Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Recent Design and Structure-Activity Relationship Studies on the Modifications of DHFR Inhibitors as Anticancer Agents

Author(s): Agnieszka Wróbel and Danuta Drozdowska*

Volume 28 , Issue 5 , 2021

Published on: 16 October, 2019

Page: [910 - 939] Pages: 30

DOI: 10.2174/0929867326666191016151018

Price: $65

Abstract

Background: Dihydrofolate reductase (DHFR) has been known for decades as a molecular target for antibacterial, antifungal and anti-malarial treatments. This enzyme is becoming increasingly important in the design of new anticancer drugs, which is confirmed by numerous studies including modelling, synthesis and in vitro biological research. This review aims to present and discuss some remarkable recent advances in the research of new DHFR inhibitors with potential anticancer activity.

Methods: The scientific literature of the last decade on the different types of DHFR inhibitors has been searched. The studies on design, synthesis and investigation structure-activity relationships were summarized and divided into several subsections depending on the leading molecule and its structural modification. Various methods of synthesis, potential anticancer activity and possible practical applications as DHFR inhibitors of new chemical compounds were described and discussed.

Results: This review presents the current state of knowledge on the modification of known DHFR inhibitors and the structures and searches for about eighty new molecules, designed as potential anticancer drugs. In addition, DHFR inhibitors acting on thymidylate synthase (TS), carbon anhydrase (CA) and even DNA-binding are presented in this paper.

Conclusion: Thorough physicochemical characterization and biological investigations highlight the structure-activity relationship of DHFR inhibitors. This will enable even better design and synthesis of active compounds, which would have the expected mechanism of action and the desired activity.

Keywords: Dihydrofolate reductase (DHFR), methotrexate, trimethoprim, anticancer agents, thymidylate synthase (TS), drug design, folate metabolism.

[1]
Chan, D.C.M.; Anderson, A.C. Towards species-specific antifolates. Curr. Med. Chem., 2006, 13(4), 377-398.
[http://dx.doi.org/10.2174/092986706775527938] [PMID: 16475929]
[2]
Hawser, S.; Lociuro, S.; Islam, K. Dihydrofolate reductase inhibitors as antibacterial agents. Biochem. Pharmacol., 2006, 71(7), 941-948.
[http://dx.doi.org/10.1016/j.bcp.2005.10.052] [PMID: 16359642]
[3]
Borst, P.; Ouellette, M. New mechanisms of drug resistance in parasitic protozoa. Annu. Rev. Microbiol., 1995, 49(1), 427-460.
[http://dx.doi.org/10.1146/annurev.mi.49.100195.002235] [PMID: 8561467]
[4]
Foye, W.O.; Lemke, T.L.; Williams, D.A. Principles of medicinal chemistry, 4th ed.; Williams and Wilkins, Media: Philadelphia; , 2005.
[5]
Snapka, R.M.; Ge, S.; Trask, J.; Robertson, F. Unbalanced growth in mouse cells with amplified dhfr genes. Cell Prolif., 1997, 30(10-12), 385-399.
[http://dx.doi.org/10.1111/j.1365-2184.1997.tb00918.x] [PMID: 9650531]
[6]
Osorio, E.; Aguilera, C.; Naranjo, N.; Marín, M.; Muskus, C. Biochemical characterization of the bifunctional enzyme dihydrofolate reductase-thymidylate synthase from Leishmania (Viannia) and its evaluation as a drug target. Biomedica, 2013, 33(3), 393-401.
[http://dx.doi.org/10.7705/biomedica.v33i3.1434] [PMID: 24652175]
[7]
Berman, E.M.; Werbel, L.M. The renewed potential for folate antagonists in contemporary cancer chemotherapy. J. Med. Chem., 1991, 34(2), 479-485.
[http://dx.doi.org/10.1021/jm00106a001] [PMID: 1995868]
[8]
Kisliuk, R.L. Folate biochemistry in relation to antifolate selectivity. In: Antifolate drugs in cancer therapy. Cancer drug discovery and development; Jackman, A.L, Ed.; Humana Press: Totowa, 1999; 2, pp. 13-36.
[http://dx.doi.org/10.1007/978-1-59259-725-3_2]
[9]
Green, E.; Demos, C.H.; Sirotank, F.M.; Burchal, J.J.; Ensminger, W.B.; Montgomery, J.A. Folate antagonists as therapeutic agents 2. Eds. Academic Press: Orlando, 1984; pp. 191-249.
[10]
Polshakov, V.I. Dihydrofolate reductase: structural aspects of mechanisms of enzyme catalysis and inhibition. Russ. Chem. Bull., 2001, 50, 1733-1751.
[http://dx.doi.org/10.1023/A:1014313625350]
[11]
McGuire, J.J. Anticancer antifolates: current status and future directions. Curr. Pharm. Des., 2003, 9(31), 2593-2613.
[http://dx.doi.org/10.2174/1381612033453712] [PMID: 14529544]
[12]
Then, R.L. Antimicrobial dihydrofolate reductase inhibitors--achievements and future options: review J. Chemother., 2004, 16(1), 3-12.
[http://dx.doi.org/10.1179/joc.2004.16.1.3] [PMID: 15077993]
[13]
Gregson, A.; Plowe, C.V. Mechanisms of resistance of malaria parasites to antifolates. Pharmacol. Rev., 2005, 57(1), 117-145.
[http://dx.doi.org/10.1124/pr.57.1.4] [PMID: 15734729]
[14]
Cao, S.L.; Feng, Y.P.; Jiang, Y.Y.; Liu, S.Y.; Ding, G.Y.; Li, R.T. Synthesis and in vitro antitumor activity of 4(3H)-quinazolinone derivatives with dithiocarbamate side chains. Bioorg. Med. Chem. Lett., 2005, 15(7), 1915-1917.
[http://dx.doi.org/10.1016/j.bmcl.2005.01.083] [PMID: 15780632]
[15]
Wyss, P.C.; Gerber, P.; Hartman, P.G.; Hubschwerlen, C.; Locher, H.; Marty, H.P.; Stahl, M. Novel dihydrofolate reductase inhibitors. Structure-based versus diversity-based library design and high-throughput synthesis and screening. J. Med. Chem., 2003, 46(12), 2304-2312.
[http://dx.doi.org/10.1021/jm020495y] [PMID: 12773035]
[16]
Assaraf, Y.G.; Leamon, C.P.; Reddy, J.A. The folate receptor as a rational therapeutic target for personalized cancer treatment. Drug Resist. Updat., 2014, 17(4-6), 89-95.
[http://dx.doi.org/10.1016/j.drup.2014.10.002] [PMID: 25457975]
[17]
Matherly, L.H.; Hou, Z.; Deng, Y. Human reduced folate carrier: translation of basic biology to cancer etiology and therapy. Cancer Metastasis Rev., 2007, 26(1), 111-128.
[http://dx.doi.org/10.1007/s10555-007-9046-2] [PMID: 17334909]
[18]
Zhao, R.; Goldman, I.D. The proton-coupled folate transporter: physiological and pharmacological roles. Curr. Opin. Pharmacol., 2013, 13(6), 875-880.
[http://dx.doi.org/10.1016/j.coph.2013.09.011] [PMID: 24383099]
[19]
Zhao, R.; Chattopadhyay, S.; Hanscom, M.; Goldman, I.D. Antifolate resistance in a HeLa cell line associated with impaired transport independent of the reduced folate carrier. Clin. Cancer Res., 2004, 10(24), 8735-8742.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0932] [PMID: 15623659]
[20]
Flintoff, W.F.; Sadlish, H.; Gorlick, R.; Yang, R.; Williams, F.M. Functional analysis of altered reduced folate carrier sequence changes identified in osteosarcomas. Biochim. Biophys. Acta, 2004, 1690(2), 110-117.
[http://dx.doi.org/10.1016/j.bbadis.2004.05.008] [PMID: 15469899]
[21]
Liani, E.; Rothem, L.; Bunni, M.A.; Smith, C.A.; Jansen, G.; Assaraf, Y.G. Loss of folylpoly-gamma-glutamate synthetase activity is a dominant mechanism of resistance to polyglutamylation-dependent novel antifolates in multiple human leukemia sublines. Int. J. Cancer, 2003, 103(5), 587-599.
[http://dx.doi.org/10.1002/ijc.10829] [PMID: 12494465]
[22]
Mullarkey, M.F.; Blumenstein, B.A.; Andrade, W.P.; Bailey, G.A.; Olason, I.; Wetzel, C.E. Methotrexate in the treatment of corticosteroid-dependent asthma. A double-blind crossover study. N. Engl. J. Med., 1988, 318(10), 603-607.
[http://dx.doi.org/10.1056/NEJM198803103181004] [PMID: 3278232]
[23]
Elslager, E.F.; Johnson, J.L.; Werbel, L.M. Synthesis, antitumor, and antimalarial properties of trimetrexate and related 6-[(phenyl-amino)methyl]2,4-quinazolin-diamines. J. Med. Chem., 1983, 26, 1753-1760.
[http://dx.doi.org/10.1021/jm00366a018] [PMID: 6227747]
[24]
Grivsky, E.M.; Lee, S.; Sigel, C.W. Synthesis and antitumor activity of 2,4-diamino-6(2,5-dimethyloxybenzyl)-5methylpyrido[2,3-d]pyrimidine. J. Med. Chem., 1980, 23, 327-329.
[http://dx.doi.org/10.1021/jm00177a025] [PMID: 6928967]
[25]
Bavetsias, V.; Jackman, A.L.; Marriott, J.H.; Kimbell, R.; Gibson, W.; Boyle, F.T.; Bisset, G.M. Folate-based inhibitors of thymidylate synthase: synthesis and antitumor activity of gamma-linked sterically hindered dipeptide analogues of 2-desamino-2-methyl-N10-propargyl-5,8-dideazafolic acid (ICI 198583). J. Med. Chem., 1997, 40(10), 1495-1510.
[http://dx.doi.org/10.1021/jm960878u] [PMID: 9154971]
[26]
Bavetsias, V.; Marriott, J.H.; Melin, C.; Kimbell, R.; Matusiak, Z.S.; Boyle, F.T.; Jackman, A.L. Design and synthesis of Cyclopenta[g]quinazoline-based antifolates as inhibitors of thymidylate synthase and potential antitumor agents. J. Med. Chem., 2000, 43(10), 1910-1926.
[http://dx.doi.org/10.1021/jm991119p] [PMID: 10821704]
[27]
Werbel, L.M.; Degnan, M.J. Synthesis and antimalarial and antitumor effects of 2-amino-4-(hydrazino and hydroxyamino)-6-[(aryl)thio]quinazolines. J. Med. Chem., 1987, 30(11), 2151-2154.
[http://dx.doi.org/10.1021/jm00394a038] [PMID: 3669022]
[28]
Raimondi, M.V.; Randazzo, O.; La Franca, M.; Barone, G.; Vignoni, E.; Rossi, D.; Collina, S. DHFR inhibitors: Reading the past for discovering novel anticancer agents. Molecules, 2019, 24(6), 1140.
[http://dx.doi.org/10.3390/molecules24061140] [PMID: 30909399]
[29]
Carron, P.M.; Crowley, A.; O’Shea, D.; McCann, M.; Howe, O.; Hunt, M.; Devereux, M. Targeting the folate receptor: improving efficacy in inorganic medicinal chemistry. Curr. Med. Chem., 2018, 25(23), 2675-2708.
[http://dx.doi.org/10.2174/0929867325666180209143715] [PMID: 29424300]
[30]
Srinivasan, B.; Tonddast-Navaei, S.; Roy, A.; Zhou, H.; Skolnick, J. Chemical space of Escherichia coli dihydrofolate reductase inhibitors: new approaches for discovering novel drugs for old bugs. Med. Res. Rev., 2019, 39(2), 684-705.
[http://dx.doi.org/10.1002/med.21538] [PMID: 30192413]
[31]
Wang, M.; Yang, J.; Yuan, M.; Xue, L.; Li, H.; Tian, C.; Wang, X.; Liu, J.; Zhang, Z. Synthesis and antiproliferative activity of a series of novel 6-substituted pyrido[3,2-d]pyrimidines as potential nonclassical lipophilic antifolates targeting dihydrofolate reductase. Eur. J. Med. Chem., 2017, 128, 88-97.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.033] [PMID: 28152430]
[32]
Sikora, E.; Jackman, A.L.; Newell, D.R.; Calvert, A.H. Formation and retention and biological activity of N10-propargyl-5,8-dideazafolic acid (CB3717) polyglutamates in L1210 cells in vitro. Biochem. Pharmacol., 1988, 37(21), 4047-4054.
[http://dx.doi.org/10.1016/0006-2952(88)90094-9] [PMID: 2461200]
[33]
Taylor, E.C.; Kuhnt, D.; Shih, C.; Rinzel, S.M.; Grindey, G.B.; Barredo, J.; Jannatipour, M.; Moran, R.G. A dideazatetrahydrofolate analogue lacking a chiral center at C-6, N-[4-[2-(2-amino-3,4-dihydro-4-oxo-7H-pyrrolo[2,3-d]pyrimidin-5yl)ethyl]benzoyl]-L-glutamic acid, is an inhibitor of thymidylate synthase. J. Med. Chem., 1992, 35(23), 4450-4454.
[http://dx.doi.org/10.1021/jm00101a023] [PMID: 1447744]
[34]
Jackman, A.L.; Newell, D.R.; Gibson, W.; Jodrell, D.I.; Taylor, G.A.; Bishop, J.A.; Hughes, L.R.; Calvert, A.H. The biochemical pharmacology of the thymidylate synthase inhibitor, 2-desamino-2-methyl-N10-propargyl-5,8-didea-zafolic acid (ICI 198583). Biochem. Pharmacol., 1991, 42(10), 1885-1895.
[http://dx.doi.org/10.1016/0006-2952(91)90586-T] [PMID: 1741766]
[35]
Nair, M.G.; Abraham, A.; McGuire, J.J. Polyglutamylation as a determinant of cytotoxicity of classical folate analogue inhibitors of thymidylate synthase and glycinamide ribonucleotide formyltransferase. Cell. Pharmacol., 1994, 1, 245-249.
[36]
Scagliotti, G.V.; Selvaggi, G. New data integrating multitargeted antifolates into treatment of first-line and relapsed non-small-cell lung cancer. Clin. Lung Cancer, 2008, 9(Suppl. 3), S122-S128.
[http://dx.doi.org/10.3816/CLC.2008.s.018] [PMID: 19419926]
[37]
Taylor, E.C.; Harrington, P.J.; Fletcher, S.R.; Beardsley, G.P.; Moran, R.G. Synthesis of the antileukemic agents 5,10-dideazaaminopterin and 5,10-dideaza-5,6,7,8-tetrahydroaminopterin. J. Med. Chem., 1985, 28(7), 914-921.
[http://dx.doi.org/10.1021/jm00145a012] [PMID: 4009615]
[38]
Bartyik, K.; Turi, S.; Orosz, F.; Karg, E. Methotrexate inhibits the glyoxalase system in vivo in children with acute lymphoid leukaemia. Eur. J. Cancer, 2004, 40(15), 2287-2292.
[http://dx.doi.org/10.1016/j.ejca.2004.06.024] [PMID: 15454255]
[39]
Huang, C-C.; Hsu, P-C.; Hung, Y-C.; Liao, Y-F.; Liu, C-C.; Hour, C-T.; Kao, M-C.; Tsay, G.J.; Hung, H-C.; Liu, G.Y. Ornithine decarboxylase prevents methotrexate-induced apoptosis by reducing intracellular reactive oxygen species production. Apoptosis, 2005, 10(4), 895-907.
[http://dx.doi.org/10.1007/s10495-005-2947-z] [PMID: 16133879]
[40]
Fotoohi, A.K.; Albertioni, F. Mechanisms of antifolate resistance and methotrexate efficacy in leukemia cells. Leuk. Lymphoma, 2008, 49(3), 410-426.
[http://dx.doi.org/10.1080/10428190701824569] [PMID: 18297517]
[41]
Neradil, J.; Pavlasova, G.; Veselska, R. New mechanisms for an old drug; DHFR- and non-DHFR-mediated effects of methotrexate in cancer cells. Klin. Onkol, 2012, 25(Suppl 2), 2S87, 2S92.
[PMID: 23581023]
[42]
Stover, P.J. One-carbon metabolism-genome interactions in folate-associated pathologies. J. Nutr., 2009, 139(12), 2402-2405.
[http://dx.doi.org/10.3945/jn.109.113670] [PMID: 19812215]
[43]
Yang, P.M.; Lin, J.H.; Huang, W.Y.; Lin, Y.C.; Yeh, S.H.; Chen, C.C. Inhibition of histone deacetylase activity is a novel function of the antifolate drug methotrexate. Biochem. Biophys. Res. Commun., 2010, 391(3), 1396-1399.
[http://dx.doi.org/10.1016/j.bbrc.2009.12.072] [PMID: 20026300]
[44]
Thornalley, P.J.; Rabbani, N. Glyoxalase in tumourigenesis and multidrug resistance. Semin. Cell Dev. Biol., 2011, 22(3), 318-325.
[http://dx.doi.org/10.1016/j.semcdb.2011.02.006] [PMID: 21315826]
[45]
Uzar, E.; Koyuncuoglu, H.R.; Uz, E.; Yilmaz, H.R.; Kutluhan, S.; Kilbas, S.; Gultekin, F. The activities of antioxidant enzymes and the level of malondialdehyde in cerebellum of rats subjected to methotrexate: protective effect of caffeic acid phenethyl ester. Mol. Cell. Biochem., 2006, 291(1-2), 63-68.
[http://dx.doi.org/10.1007/s11010-006-9196-5] [PMID: 16718360]
[46]
Miketova, P.; Kaemingk, K.; Hockenberry, M.; Pasvogel, A.; Hutter, J.; Krull, K.; Moore, I.M. Oxidative changes in cerebral spinal fluid phosphatidylcholine during treatment for acute lymphoblastic leukemia. Biol. Res. Nurs., 2005, 6(3), 187-195.
[http://dx.doi.org/10.1177/1099800404271916] [PMID: 15583359]
[47]
Jahovic, N.; Cevik, H.; Sehirli, A.O.; Yeğen, B.C.; Sener, G. Melatonin prevents methotrexate-induced hepatorenal oxidative injury in rats. J. Pineal Res., 2003, 34(4), 282-287.
[http://dx.doi.org/10.1034/j.1600-079X.2003.00043.x] [PMID: 12662351]
[48]
Liu, T.; Lin, Y.; Wen, X.; Jorissen, R.N.; Gilson, M.K. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res., 2007, 35(Database issue), D198-D201.
[http://dx.doi.org/10.1093/nar/gkl999] [PMID: 17145705]
[49]
Wang, Y.; Suzek, T.; Zhang, J.; Wang, J.; He, S.; Cheng, T.; Shoemaker, B.A.; Gindulyte, A.; Bryant, S.H. PubChem BioAssay: 2014 update. Nucleic Acids Res., 2014, 42(Database issue), D1075-D1082.
[http://dx.doi.org/10.1093/nar/gkt978] [PMID: 24198245]
[50]
Rana, R.M.; Rampogu, S.; Zeb, A.; Son, M.; Park, C.; Lee, G.; Yoon, S.; Baek, A.; Parameswaran, S.; Park, S.J.; Lee, K.W. In silico study probes potential inhibitors of human dihydrofolate reductase for cancer therapeutics. J. Clin. Med., 2019, 8(2), 233.
[http://dx.doi.org/10.3390/jcm8020233] [PMID: 30754680]
[51]
Zhang, Z.; Wu, J.; Ran, F.; Guo, Y.; Tian, R.; Zhou, S.; Wang, X.; Liu, Z.; Zhang, L.; Cui, J.; Liu, J. Novel 8-deaza-5,6,7,8-tetrahydroaminopterin derivatives as dihydrofolate inhibitor: design, synthesis and antifolate activity. Eur. J. Med. Chem., 2009, 44(2), 764-771.
[http://dx.doi.org/10.1016/j.ejmech.2008.04.017] [PMID: 18555562]
[52]
Zhang, Z.; Tian, C.; Zhou, S.; Wang, W.; Guo, Y.; Xia, J.; Liu, Z.; Wang, B.; Wang, X.; Golding, B.T.; Griff, R.J.; Du, Y.; Liu, J. Mechanism-based design, synthesis and biological studies of N5-substituted tetrahydrofolate analogs as inhibitors of cobalamin-dependent methionine synthase and potential anticancer agents. Eur. J. Med. Chem., 2012, 58, 228-236.
[http://dx.doi.org/10.1016/j.ejmech.2012.09.027] [PMID: 23124219]
[53]
Piper, J.R.; Ramamurthy, B.; Johnson, C.A.; Otter, G.M.; Sirotnak, F.M. Analogues of 10-deazaaminopterin and 5-alkyl-5,10-dideazaaminopterin with the 4-substituted 1-naphthoyl group in the place of 4-substituted benzoyl. J. Med. Chem., 1996, 39(2), 614-618.
[http://dx.doi.org/10.1021/jm9506940] [PMID: 8558535]
[54]
Piper, J.R.; Johnson, C.A.; Maddry, J.A.; Malik, N.D.; McGuire, J.J.; Otter, G.M.; Sirotnak, F.M. Studies on analogues of classical antifolates bearing the naphthoyl group in place of benzoyl in the side chain. J. Med. Chem., 1993, 36(26), 4161-4171.
[http://dx.doi.org/10.1021/jm00078a004] [PMID: 8277497]
[55]
Kisliuk, R.L. Deaza analogs of folic acid as antitumor agents. Curr. Pharm. Des., 2003, 9(31), 2615-2625.
[http://dx.doi.org/10.2174/1381612033453695] [PMID: 14529545]
[56]
Sirotnak, F.M.; DeGraw, J.I.; Moccio, D.M.; Samuels, L.L.; Goutas, L.J. New folate analogs of the 10-deaza-aminopterin series. Basis for structural design and biochemical and pharmacologic properties. Cancer Chemother. Pharmacol., 1984, 12(1), 18-25.
[http://dx.doi.org/10.1007/BF00255903] [PMID: 6690069]
[57]
Sirotnak, F.M.; DeGraw, J.I.; Schmid, F.A.; Goutas, L.J.; Moccio, D.M. New folate analogs of the 10-deaza-aminopterin series. Further evidence for markedly increased antitumor efficacy compared with methotrexate in ascitic and solid murine tumor models. Cancer Chemother. Pharmacol., 1984, 12(1), 26-30.
[PMID: 6690070]
[58]
Tian, C.; Zhang, Z.; Zhou, S.; Yuan, M.; Wang, X.; Liu, J. Synthesis, antifolate and anticancer activities of N5-substituted 8,10dideazatetrahydrofolate analogues. Chem. Biol. Drug Des., 2016, 87(3), 444-454.
[http://dx.doi.org/10.1111/cbdd.12681] [PMID: 26518975]
[59]
Miwa, T.; Hitaka, T.; Akimoto, H.; Nomura, H. Novel pyrrolo[2,3-d]pyrimidine antifolates: synthesis and antitumor activities. J. Med. Chem., 1991, 34(2), 555-560.
[http://dx.doi.org/10.1021/jm00106a012]
[60]
Li, H.; Fang, F.; Liu, Y.; Xue, L.; Wang, M.; Guo, Y.; Wang, X.; Tian, C.; Liu, J.; Zhang, Z. Inhibitors of dihydrofolate reductase as antitumor agents: design, synthesis and biological evaluation of a series of novel nonclassical 6-substituted pyrido[3,2-d]pyrimidines with a three- to five-carbon bridge. Bioorg. Med. Chem., 2018, 26(9), 2674-2685.
[http://dx.doi.org/10.1016/j.bmc.2018.04.035] [PMID: 29691154]
[61]
Chu, E.; Callender, M.A.; Farrell, M.P.; Schmitz, J.C. Thymidylate synthase inhibitors as anticancer agents: from bench to bedside. Cancer Chemother. Pharmacol., 2003, 52(Suppl. 1), S80-S89.
[http://dx.doi.org/10.1007/s00280-003-0625-9] [PMID: 12819937]
[62]
Jackman, A.L.; Taylor, G.A.; Gibson, W. A Quinazoline antifolate thymidylate synthase inhibitor that is a potent inhibitor of L1210 tumour cell growth in vitro and in vivo: a new agent for clinical study. Cancer Res., 1991, 51, 5579-5586.
[PMID: 1913676]
[63]
Kamen, B.A.; Cole, P.D.; Bertino, J.R. Folate antagonists. In: Holland-Frei Cancer Medicine; Kufe, D.W.; Pollock, R.E.; Weichselbaum, R.R.; Bast, R.C. Jr.; Gansler, T.S.; Holland, J.F.; Frei, E, 3rd Ed.; Williams and Wilkins: Baltimore, 1997; Vol. 1, pp. 907-921.
[64]
Zhang, X.; Zhou, X.; Kisliuk, R.L.; Piraino, J.; Cody, V.; Gangjee, A. Design, synthesis, biological evaluation and X-ray crystal structure of novel classical 6,5,6-tricyclic benzo[4,5]thieno[2,3-d]pyrimidines as dual thymidylate synthase and dihydrofolate reductase inhibitors. Bioorg. Med. Chem., 2011, 19(11), 3585-3594.
[http://dx.doi.org/10.1016/j.bmc.2011.03.067] [PMID: 21550809]
[65]
Gangjee, A.; Qiu, Y.; Li, W.; Kisliuk, R.L. Potent dual thymidylate synthase and dihydrofolate reductase inhibitors: classical and nonclassical 2-amino-4-oxo-5-arylthio-substituted-6-methylthieno[2,3-d]pyrimidine antifolates. J. Med. Chem., 2008, 51(18), 5789-5797.
[http://dx.doi.org/10.1021/jm8006933] [PMID: 18800768]
[66]
Gangjee, A.; Li, W.; Kisliuk, R.L.; Cody, V.; Pace, J.; Piraino, J.; Makin, J. Design, synthesis, and X-ray crystal structure of classical and nonclassical 2-amino-4-oxo-5-substituted-6-ethylthieno[2,3-d]pyrimidines as dual thymi-dylate synthase and dihydrofolate reductase inhibitors and as potential antitumor agents. J. Med. Chem., 2009, 52(15), 4892-4902.
[http://dx.doi.org/10.1021/jm900490a] [PMID: 19719239]
[67]
Gahtori, P.; Ghosh, S.K.; Parida, P.; Prakash, A.; Gogoi, K.; Bhat, H.R.; Singh, U.P. Antimalarial evaluation and docking studies of hybrid phenylthiazolyl-1,3,5-triazine derivatives: a novel and potential antifolate lead for Pf-DHFR-TS inhibition. Exp. Parasitol., 2012, 130(3), 292-299.
[http://dx.doi.org/10.1016/j.exppara.2011.12.014] [PMID: 22233734]
[68]
Misra, R.N.; Xiao, H-Y.; Kim, K.S.; Lu, S.; Han, W-C.; Barbosa, S.A.; Hunt, J.T.; Rawlins, D.B.; Shan, W.; Ahmed, S.Z.; Qian, L.; Chen, B-C.; Zhao, R.; Bednarz, M.S.; Kellar, K.A.; Mulheron, J.G.; Batorsky, R.; Roongta, U.; Kamath, A.; Marathe, P.; Ranadive, S.A.; Sack, J.S.; Tokarski, J.S.; Pavletich, N.P.; Lee, F.Y.; Webster, K.R.; Kimball, S.D.N -(cycloalkylamino)acyl-2-aminothiazole inhibitors of cyclin-dependent kinase 2. N-[5-[[[5-(1,1-dimethylethyl)-2-oxazolyl]methyl]thio]-2-thiazolyl]-4-pi-peridinecarboxamide (BMS-387032), a highly efficacious and selective antitumor agent. J. Med. Chem., 2004, 47(7), 1719-1728.
[http://dx.doi.org/10.1021/jm0305568] [PMID: 15027863]
[69]
Gahtori, P.; Singh, A.; Ghosh, S.K.; Das, A.; Archana, U. Synthesis of some substituted phenylthiazolyl 1, 3, 5- triazine derivatives. Asian J. Chem., 2011, 23(3), 1189-1192.http://www.asianjournalofchemistry.co.in/user/journal/viewarticle.aspx?ArticleID=23_3_55
[70]
Milne, G.W.A. Ashgate Handbook of Antineoplastic Agents, 1st ed; Wiley: Chicago, 2000.
[71]
Wolter, F.E.; Molinari, L.; Socher, E.R.; Schneider, K.; Nicholson, G.; Beil, W.; Seitz, O.; Süssmuth, R.D. Synthesis and evaluation of a netropsin-proximicin-hybrid library for DNA binding and cytotoxicity. Bioorg. Med. Chem. Lett., 2009, 19(14), 3811-3815.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.042] [PMID: 19427785]
[72]
Nelson, S.M.; Ferguson, L.R.; Denny, W.A. Non-covalent ligand/DNA interactions: minor groove binding agents. Mutat. Res., 2007, 623(1-2), 24-40.
[http://dx.doi.org/10.1016/j.mrfmmm.2007.03.012] [PMID: 17507044]
[73]
Plouvier, B.; Houssin, R.; Helbecque, N.; Colson, P.; Houssier, C.; Hénichart, J.P.; Bailly, C. Influence of the methyl substituents of a thiazole-containing lexitropsin on the mode of binding to DNA. Anticancer Drug Des., 1995, 10(2), 155-166.
[PMID: 7710636]
[74]
Ewida, M.A.; Abou El Ella, D.A.; Lasheen, D.S.; Ewida, H.A.; El-Gazzar, Y.I.; El-Subbagh, H.I. Thiazolo[4,5-d]pyridazine analogues as a new class of dihydrofolate reductase (DHFR) inhibitors: synthesis, biological evaluation and molecular modeling study. Bioorg. Chem., 2017, 74, 228-237.
[http://dx.doi.org/10.1016/j.bioorg.2017.08.010] [PMID: 28865294]
[75]
El-Subbagh, H.I.; El-Sherbeny, M.A.; Nasr, M.N.; Goda, F.E.; Badria, F.A. Novel diarylsulphide derivatives as potential cytotoxic agents. Boll. Chim. Farm., 1995, 134(2), 80-84.
[PMID: 7598837]
[76]
El-Subbagh, H.I.; Al-Obaid, A.M. 2, 4-Disubstituted thiazoles II. A novel class of antitumor agents, synthesis and biological evaluation. Eur. J. Med. Chem., 1996, 31(12), 1017-1021.
[http://dx.doi.org/10.1016/S0223-5234(97)86181-8]
[77]
El-Subbagh, H.I.; Abadi, A.H.; Lehmann, J. 2,4-Disubstituted thiazoles, Part III. synthesis and antitumor activity of ethyl 2-substituted-aminothiazole-4-carboxylate analogs. Arch. Pharm. (Weinheim), 1999, 322(4), 137-142.
[http://dx.doi.org/10.1002/(SICI)1521-4184(19994)332:4137::AID-ARDP137>3.0.CO;2-0] [PMID: 10327887]
[78]
El-Gazzar, Y.I.; Georgey, H.H.; El-Messery, S.M.; Ewida, H.A.; Hassan, G.S.; Raafat, M.M.; Ewida, M.A.; El-Subbagh, H.I. Synthesis, biological evaluation and molecular modeling study of new (1,2,4-triazole or 1,3,4-thiadiazole)-methylthio-derivatives of quinazolin-4(3H)-one as DHFR inhibitors. Bioorg. Chem., 2017, 72, 282-292.
[http://dx.doi.org/10.1016/j.bioorg.2017.04.019] [PMID: 28499189]
[79]
Al-Rashood, S.T.; Aboldahab, I.A.; Nagi, M.N.; Abouzeid, L.A.; Abdel-Aziz, A.A.; Abdel-Hamide, S.G.; Youssef, K.M.; Al-Obaid, A.M.; El-Subbagh, H.I. Synthesis, dihydrofolate reductase inhibition, antitumor testing, and molecular modeling study of some new 4(3H)-quinazolinone analogs. Bioorg. Med. Chem., 2006, 14(24), 8608-8621.
[http://dx.doi.org/10.1016/j.bmc.2006.08.030] [PMID: 16971132]
[80]
Miller, R.F.; Mitchell, D.M. AIDS and the lung: update 1995. 1. Pneumocystis carinii pneumonia. Thorax, 1995, 50(2), 191-200.
[http://dx.doi.org/10.1136/thx.50.2.191] [PMID: 7701463]
[81]
Manfredi, R.; Chiodo, F. Features of AIDS and AIDS defining diseases during the highly active antiretroviral therapy (HAART) era, compared with the pre-HAART period: a case control study. Sex. Transm. Infect., 2000, 76(2), 145-146.
[http://dx.doi.org/10.1136/sti.76.2.145-b] [PMID: 10858726]
[82]
Ewida, M.A.; Abou El Ella, D.A.; Lasheen, D.S.; Ewida, H.A.; El-Gazzar, Y.I.; El-Subbagh, H.I. Imidazo[2′,1′:2,3] thiazolo[4,5-d]pyridazinone as a new scaffold of DHFR inhibitors: Synthesis, biological evaluation and molecular modeling study. Bioorg. Chem., 2018, 80, 11-23.
[http://dx.doi.org/10.1016/j.bioorg.2018.05.025] [PMID: 29864684]
[83]
Al-Rashood, S.T.; Hassan, G.S.; El-Messery, S.M.; Nagi, M.N.; Habib, E.E.; Al-Omary, F.A.M.; El-Subbagh, H.I. Synthesis, biological evaluation and molecular modeling study of 2-(1,3,4-thiadiazolyl-thio and 4-methyl-thiazolyl-thio)-quinazolin-4-ones as a new class of DHFR inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(18), 4557-4567.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.070] [PMID: 25139568]
[84]
Al-Omary, F.A.M.; Abou-Zeid, L.A.; Nagi, M.N.; Habib, S.E.; Abdel-Aziz, A.A.; El-Azab, A.S.; Abdel-Hamide, S.G.; Al-Omar, M.A.; Al-Obaid, A.M.; El-Subbagh, H.I. Non-classical antifolates. Part 2: synthesis, biological evaluation, and molecular modeling study of some new 2,6-substituted-quinazolin-4-ones. Bioorg. Med. Chem., 2010, 18(8), 2849-2863.
[http://dx.doi.org/10.1016/j.bmc.2010.03.019] [PMID: 20350811]
[85]
Al-Omary, F.A.M.; Hassan, G.S.; El-Messery, S.M.; Nagi, M.N.; Habib, S.E.; El-Subbagh, H.I. Nonclassical antifolates, part 3: synthesis, biological evaluation and molecular modeling study of some new 2-heteroarylthio-quinazolin-4-ones. Eur. J. Med. Chem., 2013, 63, 33-45.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.061] [PMID: 23454532]
[86]
El-Subbagh, H.I.; Hassan, G.S.; El-Messery, S.M.; Al-Rashood, S.T.; Al-Omary, F.A.; Abulfadl, Y.S.; Shabayek, M.I. Nonclassical antifolates, part 5. Benzodiazepine analogs as a new class of DHFR inhibitors: synthesis, antitumor testing and molecular modeling study. Eur. J. Med. Chem., 2014, 74, 234-245.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.004] [PMID: 24469112]
[87]
El-Subbagh, H.I.; Abadi, A.H.; Al-Khamees, H.A. Synthesis and antitumor activity of 9-anilino, phenylhydrazino, and sulphonamido analogs of 2- or 4-methoxy-6-nitroacridines. Arch. Pharm. (Weinheim), 1997, 330(9-10), 277-284.
[http://dx.doi.org/10.1002/ardp.19973300903] [PMID: 9396385]
[88]
El-Obaid, A.M.; El-Shafie, F.S.; Al-Mutairi, M.S. Synthesis and antitumor activity of certain new substituted 1Hisoindoldione derivatives. Sci. Pharm., 1999, 67(2), 129-147.
[89]
Al-Obaid, A.M.; el-Subbagh, H.I.; Khodair, A.I.; Elmazar, M.M. 5-substituted-2-thiohydantoin analogs as a novel class of antitumor agents. Anticancer Drugs, 1996, 7(8), 873-880.
[http://dx.doi.org/10.1097/00001813-199611000-00009] [PMID: 8991192]
[90]
El-Subbagh, H.I.; Abu-Zaid, S.M.; Mahran, M.A.; Badria, F.A.; Al-Obaid, A.M. Synthesis and biological evaluation of certain α,β-unsaturated ketones and their corresponding fused pyridines as antiviral and cytotoxic agents. J. Med. Chem., 2000, 43(15), 2915-2921.
[http://dx.doi.org/10.1021/jm000038m] [PMID: 10956199]
[91]
Al-Madi, S.H.; Al-Obaid, A.M.; El-Subbagh, H.I. The in vitro antitumor assay of 5-(Z)-arylidene-4-imidazoli-dinones in screens of AIDS-related leukemia and lymphomas. Anticancer Drugs, 2001, 12(10), 835-839.
[http://dx.doi.org/10.1097/00001813-200111000-00007] [PMID: 11707651]
[92]
Hamid, S.A.; El-Obaid, H.A.; Al-Rashood, K.A. Substituted quinazolines. 1. Synthesis and antitumor activity of certain substituted 2-mercapto-4 (3H)-quinazolinone analogs. Sci. Pharm., 2001, 69, 351-366.
[http://dx.doi.org/10.3797/scipharm.aut-01-205]
[93]
Khalil, A.A.; Abdel-Hamide, S.G.; Al-Obaid, A.M.; El-Subbagh, H.I. Substituted quinazolines, part 2. Synthesis and in-vitro anticancer evaluation of new 2-substituted mercapto-3H-quinazoline analogs. Arch. Pharm. (Weinheim), 2003, 336(2), 95-103.
[http://dx.doi.org/10.1002/ardp.200390011] [PMID: 12761762]
[94]
Abdel Hamid, S.G.; El-Obaid, H.A.; Al-Majed, A.A. Synthesis and anticonvulsant activity of some new 4-oxo-3Hquinazoline analogs. Med. Chem. Res., 2001, 10, 378-389.
[95]
Al-Omar, M.A.; Abdel Hamide, S.G.; Al-Khamees, H.A.; El-Subbagh, H. Synthesis and biological screening of some new substituted3H-quinazolin-4-one analogs as antimicrobial agents. Saudi Pharm. J., 2004, 12, 63-71.
[96]
Kuramoto, M.; Sakata, Y.; Terai, K.; Kawasaki, I.; Kunitomo, J.; Ohishi, T.; Yokomizo, T.; Takeda, S.; Tanaka, S.; Ohishi, Y. Preparation of leukotriene B(4) inhibitory active 2- and 3-(2-aminothiazol-4-yl)benzo[b]furan derivatives and their growth inhibitory activity on human pancreatic cancer cells. Org. Biomol. Chem., 2008, 6(15), 2772-2781.
[http://dx.doi.org/10.1039/b803313g] [PMID: 18633535]
[97]
El-Messery, S.M.; Hassan, G.S.; Nagi, M.N.; Habib, E.E.; Al-Rashood, S.T.; El-Subbagh, H.I. Synthesis, biological evaluation and molecular modeling study of some new methoxylated 2-benzylthio-quinazoline-4(3H)-ones as nonclassical antifolates. Bioorg. Med. Chem. Lett., 2016, 26(19), 4815-4823.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.022] [PMID: 27554444]
[98]
Turan-Zitouni, G.; Kaplancikli, Z.A.; Yildiz, M.T.; Chevallet, P.; Kaya, D. Synthesis and antimicrobial activity of 4-phenyl/cyclohexyl-5-(1-phenoxyethyl)-3-[N-(2-thiazolyl) acetamido]thio-4H-1,2,4-triazole derivatives. Eur. J. Med. Chem., 2005, 40(6), 607-613.
[http://dx.doi.org/10.1016/j.ejmech.2005.01.007] [PMID: 15922844]
[99]
Walczak, K.; Gondela, A.; Suwiński, J. Synthesis and anti-tuberculosis activity of N-aryl-C-nitroazoles. Eur. J. Med. Chem., 2004, 39(10), 849-853.
[http://dx.doi.org/10.1016/j.ejmech.2004.06.014] [PMID: 15464618]
[100]
Holla, B.S.; Poojary, K.N.; Rao, B.S.; Shivananda, M.K. New bis-aminomercaptotriazoles and bis-triazolothia-diazoles as possible anticancer agents. Eur. J. Med. Chem., 2002, 37(6), 511-517.
[http://dx.doi.org/10.1016/S0223-5234(02)01358-2] [PMID: 12204477]
[101]
Shivarama Holla, B.; Veerendra, B.; Shivananda, M.K.; Poojary, B. Synthesis characterization and anticancer activity studies on some Mannich bases derived from 1,2,4-triazoles. Eur. J. Med. Chem., 2003, 38(7-8), 759-767.
[http://dx.doi.org/10.1016/S0223-5234(03)00128-4] [PMID: 12932907]
[102]
Hassan, G.S.; El-Messery, S.M.; Al-Omary, F.A.M.; Al-Rashood, S.T.; Shabayek, M.I.; Abulfadl, Y.S.; Habib, S.E.; El-Hallouty, S.M.; Fayad, W.; Mohamed, K.M.; El-Menshawi, B.S.; El-Subbagh, H.I. Nonclassical antifolates, part 4. 5-(2-aminothiazol-4-yl)-4-phenyl-4H-1,2,4-triazole-3-thiols as a new class of DHFR inhibitors: synthesis, biological evaluation and molecular modeling study. Eur. J. Med. Chem., 2013, 66, 135-145.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.039] [PMID: 23792351]
[103]
Parhi, A.K.; Zhang, Y.; Saionz, K.W.; Pradhan, P.; Kaul, M.; Trivedi, K.; Pilch, D.S.; LaVoie, E.J. Antibacterial activity of quinoxalines, quinazolines, and 1,5-naphthyri-dines. Bioorg. Med. Chem. Lett., 2013, 23(17), 4968-4974.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.048] [PMID: 23891185]
[104]
Juvale, K.; Gallus, J.; Wiese, M. Investigation of quinazolines as inhibitors of breast cancer resistance protein (ABCG2). Bioorg. Med. Chem., 2013, 21(24), 7858-7873.
[http://dx.doi.org/10.1016/j.bmc.2013.10.007] [PMID: 24184213]
[105]
Ugale, V.G.; Bari, S.B. Quinazolines: new horizons in anticonvulsant therapy. Eur. J. Med. Chem., 2014, 80, 447-501.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.072] [PMID: 24813877]
[106]
Sharma, P.C.; Kaur, G.; Pahwa, R.; Sharma, A.; Rajak, H. Quinazolinone analogs as potential therapeutic agents. Curr. Med. Chem., 2011, 18(31), 4786-4812.
[http://dx.doi.org/10.2174/092986711797535326] [PMID: 21919847]
[107]
Khan, I.; Ibrar, A.; Abbas, N.; Saeed, A. Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: synthetic approaches and multifarious applications. Eur. J. Med. Chem., 2014, 76, 193-244.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.005] [PMID: 24583357]
[108]
Wang, X.; Li, P.; Li, Z.; Yin, J.; He, M.; Xue, W.; Chen, Z.; Song, B. Synthesis and bioactivity evaluation of novel arylimines containing a 3-aminoethyl-2-[(p-trifluoro-methoxy)anilino]-4(3H)-quinazolinone moiety. J. Agric. Food Chem., 2013, 61(40), 9575-9582.
[http://dx.doi.org/10.1021/jf403193q] [PMID: 24028303]
[109]
Wang, X.; Yin, J.; Shi, L.; Zhang, G.; Song, B. Design, synthesis, and antibacterial activity of novel Schiff base derivatives of quinazolin-4(3H)-one. Eur. J. Med. Chem., 2014, 77, 65-74.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.053] [PMID: 24607590]
[110]
Takeuchi, Y.; Koike, M.; Azuma, K.; Nishioka, H.; Abe, H.; Kim, H.S.; Wataya, Y.; Harayama, T. Synthesis and antimalarial activity of febrifugine derivatives. Chem. Pharm. Bull. (Tokyo), 2001, 49(6), 721-725.
[http://dx.doi.org/10.1248/cpb.49.721] [PMID: 11411524]
[111]
Wang, Z.; Wang, M.; Yao, X.; Li, Y.; Tan, J.; Wang, L.; Qiao, W.; Geng, Y.; Liu, Y.; Wang, Q. Design, synthesis and antiviral activity of novel quinazolinones. Eur. J. Med. Chem., 2012, 53, 275-282.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.010] [PMID: 22546200]
[112]
Leivers, A.L.; Tallant, M.; Shotwell, J.B.; Dickerson, S.; Leivers, M.R.; McDonald, O.B.; Gobel, J.; Creech, K.L.; Strum, S.L.; Mathis, A.; Rogers, S.; Moore, C.B.; Botyanszki, J. Discovery of selective small molecule type III phosphatidylinositol 4-kinase alpha (PI4KIIIα) inhibitors as anti hepatitis C (HCV) agents. J. Med. Chem., 2014, 57(5), 2091-2106.
[http://dx.doi.org/10.1021/jm400781h] [PMID: 23944386]
[113]
Patel, M.B.; Harikrishnan, U.; Valand, N.N.; Modi, N.R.; Menon, S.K. Novel cationic quinazolin-4(3H)-one conjugated fullerene nanoparticles as antimycobacterial and antimicrobial agents. Arch. Pharm. (Weinheim), 2013, 346(3), 210-220.
[http://dx.doi.org/10.1002/ardp.201200371] [PMID: 23359525]
[114]
Alafeefy, A.M.; Kadi, A.A.; El-Azab, A.S.; Abdel-Hamide, S.G.; Daba, M.H. Synthesis, analgesic and anti-inflammatory evaluation of some new 3H-quinazolin-4-one derivatives. Arch. Pharm. (Weinheim), 2008, 341(6), 377-385.
[http://dx.doi.org/10.1002/ardp.200700271] [PMID: 18535995]
[115]
Al-Amiery, A.A.; Kadhum, A.A.H.; Shamel, M. Antioxidant and antimicrobial activities of novel quinazolinones. Med. Chem. Res., 2014, 23, 236-242.
[http://dx.doi.org/10.1007/s00044-013-0625-1]
[116]
Li, H.Z.; He, H.Y.; Han, Y.Y.; Gu, X.; He, L.; Qi, Q.R.; Zhao, Y.L.; Yang, L. A general synthetic procedure for 2-chloromethyl-4(3H)-quinazolinone derivatives and their utilization in the preparation of novel anticancer agents with 4-anilinoquinazoline scaffolds. Molecules, 2010, 15(12), 9473-9485.
[http://dx.doi.org/10.3390/molecules15129473] [PMID: 21178902]
[117]
Singla, P.; Luxami, V.; Paul, K. Benzimidazole - biologically attractive scaffold for protein kinase inhibitors. RSC Adv., 2014, 4, 12422-12440.
[http://dx.doi.org/10.1039/c3ra46304d]
[118]
Narasimhan, B.; Sharma, D.; Kumar, P. Benzimidazole: a medicinally important heterocyclic moiety. Med. Chem. Res., 2012, 21, 269-283.
[http://dx.doi.org/10.1007/s00044-010-9533-9]
[119]
Singla, P.; Luxami, V.; Paul, K. Quinazolinone-benzimidazole conjugates: Synthesis, characterization, dihydrofolate reductase inhibition, DNA and protein binding properties. J. Photochem. Photobiol. B, 2017, 168, 156-164.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.02.009] [PMID: 28222362]
[120]
El-Shaieb, K.M.; Hassan, A.A.; Abdel-Aal, A.S. Synthesis of dibenzo[b,e][1,4]diazepine derivatives. J. Chem. Res., 2011, 35, 592-594.
[http://dx.doi.org/10.3184/174751911X13177143698806]
[121]
Dimmock, J.R.; Kumar, P.; Nazarali, A.J.; Motaganahalli, N.L.; Kowalchuk, T.P.; Beazely, M.A.; Wilson Quail, J.; Oloo, E.O.; Allen, T.M.; Szydlowski, J.; DeClercq, E.; Balzarini, J. Cytotoxic 2,6-bis(arylidene)cyclohexanones and related compounds. Eur. J. Med. Chem., 2000, 35(11), 967-977.
[http://dx.doi.org/10.1016/S0223-5234(00)01173-9] [PMID: 11137225]
[122]
Dimmock, J.R.; Padmanilayam, M.P.; Zello, G.A.; Nienaber, K.H.; Allen, T.M.; Santos, C.L.; De Clercq, E.; Balzarini, J.; Manavathu, E.K.; Stables, J.P. Cytotoxic analogues of 2,6-bis(arylidene)cyclohexanones. Eur. J. Med. Chem., 2003, 38(2), 169-177.
[http://dx.doi.org/10.1016/S0223-5234(02)01444-7] [PMID: 12620661]
[123]
Adams, B.K.; Ferstl, E.M.; Davis, M.C.; Herold, M.; Kurtkaya, S.; Camalier, R.F.; Hollingshead, M.G.; Kaur, G.; Sausville, E.A.; Rickles, F.R.; Snyder, J.P.; Liotta, D.C.; Shoji, M. Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Bioorg. Med. Chem., 2004, 12(14), 3871-3883.
[http://dx.doi.org/10.1016/j.bmc.2004.05.006] [PMID: 15210154]
[124]
Rostom, S.A.F.; Hassan, G.S.; El-Subbagh, H.I. Synthesis and biological evaluation of some polymethoxylated fused pyridine ring systems as antitumor agents. Arch. Pharm. (Weinheim), 2009, 342(10), 584-590.
[http://dx.doi.org/10.1002/ardp.200900062] [PMID: 19714673]
[125]
Al-Omary, F.A.; Hassan, G.S.; El-Messery, S.M.; El-Subbagh, H.I. Substituted thiazoles V. synthesis and antitumor activity of novel thiazolo[2,3-b]quinazoline and pyrido[4,3-d]thiazolo[3,2-a]pyrimidine analogues. Eur. J. Med. Chem., 2012, 47(1), 65-72.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.023] [PMID: 22056277]
[126]
Zhao, H.; Liu, Y.; Cui, Z.; Beattie, D.; Gu, Y.; Wang, Q. Design, synthesis, and biological activities of arylmethylamine substituted chlorotriazine and methylthiotriazine compounds. J. Agric. Food Chem., 2011, 59(21), 11711-11717.
[http://dx.doi.org/10.1021/jf203383s] [PMID: 21970768]
[127]
Kosary, I.; Kosztreiner, E.; Rabloczky, G. Synthesis and cardiotonic activity of 2,4-diamino-1,3,5-triazines. Eur. J. Med. Chem., 1989, 24, 97-105.
[http://dx.doi.org/10.1016/0223-5234(89)90171-2]
[128]
Kreutzberger, A.; Schläfer, I. Central depressive substances. 7. Nuclear substituted (diallyl amino)-1,3,5-triazines. Arch. Pharm. (Weinheim), 1988, 32(11), 827-830.
[http://dx.doi.org/10.1002/ardp.19883211114] [PMID: 3219052]
[129]
Hu, Z.; Ma, T.; Chen, Z.; Ye, Z.; Zhang, G.; Lou, Y.; Yu, Y. Solid-phase synthesis and antitumor evaluation of 2,4-diamino-6-aryl-1,3,5-triazines. J. Comb. Chem., 2009, 11(2), 267-273.
[http://dx.doi.org/10.1021/cc800157k] [PMID: 19125569]
[130]
Baindur, N.; Chadha, N.; Brandt, B.M.; Asgari, D.; Patch, R.J.; Schalk-Hihi, C.; Carver, T.E.; Petrounia, I.P.; Baumann, C.A.; Ott, H.; Manthey, C.; Springer, B.A.; Player, M.R. 2-Hydroxy-4,6-diamino-[1,3,5]triazines: a novel class of VEGF-R2 (KDR) tyrosine kinase inhibitors. J. Med. Chem., 2005, 48(6), 1717-1720.
[http://dx.doi.org/10.1021/jm049372z] [PMID: 15771417]
[131]
Kuo, G.H.; Deangelis, A.; Emanuel, S.; Wang, A.; Zhang, Y.; Connolly, P.J.; Chen, X.; Gruninger, R.H.; Rugg, C.; Fuentes-Pesquera, A.; Middleton, S.A.; Jolliffe, L.; Murray, W.V. Synthesis and identification of [1,3,5] triazine-pyridine biheteroaryl as a novel series of potent cyclin-dependent kinase inhibitors. J. Med. Chem., 2005, 48(14), 4535-4546.
[http://dx.doi.org/10.1021/jm040214h] [PMID: 15999992]
[132]
Liu, B. Sun. T.; Zhou, Z.; Du, L. A systematic review on antitumor agents with 1, 3, 5-triazines. Med. Chem., 2015, 5, 131-148.
[http://dx.doi.org/10.4172/2161-0444.1000255 ]
[133]
Sączewski, F.; Bułakowska, A.; Bednarski, P.; Grunert, R. Synthesis, structure and anticancer activity of novel 2,4-diamino-1,3,5-triazine derivatives. Eur. J. Med. Chem., 2006, 41(2), 219-225.
[http://dx.doi.org/10.1016/j.ejmech.2005.10.013] [PMID: 16377034]
[134]
Sączewski, F.; Bułakowska, A. Synthesis, structure and anticancer activity of novel alkenyl-1,3,5-triazine derivatives. Eur. J. Med. Chem., 2006, 41(5), 611-615.
[http://dx.doi.org/10.1016/j.ejmech.2005.12.012] [PMID: 16540207]
[135]
Zhou, X.; Lin, K.; Ma, X.; Chui, W.-K.; Zhou, W. Design, synthesis, docking studies and biological evaluation of novel dihydro-1,3,5-triazines as human DHFR inhibitors. Eur. J. Med. Chem., 2017, 125, 1279-1288.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.010] [PMID: 27886545]
[136]
Ma, X.; Woon, R.S.; Ho, P.C.; Chui, W.-K. Antiproliferative activity against MCF-7 breast cancer cells by diamino-triazaspirodiene antifolates. Chem. Biol. Drug Des., 2009, 74(3), 322-326.
[http://dx.doi.org/10.1111/j.1747-0285.2009.00860.x] [PMID: 19703036]
[137]
Ma, X.; Chui, W.K. Antifolate and antiproliferative activity of 6,8,10-triazaspiro[4.5]deca-6,8-dienes and 1,3,5-triazaspiro[5.5]undeca-1,3-dienes. Bioorg. Med. Chem., 2010, 18(2), 737-743.
[http://dx.doi.org/10.1016/j.bmc.2009.11.065] [PMID: 20036565]
[138]
Kompis, I.M.; Islam, K.; Then, R.L. DNA and RNA synthesis: antifolates. Chem. Rev., 2005, 105(2), 593-620.
[http://dx.doi.org/10.1021/cr0301144] [PMID: 15700958]
[139]
Visentin, M.; Zhao, R.; Goldman, I.D. The antifolates. Hematol. Oncol. Clin. North Am., 2012, 26(3), 629-648. ix.
[http://dx.doi.org/10.1016/j.hoc.2012.02.002] [PMID: 22520983]
[140]
Kumar, S.; Kushwaha, P.P.; Gupta, S. Emerging targets in cancer drug resistance. Cancer Drug Resist., 2019, 2, 161-177.
[http://dx.doi.org/10.20517/cdr.2018.27 ]
[141]
Modest, E.J.; Foley, G.H.; Perchet, M.M. A series of new, biologically significant dihydrotriazines. J. Am. Chem. Soc., 1952, 74, 855-856.
[http://dx.doi.org/10.1021/ja01123a532]
[142]
Ng, H.L.; Chen, S.; Chew, E.H.; Chui, W.K. Applying the designed multiple ligands approach to inhibit dihydrofolate reductase and thioredoxin reductase for anti-proliferative activity. Eur. J. Med. Chem., 2016, 115, 63-74.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.002] [PMID: 26994844]
[143]
Viegas-Junior, C.; Danuello, A.; da Silva Bolzani, V.; Barreiro, E.J.; Fraga, C.A. Molecular hybridization: a useful tool in the design of new drug prototypes. Curr. Med. Chem., 2007, 14(17), 1829-1852.
[http://dx.doi.org/10.2174/092986707781058805] [PMID: 17627520]
[144]
Singla, P.; Luxami, V.; Paul, K. Triazine-benzimidazole hybrids: anticancer activity, DNA interaction and dihydrofolate reductase inhibitors. Bioorg. Med. Chem., 2015, 23(8), 1691-1700.
[http://dx.doi.org/10.1016/j.bmc.2015.03.012] [PMID: 25792141]
[145]
Krátký, M.; Vinšová, J.; Volková, M.; Buchta, V.; Trejtnar, F.; Stolaříková, J. Antimicrobial activity of sulfonamides containing 5-chloro-2-hydroxybenzaldehyde and 5-chloro-2-hydroxybenzoic acid scaffold. Eur. J. Med. Chem., 2012, 50, 433-440.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.060] [PMID: 22365879]
[146]
Drews, J. Drug discovery: a historical perspective. Science, 2000, 287(5460), 1960-1964.
[http://dx.doi.org/10.1126/science.287.5460.1960] [PMID: 10720314]
[147]
Anjaneyulu, R.; Anjaneyulu, K.; Couturier, E.; Malaisse, W.J. Opposite effects of hypoglycemic and hyperglycemic sulfonamides upon ionophore-mediated calcium transport. Biochem. Pharmacol., 1980, 29(13), 1879-1882.
[http://dx.doi.org/10.1016/0006-2952(80)90097-0] [PMID: 6772193]
[148]
Thornber, C.W. Isosterism and molecular modification in drug design. Chem. Soc. Rev., 1979, 8, 563-580.
[http://dx.doi.org/10.1039/cs9790800563]
[149]
Supuran, C.T.; Scozzafava, A. Carbonic anhydrase inhibitors and their therapeutic potential. Expert Opin. Ther. Pat., 2000, 10, 575-600.
[http://dx.doi.org/10.1517/13543776.10.5.575] [PMID: 30217119]
[150]
Jaiswal, M.; Khadikar, P.V.; Supuran, C.T. Topological modeling of lipophilicity, diuretic activity, and carbonic inhibition activity of benzene sulfonamides: a molecular connectivity approach. Bioorg. Med. Chem. Lett., 2004, 14(22), 5661-5666.
[http://dx.doi.org/10.1016/j.bmcl.2004.08.051] [PMID: 15482943]
[151]
Erickson, J.W. HIV-1 protease as a target for AIDS therapy. In: Protease inhibitors in AIDS therapy; Ogden, R.C.; Flexner, C.W., Eds.; Marcel Dekker, Inc: New York, N Y, 2001; pp. 1-25.
[152]
Alqasoumi, S.I.; Al-Taweel, A.M.; Alafeefy, A.M.; Noaman, E.; Ghorab, M.M. Novel quinolines and pyrimido[4,5-b]quinolines bearing biologically active sulfonamide moiety as a new class of antitumor agents. Eur. J. Med. Chem., 2010, 45(2), 738-744.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.021] [PMID: 19944497]
[153]
Alqasoumi, S.I.; Al-Taweel, A.M.; Alafeefy, A.M.; Ghorab, M.M.; Noaman, E. Discovering some novel tetrahydroquinoline derivatives bearing the biologically active sulfonamide moiety as a new class of antitumor agents. Eur. J. Med. Chem., 2010, 45(5), 1849-1853.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.022] [PMID: 20149941]
[154]
Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; El-Hazek, R.M. Anticancer and radio-sensitizing evaluation of some new thiazolopyrane and thiazolopyranopyrimidine derivatives bearing a sulfonamide moiety. Eur. J. Med. Chem., 2011, 46(10), 5120-5126.
[http://dx.doi.org/10.1016/j.ejmech.2011.08.026] [PMID: 21890248]
[155]
Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; Agha, H.M.; Nissan, Y.M. Novel 4-(4-substituted-thiazol-2-ylamino)-N-(pyridin-2-yl)-benzenesulfonamides as cytotoxic and radiosensitizing agents. Arch. Pharm. Res., 2012, 35(1), 59-68.
[http://dx.doi.org/10.1007/s12272-012-0106-y] [PMID: 22297743]
[156]
Supuran, C.T.; Briganti, F.; Tilli, S.; Chegwidden, W.R.; Scozzafava, A. Carbonic anhydrase inhibitors: sulfonamides as antitumor agents? Bioorg. Med. Chem., 2001, 9(3), 703-714.
[http://dx.doi.org/10.1016/S0968-0896(00)00288-1] [PMID: 11310605]
[157]
Huang, S.; Connolly, P.J.; Lin, R.; Emanuel, S.; Middleton, S.A. Synthesis and evaluation of N-acyl sulfonamides as potential prodrugs of cyclin-dependent kinase inhibitor JNJ-7706621. Bioorg. Med. Chem. Lett., 2006, 16(14), 3639-3641.
[http://dx.doi.org/10.1016/j.bmcl.2006.04.071] [PMID: 16682186]
[158]
Casini, A.; Scozzafava, A.; Supuran, C.T. Sulfonamide derivatives with protease inhibitory action as anticancer, anti-inflammatory and antiviral agents. Expert Opin. Ther. Pat., 2002, 12, 1307-1327.
[http://dx.doi.org/10.1517/13543776.12.9.1307]
[159]
Fukuoka, K.; Usuda, J.; Iwamoto, Y.; Fukumoto, H.; Nakamura, T.; Yoneda, T.; Narita, N.; Saijo, N.; Nishio, K. Mechanisms of action of the novel sulfonamide anticancer agent E7070 on cell cycle progression in human non-small cell lung cancer cells. Invest. New Drugs, 2001, 19(3), 219-227.
[http://dx.doi.org/10.1023/A:1010608317361] [PMID: 11561678]
[160]
Autore, G.; Caruso, A.; Marzocco, S.; Nicolaus, B.; Palladino, C.; Pinto, A.; Popolo, A.; Sinicropi, M.S.; Tommonaro, G.; Saturnino, C. Acetamide derivatives with antioxidant activity and potential anti-inflammatory activity. Molecules, 2010, 15(3), 2028-2038.
[http://dx.doi.org/10.3390/molecules15032028] [PMID: 20336030]
[161]
Ley, J.P.; Bertram, H.J. Synthesis of polyhydroxylated aromatic mandelic acid amides and their antioxidative potential. Tetrahedron, 2001, 57, 1277-1282.
[http://dx.doi.org/10.1016/S0040-4020(00)01136-4]
[162]
Zhu, X.; Zhou, J.; Zhu, Y.; Hu, X.; Bian, Y.; Hu, X.; Tao, Z.; Gao, C.; Huang, W. Synthesis and biological activities of sulfinyl acetamide derivatives for narcolepsy treatment. Lett. Drug Des. Discov., 2013, 10(3), 266-270.
[http://dx.doi.org/10.2174/1570180811310030010]
[163]
Dogruer, D.S.; Kupeli, E. Yesilada. E. Synthesis of new 2[1(2H)phthalazinon-2-yl]acetamide and 3-[1(2H) phthalazinon-2-yl]propanamide derivatives as antinociceptive and anti-inflammatory agents. Arch. Pharm. (Weinheim), 2004, 337, 303-310.
[http://dx.doi.org/10.1002/ardp.200200719] [PMID: 15188219]
[164]
Raghavendra, N.M.; Jyothsna, A.; Venkateswara Rao, A.; Subrahmanyam, C.V. Synthesis, pharmacological evaluation and docking studies of N-(benzo[d]thiazol-2-yl)-2-(piperazin-1-yl)acetamide analogs as COX-2 inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(2), 820-823.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.062] [PMID: 22222039]
[165]
Xiang, Y.; Wang, X.H.; Yang, Q. Rational design, synthesis, and biological activity of N-(1,4-Benzoxazinone) acetamide derivatives as potent platelet aggregation inhibitors. Bull. Korean Chem. Soc., 2018, 39, 146-155.
[http://dx.doi.org/10.1002/bkcs.11359]
[166]
Gull, Y.; Rasool, N.; Noreen, M.; Altaf, A.A.; Musharraf, S.G.; Zubair, M.; Nasim, F.U.; Yaqoob, A.; DeFeo, V.; Zia-Ul-Haq, M. Synthesis of N-(6arylbenzo[d] thiazole-2-acetamide derivatives and their biological activities: an experimental and computational approach. Molecules, 2016, 21(3), 266-282.
[http://dx.doi.org/10.3390/molecules21030266] [PMID: 26927044]
[167]
McCarthy, O.; Musso-Buendia, A.; Kaiser, M.; Brun, R.; Ruiz-Perez, L.M.; Johansson, N.G.; Pacanowska, D.G.; Gilbert, I.H. Design, synthesis and evaluation of novel uracil acetamide derivatives as potential inhibitors of Plasmodium falciparum dUTP nucleotidohydrolase. Eur. J. Med. Chem., 2009, 44(2), 678-688.
[http://dx.doi.org/10.1016/j.ejmech.2008.05.018] [PMID: 18619713]
[168]
Liu, Z.; Zhou, Z.; Tian, W.; Fan, X.; Xue, D.; Yu, L.; Yu, Q.; Long, Y.Q. Discovery of novel 2-N-aryl-substituted benzenesulfonamidoacetamides: orally bioavailable tubulin polymerization inhibitors with marked antitumor activities. ChemMedChem, 2012, 7(4), 680-693.
[http://dx.doi.org/10.1002/cmdc.201100529] [PMID: 22311585]
[169]
Hussein, E.M.; Abdel-Monem, M.I. Regioselective synthesis and anti-inflammatory activity of novel dis-piro [pyrazolidine-4,3′-pyrrolidine-2′,3″indoline]-2″,3,5triones. ARKIVOC, 2011, 10, 85-98.
[http://dx.doi.org/10.3998/ark.5550190.0012.a07]
[170]
Abdel-Mohsen, S.A.; Hussein, E.M. A green synthetic approach to the synthesis of Schiff bases from 4-amino-2thioxo-1,3-diazaspiro[5.5]undec4-ene-5-carbonitrile as potential anti-inflammatory agents. Russ. J. Bioorganic Chem., 2014, 40(3), 343-349.
[http://dx.doi.org/10.1134/S1068162014030029 ] [PMID: 25898745]
[171]
Hussein, E.M.; Masaret, G.S.; Khairou, K.S. Efficient synthesis and antimicrobial evaluation of some Mannich bases from 2-arylidine-1-thia-4-azaspiro[4.5]decan-3-ones. Chem. Cent. J., 2015, 9, 25.
[http://dx.doi.org/10.1186/s13065-015-0101-8] [PMID: 25995769]
[172]
Hussein, E.M.; Al-Shareef, H.F.; Aboellil, A.H. Synthesis of some novel 6′-(4-chlorophenyl)-3,4′-bipyridine-3′carbonitriles: assessment of their antimicrobial and cytotoxic activity. Z Naturforsch, 2015, 70b, 783-795.
[http://dx.doi.org/10.1515/znb-2015-0065]
[173]
Al-Shareef, H.F.; Elhady, H.A.; Aboellil, A.H.; Hussein, E.M. Ammonium chloride catalyzed synthesis of novel Schiff bases from spiro[indoline-3,4′-pyran]-3′-carbonitriles and evaluation of their antimicrobial and anti-breast cancer activities. Springer Plus, 2016, 5(1), 887.
[http://dx.doi.org/10.1186/s40064-016-2458-0] [PMID: 27386335]
[174]
Hussein, E.M. Ammonium chloride-catalyzed fourcomponent sono chemical synthesis of novel hexahydroquinolines bearing a sulfonamide moiety. Russ. J. Org. Chem., 2015, 51, 54-64.
[http://dx.doi.org/10.1134/S1070428015010091]
[175]
Hussein, E.M.; Ahmed, S.A. An efficient and green synthesis of polyfunctionalized spirothiazolidin-4-ones using sulfonated mesoporous silica as a reusable catalyst. Chem. Heterocycl. Compd., 2017, 53, 1148-1155.
[http://dx.doi.org/10.1007/s10593-017-2185-7]
[176]
Hussein, E.M.; Al-Rooqi, M.M.; Abd El-Galil, S.M.; Ahmed, S.A. Design, synthesis, and biological evaluation of novel N4 -substituted sulfonamides: acetamides derivatives as dihydrofolate reductase (DHFR) inhibitors. BMC Chem., 2019, 13(1), 91.
[http://dx.doi.org/10.1186/s13065-019-0603-x] [PMID: 31384838]
[177]
Marques, S.M.; Enyedy, E.A.; Supuran, C.T.; Krupenko, N.I.; Krupenko, S.A.; Santos, M.A. Pteridine-sulfonamide conjugates as dual inhibitors of carbonic anhydrases and dihydrofolate reductase with potential antitumor activity. Bioorg. Med. Chem., 2010, 18(14), 5081-5089.
[http://dx.doi.org/10.1016/j.bmc.2010.05.072] [PMID: 20580561]
[178]
Supuran, C.T.; Scozzafava, A.; Casini, A. Carbonic anhydrase inhibitors. Med. Res. Rev., 2003, 23(2), 146-189.
[http://dx.doi.org/10.1002/med.10025] [PMID: 12500287]
[179]
Supuran, C.T. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov., 2008, 7(2), 168-181.
[http://dx.doi.org/10.1038/nrd2467] [PMID: 18167490]
[180]
Clouthier, C.M.; Pelletier, J.N. Expanding the organic toolbox: a guide to integrating biocatalysis in synthesis. Chem. Soc. Rev., 2012, 41(4), 1585-1605.
[http://dx.doi.org/10.1039/c2cs15286j] [PMID: 22234546]
[181]
Kaur, N.; Lu, X.; Gershengorn, M.C.; Jain, R. Tyrotropinreleasing hormone (TRH) analogues that exhibit selectivity to TRH receptor subtype 2. J. Med. Chem., 2005, 48(19), 6162-6165.
[http://dx.doi.org/10.1021/jm0505462] [PMID: 16162016]
[182]
Moreau, J.P.; Delavault, P.; Blumberg, J. Luteinizing hormone-releasing hormone agonists in the treatment of prostate cancer: a review of their discovery, development, and place in therapy. Clin. Ther., 2006, 28(10), 1485-1508.
[http://dx.doi.org/10.1016/j.clinthera.2006.10.018] [PMID: 17157109]
[183]
Eliassen, L.T.; Berge, G.; Sveinbjørnsson, B.; Svendsen, J.S.; Vorland, L.H.; Rekdal, Ø. Evidence for a direct antitumor mechanism of action of bovine lactoferricin. Anticancer Res., 2002, 22(5), 2703-2710.
[PMID: 12529985]
[184]
Baggio, L.L.; Huang, Q.; Brown, T.J.; Drucker, D.J. A recombinant human glucagon-like peptide (GLP)-1-albumin protein (albugon) mimics peptidergic activation of GLP-1 receptor-dependent pathways coupled with satiety, gastrointestinal motility, and glucose homeostasis. Diabetes, 2004, 53, 24922500.
[http://dx.doi.org/10.2337/diabetes.53.9.2492 ] [PMID: 15331566]
[185]
Xiao, Q.; Giguere, J.; Parisien, M.; Jeng, W.; St-Pierre, S.A.; Brubaker, P.L.; Wheeler, M.B. Biological activities of glucagon-like peptide-1 analogues in vitro and in vivo. Biochemistry, 2001, 40(9), 2860-2869.
[http://dx.doi.org/10.1021/bi0014498] [PMID: 11258897]
[186]
Fjell, C.D.; Hiss, J.A.; Hancock, R.E.W.; Schneider, G. Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov., 2011, 11(1), 37-51.
[http://dx.doi.org/10.1038/nrd3591] [PMID: 22173434]
[187]
Thundimadathil, J. Cancer treatment using peptides: current therapies and future prospects. J. Amino Acids, 2012, 2012967347
[http://dx.doi.org/10.1155/2012/967347] [PMID: 23316341]
[188]
Pearce, T.R.; Shroff, K.; Kokkoli, E. Peptide targeted lipid nanoparticles for anticancer drug delivery. Adv. Mater., 2012, 24(28), 3803-3822, 3710.
[http://dx.doi.org/10.1002/adma.201200832] [PMID: 22674563]
[189]
Ramakers, B.E.I.; van Hest, J.C.M.; Löwik, D.W. Molecular tools for the construction of peptide-based materials. Chem. Soc. Rev., 2014, 43(8), 2743-2756.
[http://dx.doi.org/10.1039/c3cs60362h] [PMID: 24448606]
[190]
Singh, A.; Deshpande, N.; Pramanik, N.; Jhunjhunwala, S.; Rangarajan, A.; Atreya, H.S. Optimized peptide based inhibitors targeting the dihydrofolate reductase pathway in cancer. Sci. Rep., 2018, 8(1), 3190.
[http://dx.doi.org/10.1038/s41598-018-21435-5] [PMID: 29453377]
[191]
Nammalwar, B.; Bourne, C.R.; Wakeham, N.; Bourne, P.C.; Barrow, E.W.; Muddala, N.P.; Bunce, R.A.; Berlin, K.D.; Barrow, W.W. Modified 2,4-diaminopyrimidine-based dihydrofolate reductase inhibitors as potential drug scaffolds against Bacillus anthracis. Bioorg. Med. Chem., 2015, 23(1), 203-211.
[http://dx.doi.org/10.1016/j.bmc.2014.11.009] [PMID: 25435253]
[192]
Nelson, R.G.; Rosowsky, A. Dicyclic and tricyclic diaminopyrimidine derivatives as potent inhibitors of Cryptosporidium parvum dihydrofolate reductase: structure-activity and structure-selectivity correlations. Antimicrob. Agents Chemother., 2001, 45(12), 3293-3303.
[http://dx.doi.org/10.1128/AAC.45.12.3293-3303.2001] [PMID: 11709300]
[193]
Srinivasan, B.; Skolnick, J. Insights into the slow-onset tight-binding inhibition of Escherichia coli dihydrofolate reductase: detailed mechanistic characterization of pyrrolo [3,2-f] quinazoline-1,3-diamine and its derivatives as novel tight-binding inhibitors. FEBS J., 2015, 282(10), 1922-1938.
[http://dx.doi.org/10.1111/febs.13244] [PMID: 25703118]
[194]
Jackson, H.C.; Biggadike, K.; McKilligin, E.; Kinsman, O.S.; Queener, S.F.; Lane, A.; Smith, J.E. 6,7-disubstituted 2,4-diaminopteridines: novel inhibitors of Pneumocystis carinii and Toxoplasma gondii dihydrofolate reductase. Antimicrob. Agents Chemother., 1996, 40(6), 1371-1375.
[http://dx.doi.org/10.1128/AAC.40.6.1371] [PMID: 8726003]
[195]
Srinivasan, B.; Tonddast-Navaei, S.; Skolnick, J. Ligand binding studies, preliminary structure-activity relationship and detailed mechanistic characterization of 1-phenyl-6,6-dimethyl-1,3,5-triazine-2,4-diamine derivatives as inhibitors of Escherichia coli dihydrofolate reductase. Eur. J. Med. Chem., 2015, 103, 600-614.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.021] [PMID: 26414808]
[196]
Sköld, O. Resistance to trimethoprim and sulfonamides. Vet. Res., 2001, 32(3-4), 261-273.
[http://dx.doi.org/10.1051/vetres:2001123] [PMID: 11432417]
[197]
Roth, B.; Falco, E.A.; Hitchings, G.H.; Bushby, S.R. 5-benzyl-2,4diaminopyrimidines as antibacterial agents. I. Synthesis and antibacterial activity in vitro. J. Med. Pharm. Chem., 1962, 91, 1103-1123.
[http://dx.doi.org/10.1021/jm01241a004] [PMID: 14056446]
[198]
Askari, B.S.; Krajinovic, M. Dihydrofolate reductase gene variations in susceptibility to disease and treatment outcomes. Curr. Genomics, 2010, 11(8), 578-583.
[http://dx.doi.org/10.2174/138920210793360925] [PMID: 21629435]
[199]
Scocchera, E.; Reeve, S.M.; Keshipeddy, S.; Lombardo, M.N.; Hajian, B.; Sochia, A.E.; Alverson, J.B.; Priestley, N.D.; Anderson, A.C.; Wright, D.L. Charged nonclassical antifolates with activity against Gram-positive and Gram-negative pathogens. ACS Med. Chem. Lett., 2016, 7(7), 692-696.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00120] [PMID: 27437079]
[200]
Ponce, C.A.; Chabé, M.; George, C.; Cárdenas, A.; Durán, L.; Guerrero, J.; Bustamante, R.; Matos, O.; Huang, L.; Miller, R.F.; Vargas, S.L. High prevalence of Pneumocystis jirovecii dihydropteroate synthase gene mutations in patients with a first episode of Pneumocystis pneumonia in Santiago, Chile, and clinical response to trimethoprim sulfamethoxazole therapy. Antimicrob. Agents Chemother., 2017, 61(2), 1290-16.
[http://dx.doi.org/10.1128/AAC.01290-16] [PMID: 27855071]
[201]
Rosowsky, A.; Forsch, R.A.; Queener, S.F. Inhibition of Pneumocystis carinii, Toxoplasma gondii and Mycobacterium avium dihydrofolate reductases by 2,4-diamino-5-[2-methoxy-5-(omega-carboxyalkyloxy)benzyl]pyrimidines: marked improvement in potency relative to trimethoprim and species selectivity relative to piritrexim. J. Med. Chem., 2002, 45(1), 233-241.
[http://dx.doi.org/10.1021/jm010407u] [PMID: 11754594]
[202]
Rosowsky, A.; Chen, H.; Fu, H.; Queener, S.F. Synthesis of new 2,4-Diaminopyrido[2,3-d]pyrimidine and 2,4-Diaminopyrrolo[2,3-d]pyrimidine inhibitors of Pneumocystis carinii, Toxoplasma gondii, and Mycobacterium avium dihydrofolate reductase. Bioorg. Med. Chem., 2003, 11(1), 59-67.
[http://dx.doi.org/10.1016/S0968-0896(02)00325-5] [PMID: 12467708]
[203]
Singh, P.; Kaur, M.; Sachdeva, S. Mechanism inspired development of rationally designed dihydrofolate reductase inhibitors as anticancer agents. J. Med. Chem., 2012, 55(14), 6381-6390.
[http://dx.doi.org/10.1021/jm300644g] [PMID: 22734697]
[204]
Algul, O.; Paulsen, J.L.; Anderson, A.C. 2,4-Diamino-5-(2-arylpropargyl)pyrimidine derivatives as new nonclassical antifolates for human dihydrofolate reductase inhibition. J. Mol. Graph. Model., 2011, 29(5), 608-613.
[http://dx.doi.org/10.1016/j.jmgm.2010.11.004] [PMID: 21146434]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy