bitnun A, Kronenberg S, et al. PANDAS/PANS in childhood: Controversies and evidence. Paediatr Child Health 2019; 24(2): 85-91.
[http://dx.doi.org/10.1093/pch/pxy145] [PMID: 30996598]
[62]
Malz F, Jancke H. Validation of quantitative NMR, J Pharm Biomed Anal 2005; 10; 38(5): 813-23..
[63]
Xia J, Wishart DS. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc 2011; 6(6): 743-60.
[http://dx.doi.org/10.1038/nprot.2011.319] [PMID: 21637195]
[64]
Toufexis MD, Hommer R, Gerardi DM, et al. Disordered eating and food restrictions in children with PANDAS/PANS. J Child Adolesc Psychopharmacol 2015; 25(1): 48-56.
[http://dx.doi.org/10.1089/cap.2014.0063] [PMID: 25329522]
[65]
Ercan TE, Ercan G, Severge B, Arpaozu M, Karasu G. Mycoplasma pneumoniae infection and obsessive-compulsive disease: a case report. J Child Neurol 2008; 23(3): 338-40.
[http://dx.doi.org/10.1177/0883073807308714] [PMID: 18079308]
[66]
Budman CL, Kerjakovic M, Bruun RD. Viral infection and tic exacerbation. J Am Acad Child Adolesc Psychiatry 1997; 36(2): 162.
[http://dx.doi.org/10.1097/00004583-199702000-00004] [PMID: 9031566]
[67]
Garnier J-M, Noël G, Retornaz K, Blanc P, Minodier P. Extrapulmonary infections due to Mycoplasma pneumoniae. Arch Pediatr Organe Off Soc Francaise Pediatr 2005; 12(Suppl. 1): S2-6.
[68]
Halbedel S, Hames C, Stülke J. Regulation of carbon metabolism in the mollicutes and its relation to virulence. J Mol Microbiol Biotechnol 2007; 12(1-2): 147-54.
[http://dx.doi.org/10.1159/000096470] [PMID: 17183222]
[69]
Pollack JD, Myers MA, Dandekar T, Herrmann R. Suspected utility of enzymes with multiple activities in the small genome Mycoplasma species: the replacement of the missing “household” nucleoside diphosphate kinase gene and activity by glycolytic kinases. OMICS 2002; 6(3): 247-58.
[http://dx.doi.org/10.1089/15362310260256909] [PMID: 12427276]
[70]
Morozumi M, Hasegawa K, Kobayashi R, et al. Emergence of macrolide-resistant Mycoplasma pneumoniae with a 23S rRNA gene mutation. Antimicrob Agents Chemother 2005; 49(6): 2302-6.
[http://dx.doi.org/10.1128/AAC.49.6.2302-2306.2005] [PMID: 15917525]
[71]
Cao B, Zhao CJ, Yin YD, et al. High prevalence of macrolide resistance in Mycoplasma pneumoniae isolates from adult and adolescent patients with respiratory tract infection in China. Clin Infect Dis 2010; 51(2): 189-94.
[http://dx.doi.org/10.1086/653535] [PMID: 20540621]
[72]
Goldstein BI, Kemp DE, Soczynska JK, McIntyre RS. Inflammation and the phenomenology, pathophysiology, comorbidity, and treatment of bipolar disorder: a systematic review of the literature. J Clin Psychiatry 2009; 70(8): 1078-90.
[http://dx.doi.org/10.4088/JCP.08r04505] [PMID: 19497250]
[73]
Potvin S, Stip E, Sepehry AA, Gendron A, Bah R, Kouassi E. Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biol Psychiatry 2008; 63(8): 801-8.
[http://dx.doi.org/10.1016/j.biopsych.2007.09.024] [PMID: 18005941]
[74]
Mitchell RHB, Goldstein BI. Inflammation in children and adolescents with neuropsychiatric disorders: a systematic review. J Am Acad Child Adolesc Psychiatry 2014; 53(3): 274-96.
[http://dx.doi.org/10.1016/j.jaac.2013.11.013] [PMID: 24565356]
[75]
Kumar A, Williams MT, Chugani HT. Evaluation of basal ganglia and thalamic inflammation in children with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection and tourette syndrome: a positron emission tomographic (PET) study using 11C-[R]-PK11195. J Child Neurol 2015; 30(6): 749-56.
[http://dx.doi.org/10.1177/0883073814543303] [PMID: 25117419]
[76]
Church AJ, Cardoso F, Dale RC, Lees AJ, Thompson EJ, Giovannoni G. Anti-basal ganglia antibodies in acute and persistent Sydenham’s chorea. Neurology 2002; 59(2): 227-31.
[http://dx.doi.org/10.1212/WNL.59.2.227] [PMID: 12136062]
[77]
Schrag A, Gilbert R, Giovannoni G, Robertson MM, Metcalfe C, Ben-Shlomo Y. Streptococcal infection, Tourette syndrome, and OCD: is there a connection? Neurology 2009; 73(16): 1256-63.
[http://dx.doi.org/10.1212/WNL.0b013e3181bd10fd] [PMID: 19794128]
[78]
Singer HS, Hong JJ, Yoon DY, Williams PN. Serum autoantibodies do not differentiate PANDAS and Tourette syndrome from controls. Neurology 2005; 65(11): 1701-7.
[http://dx.doi.org/10.1212/01.wnl.0000183223.69946.f1] [PMID: 16207842]
[79]
Mohammad SS, Dale RC. Principles and approaches to the treatment of immune-mediated movement disorders. Eur J Paediatr Neurol 2018; 22(2): 292-300.
[http://dx.doi.org/10.1016/j.ejpn.2017.11.010] [PMID: 29289523]
[80]
Kanoh S, Rubin BK. Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin Microbiol Rev 2010; 23(3): 590-615.
[http://dx.doi.org/10.1128/CMR.00078-09] [PMID: 20610825]
[81]
Baldan LC, Williams KA, Gallezot J-D, et al. Histidine decarboxylase deficiency causes tourette syndrome: parallel findings in humans and mice. Neuron 2014; 81(1): 77-90.
[http://dx.doi.org/10.1016/j.neuron.2013.10.052] [PMID: 24411733]
[82]
Ercan-Sencicek AG, Stillman AA, Ghosh AK, et al. L-histidine decarboxylase and Tourette’s syndrome. N Engl J Med 2010; 362(20): 1901-8.
[http://dx.doi.org/10.1056/NEJMoa0907006] [PMID: 20445167]
[83]
Panula P, Nuutinen S. The histaminergic network in the brain: basic organization and role in disease. Nat Rev Neurosci 2013; 14(7): 472-87.
[http://dx.doi.org/10.1038/nrn3526] [PMID: 23783198]
[84]
Rocha SM, Pires J, Esteves M, Graça B, Bernardino L. Histamine: a new immunomodulatory player in the neuron-glia crosstalk. Front Cell Neurosci 2014; 8: 120.
[http://dx.doi.org/10.3389/fncel.2014.00120] [PMID: 24817841]
[85]
Ferreira R, Santos T, Gonçalves J, et al. Histamine modulates microglia function. J Neuroinflammation 2012; 9: 90.
[http://dx.doi.org/10.1186/1742-2094-9-90] [PMID: 22569158]
[86]
Frick LR, Williams K, Pittenger C. Microglial dysregulation in psychiatric disease. Clin Dev Immunol 2013. 2013608654
[http://dx.doi.org/10.1155/2013/608654] [PMID: 23690824]
[87]
Frick L, Rapanelli M, Abbasi E, Ohtsu H, Pittenger C. Histamine regulation of microglia: Gene-environment interaction in the regulation of central nervous system inflammation. Brain Behav Immun 2016; 57: 326-37.
[http://dx.doi.org/10.1016/j.bbi.2016.07.002] [PMID: 27381299]
[88]
van Wamelen DJ, Shan L, Aziz NA, et al. Functional increase of brain histaminergic signaling in Huntington’s disease. Brain Pathol 2011; 21(4): 419-27.
[http://dx.doi.org/10.1111/j.1750-3639.2010.00465.x] [PMID: 21106039]
[89]
John J, Thannickal TC, McGregor R, et al. Greatly increased numbers of histamine cells in human narcolepsy with cataplexy. Ann Neurol 2013; 74(6): 786-93.
[http://dx.doi.org/10.1002/ana.23968] [PMID: 23821583]
[90]
Yudkoff M. Interactions in the Metabolism of Glutamate and the Branched-Chain Amino Acids and Ketoacids in the CNS. Neurochem Res 2017; 42(1): 10-8.
[http://dx.doi.org/10.1007/s11064-016-2057-z] [PMID: 27696119]
[91]
García-Espinosa MA, Wallin R, Hutson SM, Sweatt AJ. Widespread neuronal expression of branched-chain aminotransferase in the CNS: implications for leucine/glutamate metabolism and for signaling by amino acids. J Neurochem 2007; 100(6): 1458-68.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04332.x] [PMID: 17348860]
[92]
Hull J, Hindy ME, Kehoe PG, Chalmers K, Love S, Conway ME. Distribution of the branched chain aminotransferase proteins in the human brain and their role in glutamate regulation. J Neurochem 2012; 123(6): 997-1009.
[http://dx.doi.org/10.1111/jnc.12044] [PMID: 23043456]
[93]
Sweatt AJ, Garcia-Espinosa MA, Wallin R, Hutson SM. Branched-chain amino acids and neurotransmitter metabolism: expression of cytosolic branched-chain aminotransferase (BCATc) in the cerebellum and hippocampus. J Comp Neurol 2004; 477(4): 360-70.
[http://dx.doi.org/10.1002/cne.20200] [PMID: 15329886]
[94]
Mayer EA, Tillisch K, Gupta A. Gut/brain axis and the microbiota. J Clin Invest 2015; 125(3): 926-38.
[http://dx.doi.org/10.1172/JCI76304] [PMID: 25689247]
[95]
Yarandi SS, Peterson DA, Treisman GJ, Moran TH, Pasricha PJ. Modulatory Effects of Gut Microbiota on the Central Nervous System: How Gut Could Play a Role in Neuropsychiatric Health and Diseases. J Neurogastroenterol Motil 2016; 22(2): 201-12.
[http://dx.doi.org/10.5056/jnm15146] [PMID: 27032544]
[96]
Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol 2007; 5(7) e177
[http://dx.doi.org/10.1371/journal.pbio.0050177] [PMID: 17594176]
[97]
Wikoff WR, Anfora AT, Liu J, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA 2009; 106(10): 3698-703.
[http://dx.doi.org/10.1073/pnas.0812874106] [PMID: 19234110]
[98]
Gareau MG, Silva MA, Perdue MH. Pathophysiological mechanisms of stress-induced intestinal damage. Curr Mol Med 2008; 8(4): 274-81.
[http://dx.doi.org/10.2174/156652408784533760] [PMID: 18537635]

© 2024 Bentham Science Publishers | Privacy Policy