Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Fluorine-Containing Inhalation Anesthetics: Chemistry, Properties and Pharmacology

Author(s): Yuzhong Wang, Xiao-Xia Ming and Cheng-Pan Zhang*

Volume 27 , Issue 33 , 2020

Page: [5599 - 5652] Pages: 54

DOI: 10.2174/0929867326666191003155703

Price: $65

Abstract

Studies on fluorinated inhalation anesthetics, including synthesis, physical chemistry and pharmacology, have been summarized in this review. Retrospecting the history of inhalation anesthetics revealed their increasing reliance on fluorine and ether structures. Halothane causes a rare but severe immune-based hepatotoxicity, which was replaced by enflurane in the 1970s. Isoflurane replaced enflurane in the 1980s, showing modest advantages (e.g. lower solubility, better metabolic stability, and without convulsive predisposition). Desflurane and sevoflurane came into use in the 1990s, which are better anesthetics than isoflurane (less hepatotoxicity, lower solubility, and/or markedly decreased pungency). However, they are still less than perfect. To gain more ideal inhalation anesthetics, a large number of fluorinated halocarbons, polyfluorocycloalkanes, polyfluorocycloalkenes, fluoroarenes, and polyfluorooxetanes, were prepared and their potency and toxicity were evaluated. Although the pharmacology studies suggested that some of these agents produced anesthesia, no further studies were continued on these compounds because they showed obvious lacking as anesthetics. Moreover, the anesthetic activity cannot be simply predicted from the molecular structures but has to be inferred from the experiments. Several regularities were found by experimental studies: 1) the potency and toxicity of the saturated linear chain halogenated ether are enhanced when its molecular weight is increased; 2) the margin of safety decreases and the recovery time is prolonged when the boiling point of the candidate increases; and 3) compounds with an asymmetric carbon terminal exhibit good anesthesia. Nevertheless, the development of new inhalation anesthetics, better than desflurane and sevoflurane, is still challenging not only because of the poor structure/activity relationship known so far but also due to synthetic issues.

Keywords: Fluorine, anesthetics, inhalation, volatile, pharmacology, halocarbons.

[1]
(a)Vutskits, L.; Xie, Z. Lasting impact of general anaesthesia on the brain: mechanisms and relevance. Nat. Rev. Neurosci., 2016, 17(11), 705-717.
[http://dx.doi.org/10.1038/nrn.2016.128] [PMID: 27752068]
(b)Kallman, M.J. General Anesthetics. Drug Discovery and Evaluation: Pharmacological Assays, 2016, 1593-1607.
[http://dx.doi.org/10.1007/978-3-319-05392-9_34]
(c)Hartung, H.P. Local Anesthetic Activity. Drug Discovery and Evaluation: Pharmacological Assays, 2016, 1717- 1766,
[http://dx.doi.org/10.1007/978-3-319-05392-9_38]
[2]
(a)de Paula, E.; Cereda, C.M.S.; Fraceto, L.F.; de Araújo, D.R.; Franz-Montan, M.; Tofoli, G.R.; Ranali, J.; Volpato, M.C.; Groppo, F.C. Micro and nanosystems for delivering local anesthetics. Expert Opin. Drug Deliv., 2012, 9(12), 1505-1524.
[http://dx.doi.org/10.1517/17425247.2012.738664] [PMID: 23140102]
(b)Maestrelli, F.; Bragagni, M.; Mura, P. Advanced formulations for improving therapies with anti-inflammatory or anesthetic drugs: a review. J. Drug Deliv. Sci. Technol., 2016, 32(Part B), 192-205.
[http://dx.doi.org/10.1016/j.jddst.2015.09.011]
(c)Tsuchiya, H. Anesthetic agents of plant origin: a review of phytochemicals with anesthetic activity. Molecules, 2017, 22(8), 1369.
[http://dx.doi.org/10.3390/molecules22081369] [PMID: 28820497]
(d)Izzo, A.A.; Ernst, E. Interactions between herbal medicines and prescribed drugs: an updated systematic review. Drugs, 2009, 69(13), 1777-1798.
[http://dx.doi.org/10.2165/11317010-000000000-00000] [PMID: 19719333]
[3]
(a)Jung, K.W.; Kim, W.J.; Jeong, H.W.; Kwon, H.M.; Moon, Y.J.; Jun, I.G.; Song, J.G.; Hwang, G.S. Impact of inhalational anesthetics on liver regeneration after living donor hepatectomy: a propensity score-matched analysis. Anesth. Analg., 2018, 126(3), 796-804.
[http://dx.doi.org/10.1213/ANE.0000000000002756] [PMID: 29256938]
(b)Cho, Y.J.; Park, Y.J.; Min, S.H.; Ryu, H.G. The effect of general anesthesia on aminotransferase levels in patients with elevated aminotransferase levels: a single-center 5-year retrospective study. Anesth. Analg., 2015, 121(6), 1529-1533.
[http://dx.doi.org/10.1213/ANE.0000000000001030] [PMID: 26496369]
(c)Lemoine, S.; Tritapepe, L.; Hanouz, J.L.; Puddu, P.E. The mechanisms of cardio-protective effects of desflurane and sevoflurane at the time of reperfusion: anaesthetic post-conditioning potentially translatable to humans? Br. J. Anaesth., 2016, 116(4), 456-475.
[http://dx.doi.org/10.1093/bja/aev451] [PMID: 26794826]
[4]
Poon, K.K.S.; Wong, S.H.S. New and developing anesthesia drugs. Expert Opin. Pharmacother., 2017, 18(2), 195-204.
[http://dx.doi.org/10.1080/14656566.2017.1280461] [PMID: 28067577]
[5]
Sneyd, J.R.; Rigby-Jones, A.E. New drugs and technologies, intravenous anaesthesia is on the move (again). Br. J. Anaesth., 2010, 105(3), 246-254.
[http://dx.doi.org/10.1093/bja/aeq190] [PMID: 20650920]
[6]
(a)Besnier, E.; Clavier, T.; Compere, V. The hypothalamic-pituitary-adrenal axis and anesthetics: a review. Anesth. Analg., 2017, 124(4), 1181-1189.
[http://dx.doi.org/10.1213/ANE.0000000000001580] [PMID: 27984246]
(b)Ilfeld, B.M. Continuous peripheral nerve blocks: an update of the published evidence and comparison with novel, alternative analgesic modalities. Anesth. Analg., 2017, 124(1), 308-335.
[http://dx.doi.org/10.1213/ANE.0000000000001581] [PMID: 27749354]
(c)Covarrubias, M.; Barber, A.F.; Carnevale, V.; Treptow, W.; Eckenhoff, R.G. Mechanistic insights into the modulation of voltage-gated ion channels by inhalational anesthetics. Biophys. J., 2015, 109(10), 2003-2011.
[http://dx.doi.org/10.1016/j.bpj.2015.09.032] [PMID: 26588560]
(d)Rice, S.A.; Sbordone, L.; Mazze, R.I. Metabolism by rat hepatic microsomes of fluorinated ether anesthetics following isoniazid administration. Anesthesiology, 1980, 53(6), 489-493.
[http://dx.doi.org/10.1097/00000542-198012000-00009] [PMID: 7457965]
(e)Yuki, K.; Eckenhoff, R.G. Mechanisms of the immunological effects of volatile anesthetics: a review. Anesth. Analg., 2016, 123(2), 326-335.
[http://dx.doi.org/10.1213/ANE.0000000000001403] [PMID: 27308954]
(f)Sedghi, S.; Kutscher, H.L.; Davidson, B.A.; Knight, P.R. Volatile anesthetics and immunity. Immunol. Invest., 2017, 46(8), 793-804.
[http://dx.doi.org/10.1080/08820139.2017.1373905] [PMID: 29058547]
(g)Shabbir, A.; Bianchetti, E.; Nistri, A. The volatile anesthetic methoxyflurane protects motoneurons against excitotoxicity in an in vitro model of rat spinal cord injury. Neuroscience, 2015, 285, 269-280.
[http://dx.doi.org/10.1016/j.neuroscience.2014.11.023] [PMID: 25446348]
(h)Soares, J.H.N.; Brosnan, R.J.; Fukushima, F.B.; Hodges, J.; Liu, H. Solubility of haloether anesthetics in human and animal blood. Anesthesiology, 2012, 117(1), 48-55.
[http://dx.doi.org/10.1097/ALN.0b013e3182557cc9] [PMID: 22510863]
(i) Ton, H.T.; Phan, T.X.; Abramyan, A.M.; Shi, L.; Ahern, G.P. Identification of a putative binding site critical for general anesthetic activation of TRPA1. Proc. Natl. Acad. Sci. USA, 2017, 114(14), 3762-3767.
[http://dx.doi.org/10.1073/pnas.1618144114] [PMID: 28320952]
(j)Zhao, H.; Bu, M.; Li, B.; Zhang, Y. Lipoic acid inhibited desflurane-induced hippocampal neuronal apoptosis through Caspase3 and NF-KappaB dependent pathway. Tissue Cell, 2018, 50, 37-42.
[http://dx.doi.org/10.1016/j.tice.2017.12.001] [PMID: 29429516]
[7]
(a)Cavaliere, A.; Probst, K.C.; Westwell, A.D.; Slusarczyk, M. Fluorinated nucleosides as an important class of anticancer and antiviral agents. Future Med. Chem., 2017, 9(15), 1809-1833.
[http://dx.doi.org/10.4155/fmc-2017-0095] [PMID: 28929804]
(b)Meanwell, N.A. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. J. Med. Chem., 2018, 61(14), 5822-5880.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01788] [PMID: 29400967]
(c)Gillis, E.P.; Eastman, K.J.; Hill, M.D.; Donnelly, D.J.; Meanwell, N.A. Applications of fluorine in medicinal chemistry. J. Med. Chem., 2015, 58(21), 8315-8359.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00258] [PMID: 26200936]
(d)Zhu, W.; Wang, J.; Wang, S.; Gu, Z.; Aceña, J.L.; Izawa, K.; Liu, H.; Soloshonok, V.A. Recent advances in the trifluoromethylation methodology and new CF3-containing drugs. J. Fluor. Chem., 2014, 167, 37-54.
[http://dx.doi.org/10.1016/j.jfluchem.2014.06.026]
(e)Hodgetts, K.J.; Combs, K.J.; Elder, A.M.; Harriman, G.C. The role of fluorine in the discovery and optimization of CNS agents: modulation of drug-like properties. Annu. Rep. Med. Chem., 2010, 45, 429-448.
[8]
Fried, J.; Sabo, E.F. 9α-Fluoro derivatives of cortisone and hydrocortisone. J. Am. Chem. Soc., 1954, 76(5), 1455-1456.
[http://dx.doi.org/10.1021/ja01634a101]
[9]
(a)Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J.L.; Soloshonok, V.A.; Izawa, K.; Liu, H. Next generation of fluorine-containing pharmaceuticals, compounds currently in phase II-III clinical trials of major pharmaceutical companies: new structural trends and therapeutic areas. Chem. Rev., 2016, 116(2), 422-518.
[http://dx.doi.org/10.1021/acs.chemrev.5b00392] [PMID: 26756377]
(b)Ilardi, E.A.; Vitaku, E.; Njardarson, J.T. Data-mining for sulfur and fluorine: an evaluation of pharmaceuticals to reveal opportunities for drug design and discovery. J. Med. Chem., 2014, 57(7), 2832-2842.
[http://dx.doi.org/10.1021/jm401375q] [PMID: 24102067]
(c)Fujiwara, T.; O’Hagan, D. Successful fluorine-containing herbicide agrochemicals. J. Fluor. Chem., 2014, 167, 16-29.
[http://dx.doi.org/10.1016/j.jfluchem.2014.06.014]
(d)Jeschke, P. Latest generation of halogen-containing pesticides. Pest Manag. Sci., 2017, 73(6), 1053-1066.
[http://dx.doi.org/10.1002/ps.4540] [PMID: 28145087]
[10]
(a)Liang, T.; Neumann, C.N.; Ritter, T. Introduction of fluorine and fluorine-containing functional groups. Angew. Chem. Int. Ed. Engl., 2013, 52(32), 8214-8264.
[http://dx.doi.org/10.1002/anie.201206566] [PMID: 23873766]
(b)Yang, X.; Wu, T.; Phipps, R.J.; Toste, F.D. Advances in catalytic enantioselective fluorination, mono-, di-, and trifluoromethylation, and trifluoromethylthiolation reactions. Chem. Rev., 2015, 115(2), 826-870.
[http://dx.doi.org/10.1021/cr500277b] [PMID: 25337896]
(c)Yerien, D.E.; Barata-Vallejo, S.; Postigo, A. Difluoromethylation reactions of organic compounds. Chemistry, 2017, 23(59), 14676-14701.
[http://dx.doi.org/10.1002/chem.201702311] [PMID: 28632338]
(d)Yang, J.; Zhao, H.; He, J.; Zhang, C. Pd-catalyzed Mizoroki-Heck reactions using fluorine-containing agents as the cross-coupling partners. Catalysts, 2018, 8(1), 23.
[http://dx.doi.org/10.3390/catal8010023]
(e)Song, H.X.; Han, Q.Y.; Zhao, C.L.; Zhang, C.P. Fluoroalkylation reactions in aqueous media: a review. Green Chem., 2018, 20(8), 1662-1731.
[http://dx.doi.org/10.1039/C8GC00078F]
[11]
Eger, E.I., II The pharmacology of inhaled anesthetics. Seminars in Anesthesia. Perioperative Medicine and Pain, 2005, 24(2), 89-100.
[http://dx.doi.org/10.1053/j.sane.2005.04.004]
[12]
Sewell, J.C.; Sear, J.W. Determinants of volatile general anesthetic potency: a preliminary three-dimensional pharmacophore for halogenated anesthetics. Anesth. Analg., 2006, 102(3), 764-771.
[http://dx.doi.org/10.1213/01.ane.0000195421.46107.d0] [PMID: 16492826]
[13]
Vitcha, J.F. A history of forane. Anesthesiology, 1971, 35(1), 4-7.
[http://dx.doi.org/10.1097/00000542-197107000-00003] [PMID: 4996735]
[14]
Terrell, R.C. The invention and development of enflurane, isoflurane, sevoflurane, and desflurane. Anesthesiology, 2008, 108(3), 531-533.
[http://dx.doi.org/10.1097/ALN.0b013e31816499cc] [PMID: 18292690]
[15]
Eger, E.I., II; Lemal, D.; Laster, M.J.; Liao, M.; Jankowska, K.; Raghavanpillai, A.; Popov, A.V.; Gan, Y.; Lou, Y. Anesthetic properties of some fluorinated oxolanes and oxetanes. Anesth. Analg., 2007, 104(5), 1090-1097.
[http://dx.doi.org/10.1213/01.ane.0000260299.36174.a8] [PMID: 17456657]
[16]
(a)TerRiet, M.F.; DeSouza, G.J.A.; Jacobs, J.S.; Young, D.; Lewis, M.C.; Herrington, C.; Gold, M.I. Which is most pungent: isoflurane, sevoflurane or desflurane? Br. J. Anaesth., 2000, 85(2), 305-307.
[http://dx.doi.org/10.1093/bja/85.2.305] [PMID: 10992843]
(b)Eger, E.I., II; Bowland, T.; Ionescu, P.; Laster, M.J.; Fang, Z.; Gong, D.; Sonner, J.; Weiskopf, R.B. Recovery and kinetic characteristics of desflurane and sevoflurane in volunteers after 8-h exposure, including kinetics of degradation products. Anesthesiology, 1997, 87(3), 517-526.
[http://dx.doi.org/10.1097/00000542-199709000-00010] [PMID: 9316955]
(c)Mayer, J.; Boldt, J.; Röhm, K.D.; Scheuermann, K.; Suttner, S.W. Desflurane anesthesia after sevoflurane inhaled induction reduces severity of emergence agitation in children undergoing minor ear-nose-throat surgery compared with sevoflurane induction and maintenance. Anesth. Analg., 2006, 102(2), 400-404.
[http://dx.doi.org/10.1213/01.ane.0000189561.44016.99] [PMID: 16428532]
[17]
(a)Shikii, K.; Sakurai, S.; Utsumi, H.; Seki, H.; Tashiro, M. Application of the 19F NMR technique to observe binding of the general anesthetic halothane to human serum albumin. Anal. Sci., 2004, 20(10), 1475-1477.
[http://dx.doi.org/10.2116/analsci.20.1475] [PMID: 15524207]
(b)Xu, Y.; Tang, P.; Zhang, W.; Firestone, L.; Winter, P.M. Fluorine-19 nuclear magnetic resonance imaging and spectroscopy of sevoflurane uptake, distribution, and elimination in rat brain. Anesthesiology, 1995, 83(4), 766-774.
[http://dx.doi.org/10.1097/00000542-199510000-00016] [PMID: 7574056]
(c)Venkatasubramanian, P.N.; Shen, Y.J.; Wyrwicz, A.M. Characterization of the cerebral distribution of general anesthetics in vivo by two-dimensional 19F chemical shift imaging. Magn. Reson. Med., 1996, 35(4), 626-630.
[http://dx.doi.org/10.1002/mrm.1910350426] [PMID: 8992217]
(d)Lockwood, G.G.; Dob, D.P.; Bryant, D.J.; Wilson, J.A.; Sargentoni, J.; Sapsed-Byrne, S.M.; Harris, D.N.F.; Menon, D.K. Magnetic resonance spectroscopy of isoflurane kinetics in humans. Part I: Elimination from the head. Br. J. Anaesth., 1997, 79(5), 581-585.
[http://dx.doi.org/10.1093/bja/79.5.581] [PMID: 9422894]
[18]
(a)van der Born, D.; Pees, A.; Poot, A.J.; Orru, R.V.A.; Windhorst, A.D.; Vugts, D.J. Fluorine-18 labelled building blocks for PET tracer synthesis. Chem. Soc. Rev., 2017, 46(15), 4709-4773.
[http://dx.doi.org/10.1039/C6CS00492J] [PMID: 28608906]
(b)Yang, L.; Dong, T.; Revankar, H.M.; Zhang, C.P. Recent progress on fluorination in aqueous media. Green Chem., 2017, 19(17), 3951-3992.
[http://dx.doi.org/10.1039/C7GC01566F]
[19]
(a)Bravo, I.; Rodríguez, A.; Rodríguez, D.; Diaz-de-Mera, Y.; Notario, A.; Aranda, A. Atmospheric chemistry and environmental assessment of inhalational fluroxene. ChemPhysChem, 2013, 14(16), 3834-3842.
[http://dx.doi.org/10.1002/cphc.201300559] [PMID: 24123924]
(b)Ortiz de Montellano, P.R.; Kunze, K.L.; Beilan, H.S.; Wheeler, C. Destruction of cytochrome P-450 by vinyl fluoride, fluroxene, and acetylene. Evidence for a radical intermediate in olefin oxidation. Biochemistry, 1982, 21(6), 1331-1339.
[http://dx.doi.org/10.1021/bi00535a035] [PMID: 6122467]
[20]
Suckling, C.W. Some chemical and physical factors in the development of fluothane. Br. J. Anaesth., 1957, 29(10), 466-472.
[http://dx.doi.org/10.1093/bja/29.10.466] [PMID: 13471840]
[21]
Suckling, C.W.; Raventos, J. Process for the preparation of 1, 1, 1-trifluoro-2-bromo-2-chloroethane, Patent No. US 2921098. 1960.
[22]
(a)Hudlický, M.; Lejhancová, I.; Malý, V. Organic compounds of fluorine. V. Kinetics of the rearrangement of 1,1,2-trifluoro-2-chloro-1-bromoethane to 1,1,1-trifluoro-2-chloro-2-bromoethane (halothane). Collect. Czech. Chem. Commun., 1963, 28(10), 2744-2748.
[http://dx.doi.org/10.1135/cccc19632744]
(b)Otto, S.; Heinrich, K. Process for preparing 1, 1, 1- trifluoro-2-chloro-2-bromethane from 1, 1, 2-trifluoro-1- bromo-2- chlorethane, 1960, US 2959624..
[23]
Madai, H.; Mueller, R. Fluorochemistry. X. preparation of 1,1,1-trifluoro-2,2-chlorobromoethane by reduction of 1,1,1-trifluoro-2,2,2-chlorodibromoethane. J. Prakt. Chem. (Leipzig), 1963, 19(1-2), 83-87.
[http://dx.doi.org/10.1002/prac.19630190112]
[24]
Dmowski, W. 1-Bromo-1-chloro-2,2,2-trifluoroethane (halothane) as a building block for fluorine compounds. J. Fluor. Chem., 2011, 132(8), 504-511.
[http://dx.doi.org/10.1016/j.jfluchem.2011.05.024]
[25]
Zhang, C.P.; Chen, Q.Y.; Guo, Y.; Xiao, J.C.; Gu, Y.C. Progress in fluoroalkylation of organic compounds via sulfinatodehalogenation initiation system. Chem. Soc. Rev., 2012, 41(12), 4536-4559.
[http://dx.doi.org/10.1039/c2cs15352a] [PMID: 22511113]
[26]
Rozov, L.A.; Ramig, K. New synthesis of (+)‐(S)‐halothane. Chirality, 1996, 8(1), 3-5.
[http://dx.doi.org/10.1002/(SICI)1520-636X(1996)8:1<3:AID-CHIR2>3.0.CO;2-M]
[27]
(a)Meinwald, J.; Thompson, W.R.; Pearson, D.L.; König, W.A.; Runge, T.; Francke, W. Inhalational anesthetics stereochemistry: optical resolution of halothane, enflurane and isoflurane. Science, 1991, 251(4993), 560-561.
[http://dx.doi.org/10.1126/science.1846702] [PMID: 1846702]
(b)Wilen, S.H.; Bunding, K.A.; Kascheres, C.M.; Wieder, M.J. On the optical activity of bromochlorofluoromethane. J. Am. Chem. Soc., 1985, 107(24), 6997-6998.
[http://dx.doi.org/10.1021/ja00310a042]
[28]
(a)Harris, B.D.; Moody, E.J.; Skolnick, P. Stereoselective actions of halothane at GABA(A) receptors. Eur. J. Pharmacol., 1998, 341(2-3), 349-352.
[http://dx.doi.org/10.1016/S0014-2999(97)01488-X] [PMID: 9543259]
(b)Mather, L.E.; Fryirs, B.L.; Duke, C.C.; Cousins, M.J. Lack of whole-body pharmacokinetic differences of halothane enantiomers in the rat. Anesthesiology, 2000, 92(1), 190-196.
[http://dx.doi.org/10.1097/00000542-200001000-00031] [PMID: 10638916]
[29]
Cui, T.; Bondarenko, V.; Ma, D.; Canlas, C.; Brandon, N.R.; Johansson, J.S.; Xu, Y.; Tang, P. Four-α-helix bundle with designed anesthetic binding pockets. Part II: halothane effects on structure and dynamics. Biophys. J., 2008, 94(11), 4464-4472.
[http://dx.doi.org/10.1529/biophysj.107.117853] [PMID: 18310239]
[30]
Michielsen, B.; Herrebout, W.A.; van der Veken, B.J.C. H bonds with a positive dipole gradient can form blue-shifting hydrogen bonds: the complex of halothane with methyl fluoride. ChemPhysChem, 2008, 9(12), 1693-1701.
[http://dx.doi.org/10.1002/cphc.200800263] [PMID: 18618890]
[31]
Michielsen, B.; Dom, J.J.J.; van der Veken, B.J.; Hesse, S.; Xue, Z.; Suhm, M.A.; Herrebout, W.A. The complexes of halothane with benzene: the temperature dependent direction of the complexation shift of the aliphatic C-H stretching. Phys. Chem. Chem. Phys., 2010, 12(42), 14034-14044.
[http://dx.doi.org/10.1039/c0cp00771d] [PMID: 20856972]
[32]
Czarnik-Matusewicz, B.; Michalska, D.; Sandorfy, C.; Zeegers-Huyskens, T. Experimental and theoretical study of the vibrational spectra of halothane. Chem. Phys., 2006, 322(3), 331-342.
[http://dx.doi.org/10.1016/j.chemphys.2005.09.003]
[33]
Olejniczak, A.; Katrusiak, A.; Metrangolo, P.; Resnati, G. Molecular association in 2-bromo-2-chloro-1,1,1-trifluoroethane (halothane). J. Fluor. Chem., 2009, 130(2), 248-253.
[http://dx.doi.org/10.1016/j.jfluchem.2008.10.009]
[34]
Brown, A.P.; Gandolfi, A.J. Glutathione-S-transferase is a target for covalent modification by a halothane reactive intermediate in the guinea pig liver. Toxicology, 1994, 89(1), 35-47.
[http://dx.doi.org/10.1016/0300-483X(94)90131-7] [PMID: 8178321]
[35]
(a)McIntyre, J.W.; Russell, J.C. Removal and recovery of halothane and methoxyflurane from waste anaesthetic vapours. Can. Anaesth. Soc. J., 1967, 14(4), 333-339.
[http://dx.doi.org/10.1007/BF03003703] [PMID: 6033507]
(b)Murrin, K.R. Adsorption of halothane by activated charcoal. Further studies. Anaesthesia, 1974, 29(4), 458-461.
[http://dx.doi.org/10.1111/j.1365-2044.1974.tb00687.x] [PMID: 4850446]
(c)Herchl, R. Adsorption of halothane vapour in glass syringes. Can. Anaesth. Soc. J., 1970, 17(6), 630-634.
[http://dx.doi.org/10.1007/BF03004723] [PMID: 5501951]
[36]
(a)Burns, J.H.; Epstein, H.G.; Goodford, P.J. The properties of the anaesthetic substance 1,1,2-trifluoro-1,2-dichloroethane. Br. J. Anaesth., 1959, 31, 518-529.
[http://dx.doi.org/10.1093/bja/31.12.518] [PMID: 13848144]
(b)Burns, T.H.S.; Hall, J.M.; Bracken, A.; Gouldstone, G. Fluorine compounds in anaesthesia (8). Examination of seven derivatives of propane and three of normal butane. Anaesthesia, 1974, 29(4), 435-444.
[http://dx.doi.org/10.1111/j.1365-2044.1974.tb00682.x] [PMID: 4852068]
(c)Burns, T.H.S.; Hall, J.M.; Bracken, A.; Gouldstone, G. Fluorine compounds in anaesthesia (9). Examination of six aliphatic compounds and four ethers. Anaesthesia, 1982, 37(3), 278-284.
[http://dx.doi.org/10.1111/j.1365-2044.1982.tb01099.x] [PMID: 7091602]
[37]
Burns, T.H.S.; Hall, J.M.; Bracken, A.; Gouldstone, G. Fluorine compounds in anaesthesia. (5). Examination of six heavily halogenated aliphatic compounds. Anaesthesia, 1962, 17(3), 337-343.
[http://dx.doi.org/10.1111/j.1365-2044.1962.tb13474.x] [PMID: 13874992]
[38]
Burns, T.H.S.; Hall, J.M.; Bracken, A.; Gouldstone, G.; Newland, D.S. An investigation of new fluorine compounds in anaesthesia. (1). Anaesthesia, 1961, 16(1), 3-18.
[http://dx.doi.org/10.1111/j.1365-2044.1961.tb13370.x] [PMID: 13874991]
[39]
(a)Artusio, J.F., Jr; Van Poznak, A.; Hunt, R.E.; Tiers, R.M.; Alexander, M. A clinical evaluation of methoxyflurane in man. Anesthesiology, 1960, 21(5), 512-517.
[http://dx.doi.org/10.1097/00000542-196009000-00009] [PMID: 13794589]
(b)Frangos, J.; Mikkonen, A.; Down, C. Derivation of an occupational exposure limit for an inhalation analgesic methoxyflurane (Penthrox®). Regul. Toxicol. Pharmacol., 2016, 80, 210-225.
[http://dx.doi.org/10.1016/j.yrtph.2016.05.012] [PMID: 27181451]
[40]
Ismagilov, N.G.; Rodin, A.A.; Takhistov, V.V.; Rebristaya, O.P.; Barabanov, V.G. Reactions of fluoro monomers. I: Mechanism of reaction of 1,1-dichloro-2,2-difluoroethene with methanol under conditions of base catalysis. Zhurnal Obshchei Khimii, 1993, 63(1), 198-204.
[41]
Ramig, K.; Kudzma, L.V.; Lessor, R.A.; Rozov, L.A. Acid fluorides and 1,1-difluoroethyl methyl ethers as new organic sources of fluoride for antimony pentachloride-catalyzed halogen-exchange reactions. J. Fluor. Chem., 1999, 94(1), 1-5.
[http://dx.doi.org/10.1016/S0022-1139(98)00347-9]
[42]
Kim, B.M.; Sircar, S. Adsorption characteristics of volatile anesthetics on activated carbons and performance of carbon canisters. Anesthesiology, 1977, 46(3), 159-165.
[http://dx.doi.org/10.1097/00000542-197703000-00001] [PMID: 842870]
[43]
Xing, A.; Jia, B.; Li, X.; Zhang, Z.; Gu, G.; Wang, G. In vitro study on the interaction of methoxyflurane with human serum albumin: Phenotypic characterization. J. Fluor. Chem., 2013, 153, 107-113.
[http://dx.doi.org/10.1016/j.jfluchem.2013.05.006]
[44]
Li, Y.S.; Durig, J.R. Microwave, infrared and Raman spectra, conformational stability and vibrational assignment of methoxyflurane. J. Mol. Struct., 1982, 81(3-4), 181-194.
[http://dx.doi.org/10.1016/0022-2860(82)85331-3]
[45]
Balonga, P.E.; Kowalewski, V.J.; Contreras, R.H. The sign of the four-bond FH coupling in methoxyflurane. Spectrochim. Acta., 1986, 42(1), 23-26.
[http://dx.doi.org/10.1016/0584-8539(86)80125-8]
[46]
(a)Crandell, W.B.; Pappas, S.G.; Macdonald, A. Nephrotoxicity associated with methoxyflurane anesthesia. Anesthesiology, 1966, 27(5), 591-607.
[http://dx.doi.org/10.1097/00000542-196609000-00010] [PMID: 5918999]
(b)Kharasch, E.D.; Schroeder, J.L.; Liggitt, H.D.; Park, S.B.; Whittington, D.; Sheffels, P. New insights into the mechanism of methoxyflurane nephrotoxicity and implications for anesthetic development (part 1): identification of the nephrotoxic metabolic pathway. Anesthesiology, 2006, 105(4), 726-736.
[http://dx.doi.org/10.1097/00000542-200610000-00019] [PMID: 17006072]
[47]
(a)Holaday, D.A.; Rudofsky, S.; Treuhaft, P.S.; Leung, R. The metabolic degradation of methoxyflurane in man. Anesthesiology, 1970, 33(6), 589-593.
[http://dx.doi.org/10.1097/00000542-197012000-00001] [PMID: 5477642]
(b)Kharasch, E.D.; Schroeder, J.L.; Liggitt, H.D.; Ensign, D.; Whittington, D. New insights into the mechanism of methoxyflurane nephrotoxicity and implications for anesthetic development (part 2): identification of nephrotoxic metabolites. Anesthesiology, 2006, 105(4), 737-745.
[http://dx.doi.org/10.1097/00000542-200610000-00020] [PMID: 17006073]
[48]
(a)Mazze, R.I.; Shue, G.L.; Jackson, S.H. Renal dysfunction associated with methoxyflurane anesthesia. A randomized, prospective clinical evaluation. JAMA, 1971, 216(2), 278-288.
[http://dx.doi.org/10.1001/jama.1971.03180280032006] [PMID: 5107910]
(b)Mazze, R.I.; Cousins, M.J.; Kosek, J.C. Dose-related methoxyflurane nephrotoxicity in rats: a biochemical and pathologic correlation. Anesthesiology, 1972, 36(6), 571-587.
[http://dx.doi.org/10.1097/00000542-197206000-00010] [PMID: 5033780]
(c)Cousins, M.J.; Nishimura, T.G.; Mazze, R.I. Renal effects of low-dose methoxyflurane with cardiopulmonary bypass. Anesthesiology, 1972, 36(3), 286-292.
[http://dx.doi.org/10.1097/00000542-197203000-00017] [PMID: 5011422]
(d)McCarty, L.P. Deuterated analogues of methoxyflurane useful as an anesthetic. Patent No. US 4153636, 1979.
[49]
(a)Dayan, A.D. Analgesic use of inhaled methoxyflurane: evaluation of its potential nephrotoxicity. Hum. Exp. Toxicol., 2016, 35(1), 91-100.
[http://dx.doi.org/10.1177/0960327115578743] [PMID: 25926525]
(b)Coffey, F.; Dissmann, P.; Mirza, K.; Lomax, M. Methoxyflurane analgesia in adult patients in the emergency department: a subgroup analysis of a randomized, double-blind, placebo-controlled study (STOP!). Adv. Ther., 2016, 33(11), 2012-2031.
[http://dx.doi.org/10.1007/s12325-016-0405-7] [PMID: 27567918]
(c)Gaskell, A.L.; Jephcott, C.G.; Smithells, J.R.; Sleigh, J.W. Self-administered methoxyflurane for procedural analgesia: experience in a tertiary Australasian centre. Anaesthesia, 2016, 71(4), 417-423.
[http://dx.doi.org/10.1111/anae.13377] [PMID: 26877169]
[50]
Blair, H.A.; Frampton, J.E. Methoxyflurane: a review in trauma pain. Clin. Drug Investig., 2016, 36(12), 1067-1073.
[http://dx.doi.org/10.1007/s40261-016-0473-0] [PMID: 27738897]
[51]
Windsor, J.; van der Kaaij, J.; Ellerton, J.; Oxer, H.; Hillebrandt, D.; Rodway, G. Methoxyflurane as an analgesic for prehospital use at high altitude. High Alt. Med. Biol., 2009, 10(2), 201-202.
[http://dx.doi.org/10.1089/ham.2008.1075] [PMID: 19519222]
[52]
(a)Mazze, R.I.; Trudell, J.R.; Cousins, M.J. Methoxyflurane metabolism and renal dysfunction: clinical correlation in man. Anesthesiology, 1971, 35(3), 247-252.
[http://dx.doi.org/10.1097/00000542-197109000-00004] [PMID: 5095537]
(b)Mazze, R.I. Methoxyflurane revisited: tale of an anesthetic from cradle to grave. Anesthesiology, 2006, 105(4), 843-846.
[http://dx.doi.org/10.1097/00000542-200610000-00031] [PMID: 17006084]
[53]
(a)Terrell, R.C. 1,1,2-Trifluoro-2-chloroethyldifluoromethyl ether as an anesthetic agent. Patent No. US 3469011,. 1969.
(b)Terrell, R.C.; Speers, L.; Szur, A.J.; Treadwell, J.; Ucciardi, T.R. General anesthetics. 1. Halogenated methyl ethyl ethers as anesthetic agents. J. Med. Chem., 1971, 14(6), 517-519.
[http://dx.doi.org/10.1021/jm00288a014] [PMID: 5091966]
[54]
Pfeiffer, A.; Mack, H.G.; Oberhammer, H. Enflurane: structure and conformational properties. J. Am. Chem. Soc., 1998, 120(25), 6384-6388.
[http://dx.doi.org/10.1021/ja980661k]
[55]
Michalska, D.; Bieńko, D.C.; Czarnik-Matusewicz, B.; Wierzejewska, M.; Sandorfy, C.; Zeegers-Huyskens, T. Theoretical and experimental studies of enflurane. Infrared spectra in solution, in low-temperature argon matrix and blue shifts resulting from dimerization. J. Phys. Chem. B, 2007, 111(42), 12228-12238.
[http://dx.doi.org/10.1021/jp073772r] [PMID: 17914793]
[56]
Eiceman, G.A.; Shoff, D.B.; Harden, C.S.; Snyder, A.P.; Martinez, P.M.; Fleischer, M.E.; Watkins, M.L. Ion mobility spectrometry of halothane, enflurane, and isoflurane anesthetics in air and respired gases. Anal. Chem., 1989, 61(10), 1093-1099.
[http://dx.doi.org/10.1021/ac00185a010] [PMID: 2751107]
[57]
González-Méndez, R.; Watts, P.; Howse, D.C.; Procino, I.; McIntyre, H.; Mayhew, C.A. Ion mobility studies on the negative ion-molecule chemistry of isoflurane and enflurane. J. Am. Soc. Mass Spectrom., 2017, 28(5), 939-946.
[http://dx.doi.org/10.1007/s13361-017-1616-0] [PMID: 28224395]
[58]
Melikova, S.M.; Rutkowski, K.S.; Zarnik-Matusewicz, B.; Rospenk, M. Towards understanding the spectroscopic features of enflurane. The fundamental and overtone bands of CH stretching vibrations. Chem. Phys. Lett., 2014, 604, 68-71.
[http://dx.doi.org/10.1016/j.cplett.2014.04.057]
[59]
Melikova, S.M.; Rutkowski, K.S.; Telkova, E.; Czarnik-Matusewicz, B.; Rospenk, M.; Herrebout, W. FTIR and Raman spectra of CH(D)FCl-CF2-O-CHF derivatives of enflurane. Experimental and ab initio study. Chem. Phys., 2015, 453, 26-34.
[http://dx.doi.org/10.1016/j.chemphys.2015.03.010]
[60]
Hsieh, S.; Vallejo, J.L.; Vushe, R.; Tun, Y.T.; Sinha, R.; Ahmad, A. Overtone spectra of fluorinated ether anesthetics at 4 and 5 quanta of C-H stretch. J. Mol. Spectrosc., 2014, 303, 20-25.
[http://dx.doi.org/10.1016/j.jms.2014.07.002]
[61]
Pérez, C.; Caballero-Mancebo, E.; Lesarri, A.; Cocinero, E.J.; Alkorta, I.; Suenram, R.D.; Grabow, J.U.; Pate, B.H. The conformational map of volatile anesthetics: enflurane revisited. Chemistry, 2016, 22(28), 9804-9811.
[http://dx.doi.org/10.1002/chem.201601201] [PMID: 27258776]
[62]
Balonga, P.E.; Kowalewski, V.J.; Contreras, R.H. 1H, 13C and 19F NMR studies on fluorinated ethers. Spectrochim. Acta A Mol. Biomol. Spectrosc., 1988, 44(8), 819-822.
[http://dx.doi.org/10.1016/0584-8539(88)80148-X]
[63]
Zhao, C.; Polavarapu, P.L.; Grosenik, H.; Schurig, V. Vibrational circular dichroism, absolute configuration and predominant conformations of volatile anesthetics: enflurane. J. Mol. Struct., 2000, 550, 105-115.
[http://dx.doi.org/10.1016/S0022-2860(00)00515-9]
[64]
Juza, M.; Giovanni, O.D.; Biressi, G.; Schurig, V.; Mazzotti, M.; Morbidelli, M. Continuous enantiomer separation of the volatile inhalation anesthetic enflurane with a gas chromatographic simulated moving bed unit. J. Chromatogr. A, 1998, 813(2), 333-347.
[http://dx.doi.org/10.1016/S0021-9673(98)00322-7]
[65]
Andrade, L.A.F.; Silla, J.M.; Stephens, S.L.; Marat, K.; da Cunha, E.F.F.; Ramalho, T.C.; van Wijngaarden, J.; Freitas, M.P. Conformational exploration of enflurane in solution and in a biological environment. J. Phys. Chem. A, 2015, 119(43), 10735-10742.
[http://dx.doi.org/10.1021/acs.jpca.5b08087] [PMID: 26461140]
[66]
(a)Franks, N.P.; Lieb, W.R. Molecular and cellular mechanisms of general anaesthesia. Nature, 1994, 367(6464), 607-614.
[http://dx.doi.org/10.1038/367607a0] [PMID: 7509043]
(b)Sandorfy, C. Weak intermolecular associations and anesthesia. Anesthesiology, 2004, 101(5), 1225-1227.
[http://dx.doi.org/10.1097/00000542-200411000-00024] [PMID: 15505460]
(c)Sandorfy, C. Hydrogen bonding and anaesthesia. J. Mol. Struct., 2004, 708, 3-5.
[http://dx.doi.org/10.1016/j.molstruc.2003.12.071]
[67]
Zierkiewicz, W.; Michalska, D.; Zeegers-Huyskens, T. Theoretical studies of the interaction between enflurane and water. J. Mol. Model., 2013, 19(3), 1399-1405.
[http://dx.doi.org/10.1007/s00894-012-1678-7] [PMID: 23212236]
[68]
Zierkiewicz, W.; Michalska, D.; Zeegers-Huyskens, T. Theoretical study of the interaction of a proton with the O, F and Cl atoms of enflurane (CHFCl-CF2-O-CHF2). J. Mol. Struct. THEOCHEM, 2009, 911(1), 58-64.
[http://dx.doi.org/10.1016/j.theochem.2009.06.045]
[69]
Zierkiewicz, W. Modelling of interactions between volatile anaesthetics (halothane, enflurane) and aromatic compounds, ab initio study. Chem. Phys., 2010, 373(3), 243-250.
[http://dx.doi.org/10.1016/j.chemphys.2010.05.017]
[70]
Zierkiewicz, W.; Czarnik-Matusewicz, B.; Michalska, D. Blue shifts and unusual intensity changes in the infrared spectra of the enflurane acetone complexes: spectroscopic and theoretical studies. J. Phys. Chem. A, 2011, 115(41), 11362-11368.
[http://dx.doi.org/10.1021/jp205081r] [PMID: 21913646]
[71]
Zierkiewicz, W.; Zaleśny, R.; Hobza, P. On the nature of unusual intensity changes in the infrared spectra of the enflurane acetone complexes. Phys. Chem. Chem. Phys., 2013, 15(16), 6001-6007.
[http://dx.doi.org/10.1039/c3cp50385b] [PMID: 23493886]
[72]
Koehler, K.A.; Stone, E.E.; Shelton, R.A.; Jarnagin, F.; Koehler, L.S.; Fossei, E.T. Interaction of fluorinated ether anesthetics with solvents. J. Magn. Reson., 1978, 30(1), 75-84.
[73]
Dalmasso, P.R.; Taccone, R.A.; Nieto, J.D.; Teruel, M.A.; Lane, S.I. CH3OCF2CHFCl and CHF2OCF2CHFCl: reaction with Cl atoms, atmospheric lifetimes, ozone depletion and global warming potentials. Atmos. Environ., 2006, 40(38), 7298-7307.
[http://dx.doi.org/10.1016/j.atmosenv.2006.06.031]
[74]
Burke, T.R., Jr; Pohl, L.R. Synthesis of deuterated and tritiated derivatives of enflurane. J. Labelled Comp. Radiopharm., 1981, 18(5), 663-670.
[http://dx.doi.org/10.1002/jlcr.2580180507]
[75]
Cieślik-Boczula, K.; Rospenk, M. Interaction of anesthetic molecules with α-helix and polyproline II extended helix of long-chain poly-l-lysine. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 189, 436-442.
[http://dx.doi.org/10.1016/j.saa.2017.08.045] [PMID: 28843877]
[76]
Croix, L.S. Method of preparing of cf11 chc10chf11. Patent No. US 3637477, . 1972.
[77]
(a)Terrell, R.C. 1-chloro-2,2,2-trifluoroethyl difluoromethyl ether. Patent No. US 3535388,. 1970.
(b)Siegemund, G. Halogenoethers and processes for the preparation thereof.Patent No. GB 1475387,, 1977.
[78]
(a)Young, J.W.; Brandt, S. Methods of use and compositions of (r)- isoflurane and (r)-desflurane. Patent No. U.S.5114714 and Patent No. US 5114715,. 1992.
(b)Huang, C.G.; Rozov, L.A.; Halpern, D.F.; Vernice, G.G. Preparation of the isoflurane enantiomers. J. Org. Chem., 1993, 58(26), 7382-7387.
[http://dx.doi.org/10.1021/jo00078a015]
(c)Schurig, V. Salient features of enantioselective gas chromatography: the enantiomeric differentiation of chiral inhalation anesthetics as a representative methodological case in point. Top. Curr. Chem., 2013, 340, 153-207.
[http://dx.doi.org/10.1007/128_2013_440] [PMID: 23666082]
[79]
Polavarapu, P.L.; Cholli, A.L.; Vernices, G. Absolute configuration of isoflurane. J. Am. Chem. Soc., 1992, 114(27), 10953-10955.
[http://dx.doi.org/10.1021/ja00053a038]
[80]
(a)Franks, N.P.; Lieb, W.R. Stereospecific effects of inhalational general anesthetic optical isomers on nerve ion channels. Science, 1991, 254(5030), 427-430.
[http://dx.doi.org/10.1126/science.1925602] [PMID: 1925602]
(b)Harris, B.; Moody, E.; Skolnick, P. Isoflurane anesthesia is stereoselective. Eur. J. Pharmacol., 1992, 217(2-3), 215-216.
[http://dx.doi.org/10.1016/0014-2999(92)90875-5] [PMID: 1425941]
[81]
Satter, M.R.; Martin, C.C.; Oakes, T.R.; Christian, B.F.; Nickles, R.J. Synthesis of the fluorine-18 labeled inhalation anesthetics. Appl. Radiat. Isot., 1994, 45(11), 1093-1100.
[http://dx.doi.org/10.1016/0969-8043(94)90189-9] [PMID: 7812274]
[82]
Xi, J.; Liu, R.; Rossi, M.J.; Yang, J.; Loll, P.J.; Dailey, W.P.; Eckenhoff, R.G. Photoactive analogues of the haloether anesthetics provide high-resolution features from low-affinity interactions. ACS Chem. Biol., 2006, 1(6), 377-384.
[http://dx.doi.org/10.1021/cb600207d] [PMID: 17163775]
[83]
Eckenhoff, R.G.; Xi, J.; Shimaoka, M.; Bhattacharji, A.; Covarrubias, M.; Dailey, W.P. Azi-isoflurane, a photolabel analog of the commonly used inhaled general anesthetic isoflurane. ACS Chem. Neurosci., 2010, 1(2), 139-145.
[http://dx.doi.org/10.1021/cn900014m] [PMID: 20228895]
[84]
Flyunt, R.; Makogon, O.; Naumov, S.; Schöneich, C.; Asmus, K.D. Reactions of halogenated hydroperoxides and peroxyl and alkoxyl radicals from isoflurane in aqueous solution. J. Phys. Chem. A, 2007, 111(45), 11618-11625.
[http://dx.doi.org/10.1021/jp075447+] [PMID: 17956078]
[85]
Fernández Del Río, R.; O’Hara, M.E.; Pemberton, P.; Whitehouse, T.; Mayhew, C.A. Elimination characteristics of post-operative isoflurane levels in alveolar exhaled breath via PTR-MS analysis. J. Breath Res., 2016, 10(4) 046006
[http://dx.doi.org/10.1088/1752-7155/10/4/046006] [PMID: 27732571]
[86]
Miller, R.D.; Cohen, N.H.; Eriksson, L.I.; Fleisher, L.A.; Wiener-Kronish, J.P.; Young, W.L. Miller’s anesthesia, 8th ed; , 2015.
[87]
Grodin, W.K.; Epstein, M.A.; Epstein, R.A. Soda lime adsorption of isoflurane and enflurane. Anesthesiology, 1985, 62(1), 60-64.
[http://dx.doi.org/10.1097/00000542-198501000-00012] [PMID: 3966671]
[88]
Doyle, D.J.; Byrick, R.; Filipovic, D.; Cashin, F. Silica zeolite scavenging of exhaled isoflurane: a preliminary report. Can. J. Anaesth., 2002, 49(8), 799-804.
[http://dx.doi.org/10.1007/BF03017411] [PMID: 12374707]
[89]
Ortmann, R.; Pasel, C.; Luckas, M.; Heimböckel, R.; Kraas, S.; Bentgens, J.; Fröba, M.; Bathen, D. Adsorption and desorption of isoflurane on carbonaceous adsorbents and zeolites at low concentrations in gas phase. J. Chem. Eng. Data, 2016, 61(1), 686-692.
[http://dx.doi.org/10.1021/acs.jced.5b00844]
[90]
Bucher, D.; Pasel, C.; Luckas, M.; Bentgens, J.; Bathen, D. Adsorption of inhalation anesthetics (fluranes and ethers) on activated carbons and zeolites at trace level concentrations. J. Chem. Eng. Data, 2017, 62(6), 1832-1841.
[http://dx.doi.org/10.1021/acs.jced.7b00079]
[91]
Kinde, M.N.; Bondarenko, V.; Granata, D.; Bu, W.; Grasty, K.C.; Loll, P.J.; Carnevale, V.; Klein, M.L.; Eckenhoff, R.G.; Tang, P.; Xu, Y. Fluorine-19 NMR and computational quantification of isoflurane binding to the voltage-gated sodium channel NaChBac. Proc. Natl. Acad. Sci. USA, 2016, 113(48), 13762-13767.
[http://dx.doi.org/10.1073/pnas.1609939113] [PMID: 27856739]
[92]
Purtell, K.; Gingrich, K.J.; Ouyang, W.; Herold, K.F.; Hemmings, H.C., Jr Activity-dependent depression of neuronal sodium channels by the general anaesthetic isoflurane. Br. J. Anaesth., 2015, 115(1), 112-121.
[http://dx.doi.org/10.1093/bja/aev203] [PMID: 26089447]
[93]
Arcario, M.J.; Mayne, C.G.; Tajkhorshid, E. Atomistic models of general anesthetics for use in in silico biological studies. J. Phys. Chem. B, 2014, 118(42), 12075-12086.
[http://dx.doi.org/10.1021/jp502716m] [PMID: 25303275]
[94]
Bondarenko, V.; Yushmanov, V.E.; Xu, Y.; Tang, P. NMR study of general anesthetic interaction with nAChR β2 subunit. Biophys. J., 2008, 94(5), 1681-1688.
[http://dx.doi.org/10.1529/biophysj.107.116772] [PMID: 17993502]
[95]
Jiang, J.; Jiang, H. Effect of the inhaled anesthetics isoflurane, sevoflurane and desflurane on the neuropathogenesis of Alzheimer’s disease. (review). Mol. Med. Rep., 2015, 12(1), 3-12.
[http://dx.doi.org//10.3892/mmr.2015.3424] [PMID: 25738734]
[96]
Mandal, P.K.; Fodale, V. Isoflurane and desflurane at clinically relevant concentrations induce amyloid β-peptide oligomerization: an NMR study. Biochem. Biophys. Res. Commun., 2009, 379(3), 716-720.
[http://dx.doi.org/10.1016/j.bbrc.2008.12.092] [PMID: 19116131]
[97]
Miao, F.F.; Kong, C.C.; Wu, Y.; Fan, L.; Wang, T.L. Golgi fragmentation induced by overactivated cyclin-dependent kinase 5 is associated with isoflurane-induced neurotoxicity. Neuroreport, 2018, 29(4), 241-246.
[http://dx.doi.org/10.1097/WNR.0000000000000931] [PMID: 29227343]
[98]
Tao, F.; Chen, Q.; Sato, Y.; Skinner, J.; Tang, P.; Johns, R.A. Inhalational anesthetics disrupt postsynaptic density protein-95, drosophila disc large tumor suppressor, and zonula occludens-1 domain protein interactions critical to action of several excitatory receptor channels related to anesthesia. Anesthesiology, 2015, 122(4), 776-786.
[http://dx.doi.org/10.1097/ALN.0000000000000609] [PMID: 25654436]
[99]
Liu, C.R.; Duan, Q.Z.; Wang, W.; Wei, Y.Y.; Zhang, H.; Li, Y.Q.; Wu, S.X.; Xu, L.X. Effects of intrathecal isoflurane administration on nociception and Fos expression in the rat spinal cord. Eur. J. Anaesthesiol., 2011, 28(2), 112-119.
[http://dx.doi.org/10.1097/EJA.0b013e328340514a] [PMID: 21107265]
[100]
Krishnan, J.K.S.; Figueiredo, T.H.; Moffett, J.R.; Arun, P.; Appu, A.P.; Puthillathu, N.; Braga, M.F.; Flagg, T.; Namboodiri, A.M. Brief isoflurane administration as a post-exposure treatment for organophosphate poisoning. Neurotoxicology, 2017, 63, 84-89.
[http://dx.doi.org/10.1016/j.neuro.2017.09.009] [PMID: 28939237]
[101]
Jiang, M.; Sun, L.; Feng, D.X.; Yu, Z.Q.; Gao, R.; Sun, Y.Z.; Chen, G. Neuroprotection provided by isoflurane pre-conditioning and post-conditioning. Med. Gas Res., 2017, 7(1), 48-55.
[http://dx.doi.org/10.4103/2045-9912.202910] [PMID: 28480032]
[102]
Lee, Y.M.; Song, B.C.; Yeum, K.J. Impact of volatile anesthetics on oxidative stress and inflammation. BioMed Res. Int., 2015, 2015 242709
[http://dx.doi.org/10.1155/2015/242709] [PMID: 26101769]
[103]
Luo, X.; Zhao, H.; Hennah, L.; Ning, J.; Liu, J.; Tu, H.; Ma, D. Impact of isoflurane on malignant capability of ovarian cancer in vitro. Br. J. Anaesth., 2015, 114(5), 831-839.
[http://dx.doi.org/10.1093/bja/aeu408] [PMID: 25501719]
[104]
Guo, N.L.; Zhang, J.X.; Wu, J.P.; Xu, Y.H. Isoflurane promotes glucose metabolism through up-regulation of miR-21 and suppresses mitochondrial oxidative phosphorylation in ovarian cancer cells. Biosci. Rep., 2017, 37(6) BSR20170818
[http://dx.doi.org/10.1042/BSR20170818] [PMID: 28951521]
[105]
Steinhauser, J.; Wespi, P.; Kwiatkowski, G.; Kozerke, S. Assessing the influence of isoflurane anesthesia on cardiac metabolism using hyperpolarized [1-13C]pyruvate. NMR Biomed., 2018, 31(2) e3856
[http://dx.doi.org/10.1002/nbm.3856] [PMID: 29206326]
[106]
Zhu, M.; Li, M.; Zhou, Y.; Dangelmajer, S.; Kahlert, U.D.; Xie, R.; Xi, Q.; Shahveranov, A.; Ye, D.; Lei, T. Isoflurane enhances the malignant potential of glioblastoma stem cells by promoting their viability, mobility in vitro and migratory capacity in vivo. Br. J. Anaesth., 2016, 116(6), 870-877.
[http://dx.doi.org/10.1093/bja/aew124] [PMID: 27199319]
[107]
Zhu, Y.; Xiao, X.; Li, G.; Bu, J.; Zhou, W.; Zhou, S. Isoflurane anesthesia induces liver injury by regulating the expression of insulin-like growth factor 1. Exp. Ther. Med., 2017, 13(4), 1608-1613.
[http://dx.doi.org/10.3892/etm.2017.4157] [PMID: 28413517]
[108]
Deckardt, K.; Weber, I.; Kaspers, U.; Hellwig, J.; Tennekes, H.; van Ravenzwaay, B. The effects of inhalation anaesthetics on common clinical pathology parameters in laboratory rats. Food Chem. Toxicol., 2007, 45(9), 1709-1718.
[http://dx.doi.org/10.1016/j.fct.2007.03.005] [PMID: 17459552]
[109]
Tsubokura, Y.; Kobayashi, T.; Oshima, Y.; Hashizume, N.; Nakai, M.; Ajimi, S.; Imatanaka, N. Effects of pentobarbital, isoflurane, or medetomidine-midazolam-butorphanol anesthesia on bronchoalveolar lavage fluid and blood chemistry in rats. J. Toxicol. Sci., 2016, 41(5), 595-604.
[http://dx.doi.org/10.2131/jts.41.595] [PMID: 27665769]
[110]
(a)Russell, J.P.; Szur, A.J.; Terrell, R.C. Process for making fluorinated ethers. Patent No. US 3897502, 1975.
(b)Terrell, R.C. Anesthetic composition and method of using the same. U.S. Patent No. 4762856. 1988.
[111]
(a)Halpern, D.F.; Robin, M.L. Process for preparing CHF2 OCHFCF3 and CHF2 OCHClCF3 and novel intermediate compounds employed therein.Patent No. US 4855511,, 1989.
(b)Halpern, D.F.; Robin, M.L. Process for the production of polyfluorinated ethers. U.S. Patent No. 4874901,. 2012.
(c)Wu, F.; Ye, W.; Zhao, M.; Wang, Q.; Shen, G. Synthesis method of desflurane. Patent No. CN 102617298 A, 2012.
[112]
(a)Robin, M.L.; Halpern, D.F. Anesthetic compound and method of preparing. Patent No. US 5015781, 1991.
(b)Cicco, C.F. Process for production of 1,2,2,2- tetrafluoroethyl difluoromethyl ether. Patent No. US 5026924. 1991.
[113]
(a)Rozov, L.A. Preparation of desflurane. Patent No. US 6800786B1, 2004.
(b)Terrell, R.C. Process for production of 1,2,2,2- tetrafluoro ethyl difluoro methyl ether. Patent No. WO 2006055749A1,. 2006.
[114]
(a)Sivaramakrishnan, H. Process for production of 1,2,2,2- tetrafluoroethyl difluoromethyl ether (desflurane). Patent No. WO 2009010908A2,. 2009.
(b)Swinson, J. Synthesis of fluorinated ethers.Patent No. WO 2006076324A2,, 2006.
[115]
Sivaramakrishnan, H.; Upare, A.A.; Satagopan, D.; Chambers, O.R. The preparation of desflurane by the vapor-phase fluorination of isoflurane. Org. Process Res. Dev., 2011, 15(3), 585-592.
[http://dx.doi.org/10.1021/op100318b]
[116]
(a)Chambers, O.R. Synthesis of fluorinated ethers.. Patent No. EP 0482938A1, 1992.
(b)Kurosawa, S.; Arimura, T.; Sekiya, A. Monofluorination of fluorinated ethers with high-valency metal fluorides. J. Fluor. Chem., 1997, 85(2), 111-114.
[http://dx.doi.org/10.1016/S0022-1139(97)00075-4]
(c)Fowler, R.; Burford, B., III; Hamilton, J., Jr; Sweet, R.; Weber, C.; Kasper, J.; Litant, I. Synthesis of Fluorocarbons. Ind. Eng. Chem., 1947, 39(3), 292-298.
[http://dx.doi.org/10.1021/ie50447a612]
(d)Brandwood, M.; Coe, P.L.; Ely, C.S.; Tatlow, J.C. Polyfluoro diethyl and ethyl methyl ethers: their preparation using cobalt (III) fluoride and potassium tetrafluorocobaltate (III) and their dehydrofluorination. J. Fluor. Chem., 1975, 5(6), 521-535.
[http://dx.doi.org/10.1016/S0022-1139(00)81733-9]
(e)Coe, P.L.; Lennard, M.S.; Tatlow, J.C. Chloropolyfluorodiethyl ethers. J. Fluor. Chem., 1996, 80(2), 87-90.
[http://dx.doi.org/10.1016/S0022-1139(96)03501-4]
(f)Kurosawa, S.; Sekiya, A.; Arimura, T.; Yamada, T. The monofluorination of hydrofluorocarbons over cobalt trifluoride. J. Fluor. Chem., 1993, 62(1), 69-76.
[http://dx.doi.org/10.1016/S0022-1139(00)80082-2]
[117]
Robin, M.L.; Halpern, D.F. Synthesis of Process for the preparation of CHF2 OCHFCF3.Patent No. US 4972040,, 1990.
[118]
Rozov, L.A.; Huang, C.; Vernice, G.G. Synthesis of desflurane.Patent No. US 5205914,, 1993.
[119]
Aboul-Enein, H.Y.; Bojarski, J.; Szymura-Oleksiak, J. The impact of chirality of the fluorinated volatile inhalation anaesthetics on their clinical applications. Biomed. Chromatogr., 2000, 14(4), 213-218.
[http://dx.doi.org/10.1002/1099-0801(200006)14:4<213:AID-BMC975>3.0.CO;2-R] [PMID: 10861731]
[120]
(a)Rozov, L.A.; Huang, C.G.; Halpern, D.F.; Vernice, G.G.; Ramig, K. Enantioselective synthesis of the volatile anesthetic desflurane. Tetrahedron Asymmetry, 1997, 8(18), 3023-3025.
[http://dx.doi.org/10.1016/S0957-4166(97)00382-0]
(b)Rozov, L.A.; Huang, C.; Halpern, D.F.; Vernice, G.G. Preparation of purified optical isomers of desflurane. Patent.No. US 5283372A, 1994.
[121]
Ramig, K.; Krishnaswami, A.; Rozov, L.A. Chiral interactions of the fluoroether anesthetics desflurane, isoflurane, enflurane, and analogues with modified cyclodextrins studied by capillary gas chromatography and nuclear magnetic resonance spectroscopy: A simple method for column-suitability screening. Tetrahedron, 1996, 52(1), 319-330.
[http://dx.doi.org/10.1016/0040-4020(95)00860-B]
[122]
Juza, M.; Braun, E.; Schurig, V. Preparative enantiomer separation of the inhalation anesthetics enflurane, isoflurane and desflurane by gas chromatography on a derivatized γ-cyclodextrin stationary phase. J. Chromatogr. A, 1997, 769(1), 119-127.
[http://dx.doi.org/10.1016/S0021-9673(97)00024-1] [PMID: 9188178]
[123]
Polavarapu, P.L.; Zhao, C.; Cholli, A.L.; Vernice, G.G. Vibrational circular dichroism, absolute configuration, and predominant conformations of volatile anesthetics: desflurane. J. Phys. Chem. B, 1999, 103(29), 6127-6132.
[http://dx.doi.org/10.1021/jp990550n]
[124]
(a)Sutradhar, D.; Zeegers-Huyskens, T.; Chandra, A.K. Strong hyperconjugative interactions in isolated and water complexes of desflurane: a theoretical investigation. J. Phys. Chem. A, 2013, 117(36), 8545-8554.
[http://dx.doi.org/10.1021/jp402023u] [PMID: 23547928]
(b)Di Paulo, T.; Sandorfy, C. Fluorocarbon anaesthetics break hydrogen bonds. Nature, 1974, 252(5483), 471-472.
[http://dx.doi.org/10.1038/252471a0] [PMID: 4431468]
(c)Trudeau, G.; Dumas, J.M.; Dupuis, P.; Guérin, M.; Sandorfy, C. Intermolecular interactions and anesthesia: infrared spectroscopic studies. Top. Curr. Chem., 1980, 93, 91-125.
[http://dx.doi.org/10.1007/3-540-10058-X_9] [PMID: 7008260]
(d)Abraham, M.H.; Lieb, W.R.; Franks, N.P. Role of hydrogen bonding in general anesthesia. J. Pharm. Sci., 1991, 80(8), 719-724.
[http://dx.doi.org/10.1002/jps.2600800802] [PMID: 1791528]
(e)Sandorfy, C. The site of action of general anesthetics-a chemical approach. Collect. Czech. Chem. Commun., 2005, 70(5), 539-549.
[http://dx.doi.org/10.1135/cccc20050539]
[125]
Melikova, S.M.; Rutkowski, K.S.; Czarnik-Matusewicz, B.; Rospenk, M. Vibrational spectra and conformational analysis of desflurane. a cryosolution and ab initio study. Chem. Phys. Lett., 2015, 637, 77-82.
[http://dx.doi.org/10.1016/j.cplett.2015.07.063]
[126]
Melikova, S.M.; Rutkowski, K.S.; Rospenk, M. FTIR cryospectroscopic and ab initio studies of desflurane-dimethyl ether H-bonded complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 184, 163-168.
[http://dx.doi.org/10.1016/j.saa.2017.04.084] [PMID: 28494378]
[127]
Zierkiewicz, W. Reaction of volatile anaesthetic desflurane with chlorine atom. Theoretical investigation. Chem. Phys. Lett., 2013, 555, 72-78.
[http://dx.doi.org/10.1016/j.cplett.2012.11.011]
[128]
Ren, H.; Song, J.; Li, X.; Liu, Y. A new insight of degradation reaction mechanism on desflurane radical with a catalyst of NO: a theoretical perspective. Chem. Phys. Lett., 2016, 658, 168-175.
[http://dx.doi.org/10.1016/j.cplett.2016.06.031]
[129]
Mehrata, M.; Moralejo, C.; Anderson, W.A. Adsorbent comparisons for anesthetic gas capture in hospital air emissions. J Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng., 2016, 51(10), 805-809.
[http://dx.doi.org/10.1080/10934529.2016.1181438]] [PMID: 27222158]
[130]
Jänchen, J.; Brückner, J.B.; Stach, H. Adsorption of desflurane from the scavenging system during high-flow and minimal-flow anaesthesia by zeolites. Eur. J. Anaesthesiol., 1998, 15(3), 324-329.
[http://dx.doi.org/10.1097/00003643-199805000-00014] [PMID: 9649993]
[131]
Bracco, S.; Asnaghi, D.; Negroni, M.; Sozzani, P.; Comotti, A. Porous dipeptide crystals as volatile-drug vessels. Chem. Commun. (Camb.), 2017, 54(2), 148-151.
[http://dx.doi.org/10.1039/C7CC06534E] [PMID: 29210379]
[132]
Mandal, P.K.; Pettegrew, J.W. Clinically relevant concentration determination of inhaled anesthetics (halothane, isoflurane, sevoflurane, and desflurane) by 19F NMR. Cell Biochem. Biophys., 2008, 52(1), 31-35.
[http://dx.doi.org/10.1007/s12013-008-9022-7] [PMID: 18719861]
[133]
Loepke, A.W.; Priestley, M.A.; Schultz, S.E.; McCann, J.; Golden, J.; Kurth, C.D. Desflurane improves neurologic outcome after low-flow cardiopulmonary bypass in newborn pigs. Anesthesiology, 2002, 97(6), 1521-1527.
[http://dx.doi.org/10.1097/00000542-200212000-00026] [PMID: 12459680]
[134]
Haelewyn, B.; Yvon, A.; Hanouz, J.L.; MacKenzie, E.T.; Ducouret, P.; Gérard, J.L.; Roussel, S. Desflurane affords greater protection than halothane against focal cerebral ischaemia in the rat. Br. J. Anaesth., 2003, 91(3), 390-396.
[http://dx.doi.org/10.1093/bja/aeg186] [PMID: 12925480]
[135]
Krings, M.; Höllig, A.; Liu, J.; Grüsser, L.; Rossaint, R.; Coburn, M. Desflurane impairs outcome of organotypic hippocampal slices in an in vitro model of traumatic brain injury. Med. Gas Res., 2016, 6(1), 3-9.
[http://dx.doi.org/10.4103/2045-9912.179338] [PMID: 27826417]
[136]
Sivaci, R.; Kahraman, A.; Serteser, M.; Sahin, D.A.; Dilek, O.N. Cytotoxic effects of volatile anesthetics with free radicals undergoing laparoscopic surgery. Clin. Biochem., 2006, 39(3), 293-298.
[http://dx.doi.org/10.1016/j.clinbiochem.2006.01.001] [PMID: 16494857]
[137]
Andrews, D.T.; Royse, A.G.; Royse, C.F. Functional comparison of anaesthetic agents during myocardial ischaemia-reperfusion using pressure-volume loops. Br. J. Anaesth., 2009, 103(5), 654-664.
[http://dx.doi.org/10.1093/bja/aep238] [PMID: 19713280]
[138]
Zhou, J.; Iwasaki, S.; Yamakage, M. Time- and dose-dependent effects of desflurane in sensitized airways. Anesth. Analg., 2017, 124(2), 465-471.
[http://dx.doi.org/10.1213/ANE.0000000000001754] [PMID: 28067710]
[139]
Min, J.J.; Lee, J.; Lee, H.C.; Ryu, H.G.; Shin, M.; Kim, H.J. A comparison of the effects of sevoflurane and desflurane on corrected QT interval prolongation in patients undergoing living donor liver transplantation: a prospective observational study. Transplant. Proc., 2016, 48(1), 96-101.
[http://dx.doi.org/10.1016/j.transproceed.2015.12.034] [PMID: 26915850]
[140]
Piriou, V.; Chiari, P.; Lhuillier, F.; Bastien, O.; Loufoua, J.; Raisky, O.; David, J.S.; Ovize, M.; Lehot, J. J. Pharmacological preconditioning: comparison of desflurane, sevoflurane, isoflurane and halothane in rabbit myocardium. Br. J. Anaesth., 2002, 89(3), 486-491.
[http://dx.doi.org/10.1093/bja/89.3.486] [PMID: 12402730]
[141]
Sun, Z.; Lv, J.; Zhu, Y.; Song, D.; Zhu, B.; Miao, C. Desflurane preconditioning protects human umbilical vein endothelial cells against anoxia/reoxygenation by upregulating NLRP12 and inhibiting non-canonical nuclear factor-κB signaling. Int. J. Mol. Med., 2015, 36(5), 1327-1334.
[http://dx.doi.org/10.3892/ijmm.2015.2335] [PMID: 26329693]
[142]
Wiklund, C.U.; Lim, S.; Lindsten, U.; Lindahl, S.G.E. Relaxation by sevoflurane, desflurane and halothane in the isolated guinea-pig trachea via inhibition of cholinergic neurotransmission. Br. J. Anaesth., 1999, 83(3), 422-429.
[http://dx.doi.org/10.1093/bja/83.3.422] [PMID: 10655913]
[143]
McKay, R.E.; Hall, K.T.; Hills, N. The effect of anesthetic choice (sevoflurane versus desflurane) and neuromuscular management on speed of airway reflex recovery. Anesth. Analg., 2016, 122(2), 393-401.
[http://dx.doi.org/10.1213/ANE.0000000000001022] [PMID: 26569427]
[144]
Yontem, M.; Akkaya, A.; Kaleli, S.; Erci, F.; Kocak, F.E. Literature review on biodegradable nanospheres for oral and targeted drug delivery. Asian J. Biomed. Pharm. Sci., 2015, 5(51), 1-5.
[http://dx.doi.org/10.15272/ajbps.v5i51.761]
[145]
Gupta, P.; Rath, G.P.; Prabhakar, H.; Bithal, P.K. Comparison between sevoflurane and desflurane on emergence and recovery characteristics of children undergoing surgery for spinal dysraphism. Indian J. Anaesth., 2015, 59(8), 482-487.
[http://dx.doi.org/10.4103/0019-5049.162985] [PMID: 26379291]
[146]
Chen, G.; Zhou, Y.; Shi, Q.; Zhou, H. Comparison of early recovery and cognitive function after desflurane and sevoflurane anaesthesia in elderly patients: a meta-analysis of randomized controlled trials. J. Int. Med. Res., 2015, 43(5), 619-628.
[http://dx.doi.org/10.1177/0300060515591064] [PMID: 26232124]
[147]
He, J.; Zhang, Y.; Xue, R.; Lv, J.; Ding, X.; Zhang, Z. Effect of desflurane versus sevoflurane in pediatric anesthesia: a meta-analysis. J. Pharm. Pharm. Sci., 2015, 18(2), 199-206.
[http://dx.doi.org/10.18433/J31882] [PMID: 26158285]
[148]
Guo, J.; Jin, X.; Wang, H.; Yu, J.; Zhou, X.; Cheng, Y.; Tao, Q.; Liu, L.; Zhang, J. Emergence and recovery characteristics of five common anesthetics in pediatric anesthesia: a network meta-analysis. Mol. Neurobiol., 2017, 54(6), 4353-4364.
[http://dx.doi.org/10.1007/s12035-016-9982-3] [PMID: 27343182]
[149]
Bhat, M.; Hagat, H.; Bhukal, B.I.; Sahni, N.; Khanna, P.; Gupta, S.K. Prospective randomized evaluation of propofol and desflurane in patients undergoing surgery for cerebellopontine angle tumors. Anaesth. Pain Intensive Care, 2015, 19(4), 478-484.
[150]
Nogueira, F.R.; Braz, L.G.; Souza, K.M.; Aun, A.G.; Arruda, N.M.; Carvalho, L.R.; Chen, C.O.; Braz, J.R.C.; Braz, M.G. Comparison of DNA damage and oxidative stress in patients anesthetized with desflurane associated or not with nitrous oxide: a prospective randomized clinical trial. Anesth. Analg., 2018, 126(4), 1198-1205.
[http://dx.doi.org/10.1213/ANE.0000000000002729] [PMID: 29293177]
[151]
Gupta, N.; Talwar, V.; Prakash, S.; Deuri, A.; Gogia, A.R. Evaluation of the efficacy of desflurane with or without labetalol for hypotensive anesthesia in middle ear microsurgery. J. Anaesthesiol. Clin. Pharmacol., 2017, 33(3), 375-380.
[http://dx.doi.org/10.4103/joacp.JOACP_350_15] [PMID: 29109639]
[152]
Kazuma, S.; Tokinaga, Y.; Takada, Y.; Azumaguchi, R.; Kimizuka, M.; Hayashi, S.; Yamakage, M. Desflurane inhibits endothelium-dependent vasodilation more than sevoflurane with inhibition of endothelial nitric oxide synthase by different mechanisms. Biochem. Biophys. Res. Commun., 2018, 495(1), 217-222.
[http://dx.doi.org/10.1016/j.bbrc.2017.11.017] [PMID: 29113802]
[153]
Müller-Edenborn, B.; Frick, R.; Piegeler, T.; Schläpfer, M.; Roth-Z’graggen, B.; Schlicker, A.; Beck-Schimmer, B. Volatile anaesthetics reduce neutrophil inflammatory response by interfering with CXC receptor-2 signalling. Br. J. Anaesth., 2015, 114(1), 143-149.
[http://dx.doi.org/10.1093/bja/aeu189] [PMID: 24989774]
[154]
Kim, E.H.; Song, I.K.; Lee, J.H.; Kim, H.S.; Kim, H.C.; Yoon, S.H.; Jang, Y.E.; Kim, J.T. Desflurane versus sevoflurane in pediatric anesthesia with a laryngeal mask airway: a randomized controlled trial. Medicine (Baltimore), 2017, 96(35) e7977
[http://dx.doi.org/10.1097/MD.0000000000007977] [PMID: 28858134]
[155]
Miao, H.; Dong, Y.; Zhang, Y.; Zheng, H.; Shen, Y.; Crosby, G.; Culley, D.J.; Marcantonio, E.R.; Xie, Z. Anesthetic isoflurane or desflurane plus surgery differently affects cognitive function in alzheimer’s disease transgenic mice. Mol. Neurobiol., 2018, 55(7), 5623-5638.
[http://dx.doi.org/10.1007/s12035-017-0787-9] [PMID: 28986748]
[156]
Regan, B.M.; Longstreet, J.C. Fluorinated ether. Patent No. US 3689571, , 1972.
[157]
(a)Terell, R.C. Method for the preparation of sevoflurane.Patent No. EP 0901999A1, 1998.
(b)Kudzma, L.V.; Lessor, R.A.; Rozov, L.A.; Ramig, K. Method of preparing monofluoromethyl ethers.Patent No. US 5886239,, 1999.
(c)Kudzma, L.V.; Huang, C.G.; Lessor, R.A.; Rozov, L.A.; Afrin, S.; Kallashi, F.; McCutcheon, C.; Ramig, K. Diisopropylethylamine mono(hydrogen fluoride) for nucleophilic fluorination of sensitive substrates: synthesis of sevoflurane. J. Fluor. Chem., 2001, 111(1), 11-16.
[http://dx.doi.org/10.1016/S0022-1139(01)00396-7]
(d)Sebastian, M.B. Processes for the preparation of sevoflurane and desflurane.Patent No. UK GB2547651,, 2016.
[158]
Terrell, R.C.; Levinson, J.A.; Young, C.W. Method for the preparation of sevoflurane.Patent No. WO 2006055748A2,, 2006.
[159]
Regan, B.M.; Longstreet, J.C. Method of anesthesia. Patent.No. US 3683092A, 1972.
[160]
(a)Coon, C.L.; Simon, R.L. Method of synthesizing fluoromethylhexafluoroisopropyl ether. Patent No. US 4250334,, 1981.
(b)Khrimian, A.; Jones, B.M. Production of fluormethyl 2,2,2-trifluoro-1--(trifluoromethyl)ethyl ether. Patent No. WO 2001068577A1,. 2001.
[161]
(a)Bieniarz, C.; Ramakrishna, K.V.; Behme, C. Method for synthesizing sevoflurane and an intermediate thereof. Patent.No. US 6100434A, 2000.
(b)Bieniarz, C.; Behme, C.; Ramakrishna, K. An efficient and environmentally friendly synthesis of the inhalation anesthetic sevoflurane. J. Fluor. Chem., 2000, 106(1), 99-102.
[http://dx.doi.org/10.1016/S0022-1139(00)00316-X]
(c)Ramakrishna, K.; Behme, C.; Schure, R.M.; Bieniarz, C. A safe and efficient process for the synthesis of the inhalation anesthetic sevoflurane. Org. Process Res. Dev., 2000, 4(6), 581-584.
[http://dx.doi.org/10.1021/op000207c]
(d)Fang, R.; Liu, H. Method of synthesizing fluoromethyl- 1,1,1,3,3,3- hexafluoroisopropyl ether. Patent No. CN 101058533A,. 2007.
(e)Li, Y.; Zheng, B.; Feng, H.; Hou, Q.; Zhang, B. Preparation method of sevoflurane. Patent No. CN 103804151A,, 2014.
(f)Wang, T.; Jiang, C.; Guo, Z. Sevoflurane synthesizing method. Patent No. CN 101381289A, 2009.
(g)Moghimi, A.; Vojdani, M.R.; Banan, A.; Mollaei, A.; Mahmoodian, M.; Moosavi, S.M. Reinvestigation of the two-step synthesis of sevoflurane. Iran. J. Pharm. Res., 2015, 14(3), 733-738.
[PMID: 26330861]
[162]
Zhao, Z.; Peng, L.; Ti, W. Single fluorine substituted methyl ether preparation method. Patent No. CN 1733675A,, 2006.
[163]
(a)Pacheco, O.; Teixeira, A.C.; Lima, E.L.; Böckelmann, M.A. Process for the preparation of fluoromethyl 2,2,2- trifluoro-1-(trifluoromethyl) ethyl ether. Patent No. US 2009247791A1, . 2008.
(b)Zhang, F.; Shen, X.; Sun, P. Method for preparing sevoflurane. Patent No. CN102199076A,, 2011.
[164]
(a)Bieniarz, C.; Ramakrishna, K.V. Synthetic method for the fluoromethylation of alcohols.Patent No. US 6245949B1, , 2001.
(b)Zhao, Z. Process for synthesizing Sevoflurane. Patent No. CN 101314560B,, 2008.
[165]
Sun, P.; Jiang, Y.; Chen, Y. Method for preparing sevoflurane.Patent No. CN 101337863B,, 2009.
[166]
Bieniarz, C.; Ramakrishna, K.V. Synthetic method for fluoromethylation of halogenated alcohols. Patent No. US 6303831B1, , 2001.
[167]
Xu, W.; Li, H. Method of producing fluoromethyl 1,1,1,3,3,3-hexafluoroisopropyl ether. Patent No. WO 2010022645A1,. 2010.
[168]
(a)Ryan, T.A.; Burgess, L. Process for the production of luoromethylhexafluoroisopropylether.Patent No. WO 9725303A1,, 1997.
(b)Sharratt, A.P.; Draper, L.C. Process for the production of fluoromethyl hexafluoroisopropyl ether.Patent No. WO 2002050003A1, , 2002.
(c)Katsuhara, Y.; Takahashi, H.; Ishida, M. Process for producing fluoromethyl hexafluoroisopropyl ether. Patent No. WO 2010125899A1, 2010.
[169]
Bieniarz, C.; Ramakrishna, K.V.; Behme, C. Method for fluoromethylation of alcohols via halogenative decarboxylation. US 6271422B1, . 2001.
[170]
Halpern, D.F.; Robin, M.L. Method for fluorodecarboxylation. Patent.No. US 4996371A, 1991.
[171]
(a)Yamamoto, Y.; Otsuka, T. Novel carboxylic acid ester, use of the same and method for producing the same.Patent No. WO 2009063783A1,, 2009.
(b)Ohtsuka, T.; Kuroki, Y.; Suzuki, A. Novel Α- fluoromethoxycarboxylic ester, process for producing the α- fluoromethoxy carboxylic ester and process for producing sevoflurane. Patent No. WO 2008004466A1,. 2013.
[172]
Kawai, T.; Watanabe, M. Process for preparing fluoromethyl 1,1,1,3,3,3-hexafluoroisopropyl ether. Patent No. WO 9730961,. 1997.
[173]
Baker, M.T.; Tinker, J.H.; Ruzicka, J.A. Process for the synthesis of hexafluoroisopropyl ethers. Patent No. US 5705710, , 1998.
[174]
Prakash, G.K.S.; Ledneczki, I.; Chacko, S.; Olah, G.A. Direct electrophilic monofluoromethylation. Org. Lett., 2008, 10(4), 557-560.
[http://dx.doi.org/10.1021/ol702500u] [PMID: 18198880]
[175]
Baker, M.T.; Chiang, C.K.; Tinker, J.H. Synthesis of fluorodideuteromethyl 1,1,1,3,3,3-hexafluoro-2-propyl ether (deuterated sevoflurane). J. Labelled Comp. Radiopharm., 1993, 33(9), 801-807.
[http://dx.doi.org/10.1002/jlcr.2580330902]
[176]
(a)McCarty, L.P.; Malek, R.S.; Larsen, E.R. The effects of deuteration on the metabolism of halogenated anesthetics in the rat. Anesthesiology, 1979, 51(2), 106-110.
[http://dx.doi.org/10.1097/00000542-197908000-00003] [PMID: 453609]
(b)Holaday, D.A.; Smith, F.R. Clinical characteristics and biotransformation of sevoflurane in healthy human volunteers. Anesthesiology, 1981, 54(2), 100-106.
[http://dx.doi.org/10.1097/00000542-198102000-00002] [PMID: 6781380]
[177]
Rozov, L.A.; Lessor, R.A.; Kudzma, L.V.; Ramig, K. The fluoromethyl ether sevoflurane as a fluoride source in halogen-exchange reactions. J. Fluor. Chem., 1998, 88(1), 51-54.
[http://dx.doi.org/10.1016/S0022-1139(97)00135-8]
[178]
Lesarri, A.; Vega-Toribio, A.; Suenram, R.D.; Brugh, D.J.; Grabow, J.U. The conformational landscape of the volatile anesthetic sevoflurane. Phys. Chem. Chem. Phys., 2010, 12(33), 9624-9631.
[http://dx.doi.org/10.1039/c002123g] [PMID: 20505891]
[179]
Freitas, M.P.; Bühl, M.; O’Hagan, D.; Cormanich, R.A.; Tormena, C.F. Stereoelectronic interactions and the one-bond C-F coupling constant in sevoflurane. J. Phys. Chem. A, 2012, 116(6), 1677-1682.
[http://dx.doi.org/10.1021/jp211949m] [PMID: 22233417]
[180]
Tang, P.; Zubryzcki, I.; Xu, Y. Ab initio calculation of structures and properties of halogenated general anesthetics: halothane and sevoflurane. J. Comput. Chem., 2001, 22(4), 436-444.
[http://dx.doi.org/10.1002/1096-987X(200103)22:4<436:AID-JCC1014>3.0.CO;2-U]
[181]
Woll, K.A.; Peng, W.; Liang, Q.; Zhi, L.; Jacobs, J.A.; Maciunas, L.; Bhanu, N.; Garcia, B.A.; Covarrubias, M.; Loll, P.J.; Dailey, W.P.; Eckenhoff, R.G. Photoaffinity ligand for the inhalational anesthetic sevoflurane allows mechanistic insight into potassium channel modulation. ACS Chem. Biol., 2017, 12(5), 1353-1362.
[http://dx.doi.org/10.1021/acschembio.7b00222] [PMID: 28333442]
[182]
Hoang, K.C.; Mecozzi, S. Aqueous solubilization of highly fluorinated molecules by semifluorinated surfactants. Langmuir, 2004, 20(18), 7347-7350.
[http://dx.doi.org/10.1021/la049128a] [PMID: 15323471]
[183]
Becker, L.F.; Schwarz, D.H.; Wenz, G. Synthesis of uniform cyclodextrin thioethers to transport hydrophobic drugs. Beilstein J. Org. Chem., 2014, 10, 2920-2927.
[http://dx.doi.org/10.3762/bjoc.10.310] [PMID: 25550759]
[184]
Shityakov, S.; Puskás, I.; Pápai, K.; Salvador, E.; Roewer, N.; Förster, C.; Broscheit, J.A. Sevoflurane-sulfobutylether-β-cyclodextrin complex: preparation, characterization, cellular toxicity, molecular modeling and blood-brain barrier transport studies. Molecules, 2015, 20(6), 10264-10279.
[http://dx.doi.org/10.3390/molecules200610264] [PMID: 26046323]
[185]
(a)Yang, N.C.; Hwang, K.L.; Shen, C.H.; Wang, H.F.; Ho, W.M. Simultaneous determination of fluorinated inhalation anesthetics in blood by gas chromatography-mass spectrometry combined with a headspace autosampler. J. Chromatogr. B Biomed. Sci. Appl., 2001, 759(2), 307-318.
[http://dx.doi.org/10.1016/S0378-4347(01)00239-0] [PMID: 11499484]
(b)Saito, K.; Takayasu, T.; Nishigami, J.; Kondo, T.; Ohtsuji, M.; Lin, Z.; Ohshima, T. Determination of the volatile anesthetics halothane, enflurane, isoflurane, and sevoflurane in biological specimens by pulse-heating GC-MS. J. Anal. Toxicol., 1995, 19(2), 115-119.
[http://dx.doi.org/10.1093/jat/19.2.115] [PMID: 7769780]
(c)Kojima, T.; Ishii, A.; Watanabe-Suzuki, K.; Kurihara, R.; Seno, H.; Kumazawa, T.; Suzuki, O.; Katsumata, Y. Sensitive determination of four general anaesthetics in human whole blood by capillary gas chromatography with cryogenic oven trapping. J. Chromatogr. B Biomed. Sci. Appl., 2001, 762(1), 103-108.
[http://dx.doi.org/10.1016/S0378-4347(01)00348-6] [PMID: 11589453]
(d)Levin, P.D.; Levin, D.; Avidan, A. Medical aerosol propellant interference with infrared anaesthetic gas monitors. Br. J. Anaesth., 2004, 92(6), 865-869.
[http://dx.doi.org/10.1093/bja/aeh154] [PMID: 15121726]
(e)Rasmussen, H.; Thorud, S. Using a refrigerant leak detector to monitor waste gases from halogenated anesthetics. J. Am. Assoc. Lab. Anim. Sci., 2007, 46(5), 64-68.
[PMID: 17877331]
(f)Floate, S.; Hahn, C.E.W. Electrochemical reduction of the anaesthetic agent sevoflurane (fluoromethyl 2,2,2-trifluoro-1-[trifluoromethyl] ethyl ether) in the presence of oxygen and nitrous oxide. Sens. Actuators B Chem., 2004, 99, 236-252.
[http://dx.doi.org/10.1016/j.snb.2003.11.017]
[186]
Wu, R.J.; Huang, Y.C.; Chavali, M.; Lin, T.H.; Hung, S.L.; Luk, H.N. New sensing technology for detection of the common inhalational anesthetic agent sevoflurane using conducting polypyrrole films. Sens. Actuators B Chem., 2007, 126(2), 387-393.
[http://dx.doi.org/10.1016/j.snb.2007.03.026]
[187]
Chavali, M.; Lin, T.H.; Wu, R.J.; Luk, H.N.; Hung, S.L. Active 433 MHz-W UHF RF-powered chip integrated with a nanocomposite m-MWCNT/polypyrrole sensor for wireless monitoring of volatile anesthetic agent sevoflurane. Sens. Actuators A Phys., 2008, 141(1), 109-119.
[http://dx.doi.org/10.1016/j.sna.2007.07.002]
[188]
Okabayashi, T.; Ozaki, M.; Nakagawa, M. Detection method of isoflurane vapor using a cataluminescence-based gas sensor. Procedia Eng., 2011, 25, 1093-1096.
[http://dx.doi.org/10.1016/j.proeng.2011.12.269]
[189]
Karmaoui, M.; Leonardi, S.G.; Tobaldi, D.M.; Donato, N.; Pullar, R.C.; Seabra, M.P.; Labrincha, J.A.; Neri, G. Novel nanosynthesis of In2O3 and its application as a resistive gas sensor for sevoflurane anesthetic. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(3), 399-407.
[http://dx.doi.org/10.1039/C4TB01177E] [PMID: 32262042]
[190]
Gargiulo, N.; Peluso, A.; Aprea, P.; Hua, Y.; Filipovic, D.; Caputo, D.; Eic, M. A chromium-based metal organic framework as a potential high performance adsorbent for anaesthetic vapours. RSC Advances, 2014, 4(90), 49478-49484.
[http://dx.doi.org/10.1039/C4RA05905K]
[191]
(a)Hua, Y.; Gargiulo, N.; Peluso, A.; Aprea, P.; Eić, M.; Caputo, D. Adsorption behavior of halogenated anesthetic and water vapor on Cr‐based MOF (MIL‐101) adsorbent. Part I. Equilibrium and breakthrough characterizations. Chem Ing. Tech.,, 2016, 88(11), 1730-1738.
[http://dx.doi.org/10.1002/cite.201600051]
(b)Hua, Y.; Gargiulo, N.; Peluso, A.; Aprea, P.; Eic´, M.; Caputo, D. Adsorption behavior of halogenated anesthetic and water vapor on Cr‐based MOF (MIL‐101) adsorbent. Part II. Multiple‐cycle breakthrough tests. Che Ing. Tech.,, 2016, 88(11), 1739-1745.
[http://dx.doi.org/10.1002/cite.201600052]
[192]
Bouche, M.P.L.A.; Van Bocxlaer, J.F.P.; Rolly, G.; Versichelen, L.F.M.; Struys, M.M.R.F.; Mortier, E.; De Leenheer, A.P. Quantitative determination of vapor-phase compound A in sevoflurane anesthesia using gas chromatography-mass spectrometry. Clin. Chem., 2001, 47(2), 281-291.
[http://dx.doi.org/10.1093/clinchem/47.2.281] [PMID: 11159777]
[193]
Schmidt, R.; Roeder, M.; Oeckler, O.; Simon, A.; Schurig, V. Separation and absolute configuration of the enantiomers of a degradation product of the new inhalation anesthetic sevoflurane. Chirality, 2000, 12(10), 751-755.
[http://dx.doi.org/10.1002/1520-636X(2000)12:10<751:AID-CHIR8>3.0.CO;2-H] [PMID: 11054834]
[194]
Sulbaek Andersen, M.P.; Nielsen, O.J.; Karpichev, B.; Wallington, T.J.; Sander, S.P. Atmospheric chemistry of isoflurane, desflurane, and sevoflurane: kinetics and mechanisms of reactions with chlorine atoms and OH radicals and global warming potentials. J. Phys. Chem. A, 2012, 116(24), 5806-5820.
[http://dx.doi.org/10.1021/jp2077598] [PMID: 22146013]
[195]
Singh, H.J.; Gour, N.K.; Rao, P.K.; Tiwari, L. Theoretical investigation on the kinetics and branching ratio of the gas phase reaction of sevoflurane with Cl atom. J. Mol. Model., 2013, 19(11), 4815-4822.
[http://dx.doi.org/10.1007/s00894-013-1977-7] [PMID: 24022782]
[196]
Ren, H.; Li, X.; Qu, Y.; Li, F. Theoretical investigation on H abstraction reaction mechanisms and rate constants of sevoflurane with the OH radical. Chem. Phys. Lett., 2018, 692, 345-352.
[http://dx.doi.org/10.1016/j.cplett.2017.12.059]
[197]
Mai, T.V.T.; Duong, M.v.; Huynh, L.K. Comments on “theoretical investigation on H abstraction reaction mechanisms and rate constants of sevoflurane with the OH radical”. Chem. Phys. Lett., 2018, 696, 67-69.
[http://dx.doi.org/10.1016/j.cplett.2018.02.044]
[198]
Pidikiti, R.; Zhang, T.; Mallela, K.M.G.; Shamim, M.; Reddy, K.S.; Johansson, J.S. Sevoflurane-induced structural changes in a four-α-helix bundle protein. Biochemistry, 2005, 44(36), 12128-12135.
[http://dx.doi.org/10.1021/bi050896q] [PMID: 16142911]
[199]
Kunst, G.; Graf, B.M.; Schreiner, R.; Martin, E.; Fink, R.H.A. Differential effects of sevoflurane, isoflurane, and halothane on Ca2+ release from the sarcoplasmic reticulum of skeletal muscle. Anesthesiology, 1999, 91(1), 179-186.
[http://dx.doi.org/10.1097/00000542-199907000-00026] [PMID: 10422943]
[200]
Shan, J.; Sun, L.; Wang, D.; Li, X. Comparison of the neuroprotective effects and recovery profiles of isoflurane, sevoflurane and desflurane as neurosurgical pre-conditioning on ischemia/reperfusion cerebral injury. Int. J. Clin. Exp. Pathol., 2015, 8(2), 2001-2009.
[PMID: 25973096]
[201]
Yadav, G.; Prashanth, M.; Singh, R.B.; Jain, G.; Singh, Y.; Meena, R.K. Incidence and severity of catheter related bladder discomfort by using different inhalational anesthetic agents and comparing it with propofol. Anaesth. Pain Intensive Care, 2015, 19(4), 452-456.
[202]
Wang, C.; Liu, F.; Frisch-Daiello, J.L.; Martin, S.; Patterson, T.A.; Gu, Q.; Liu, S.; Paule, M.G.; Hanig, J.P.; Slikker, W., Jr; Crawford, P.A.; Wang, C.; Han, X. Lipidomics reveals a systemic energy deficient state that precedes neurotoxicity in neonatal monkeys after sevoflurane exposure. Anal. Chim. Acta, 2018, 1037, 87-96.
[http://dx.doi.org/10.1016/j.aca.2017.11.052] [PMID: 30292318]
[203]
Breuer, T.; Maes, K.; Rossaint, R.; Marx, G.; Scheers, H.; Bergs, I.; Bleilevens, C.; Gayan-Ramirez, G.; Bruells, C.S. Sevoflurane exposure prevents diaphragmatic oxidative stress during mechanical ventilation but reduces force and affects protein metabolism even during spontaneous breathing in a rat model. Anesth. Analg., 2015, 121(1), 73-80.
[http://dx.doi.org/10.1213/ANE.0000000000000736] [PMID: 25851179]
[204]
Kuribayashi, J.; Sakuraba, S.; Kashiwagi, M.; Hatori, E.; Tsujita, M.; Hosokawa, Y.; Takeda, J.; Kuwana, S. Neural mechanisms of sevoflurane-induced respiratory depression in newborn rats. Anesthesiology, 2008, 109(2), 233-242.
[http://dx.doi.org/10.1097/ALN.0b013e31817f5baf] [PMID: 18648232]
[205]
Otsuki, T.; Ishikawa, M.; Hori, Y.; Goto, G.; Sakamoto, A. Volatile anesthetic sevoflurane ameliorates endotoxin-induced acute lung injury via microRNA modulation in rats. Biomed. Rep., 2015, 3(3), 408-412.
[http://dx.doi.org/10.3892/br.2015.428] [PMID: 26137246]
[206]
Yang, S.; Wu, Q.; Huang, S.; Wang, Z.; Qi, F. Sevoflurane and isoflurane inhibit KCl-induced Class II phosphoinositide 3-kinase α subunit mediated vasoconstriction in rat aorta. BMC Anesthesiol., 2016, 16(1), 63.
[http://dx.doi.org/10.1186/s12871-016-0227-9] [PMID: 27538808]
[207]
Yang, X.L.; Wang, D.; Zhang, G.Y.; Guo, X.L. Comparison of the myocardial protective effect of sevoflurane versus propofol in patients undergoing heart valve replacement surgery with cardiopulmonary bypass. BMC Anesthesiol., 2017, 17(1), 37.
[http://dx.doi.org/10.1186/s12871-017-0326-2] [PMID: 28259141]
[208]
Nagasaka, Y.; Wepler, M.; Thoonen, R.; Sips, P.Y.; Allen, K.; Graw, J.A.; Yao, V.; Burns, S.M.; Muenster, S.; Brouckaert, P.; Miller, K.; Solt, K.; Buys, E.S.; Ichinose, F.; Zapol, W.M. Sensitivity to sevoflurane anesthesia is decreased in mice with a congenital deletion of guanylyl cyclase-1 alpha. BMC Anesthesiol., 2017, 17(1), 76.
[http://dx.doi.org/10.1186/s12871-017-0368-5] [PMID: 28615047]
[209]
Zhang, Y.; Li, Y.; Han, X.; Dong, X.; Yan, X.; Xing, Q. Elevated expression of DJ-1 (encoded by the human PARK7 gene) protects neuronal cells from sevoflurane-induced neurotoxicity. Cell Stress Chaperones, 2018, 23(5), 967-974.
[http://dx.doi.org/10.1007/s12192-018-0904-3] [PMID: 29728856]
[210]
Dang, D.D.; Saiyin, H.; Yu, Q.; Liang, W.M. Effects of sevoflurane preconditioning on microglia/macrophage dynamics and phagocytosis profile against cerebral ischemia in rats. CNS Neurosci. Ther., 2018, 24(6), 564-571.
[http://dx.doi.org/10.1111/cns.12823] [PMID: 29427321]
[211]
Potočnik, I.; Novak Janković, V.; Šostarič, M.; Jerin, A.; Štupnik, T.; Skitek, M.; Markovič-Božič, J.; Klokočovnik, T. Anti-inflammatory effect of sevoflurane in open lung surgery with one-lung ventilation. Croat. Med. J., 2014, 55(6), 628-637.
[http://dx.doi.org/10.3325/cmj.2014.55.628] [PMID: 25559834]
[212]
Berns, M.; Zacharias, R.; Seeberg, L.; Schmidt, M.; Kerner, T. Effects of sevoflurane on primary neuronal cultures of embryonic rats. Eur. J. Anaesthesiol., 2009, 26(7), 597-602.
[http://dx.doi.org/10.1097/EJA.0b013e32832a0c61] [PMID: 19522051]
[213]
Zhou, X.; Li, W.; Chen, X.; Yang, X.; Zhou, Z.; Lu, D.; Feng, X. Dose-dependent effects of sevoflurane exposure during early lifetime on apoptosis in hippocampus and neurocognitive outcomes in Sprague-Dawley rats. Int. J. Physiol. Pathophysiol. Pharmacol., 2016, 8(3), 111-119.
[PMID: 27785338]
[214]
Jia, Z.; Geng, L.; Xie, G.; Chu, Q.; Zhang, W. Sevoflurane impairs acquisition learning and memory function in transgenic mice model of Alzheimer’s disease by induction of hippocampal neuron apoptosis. Int. J. Clin. Exp. Med., 2015, 8(9), 15490-15497.
[PMID: 26629039]
[215]
Liu, J.; Yang, J.; Xu, Y.; Guo, G.; Cai, L.; Wu, H.; Zhao, Y.; Zhang, X. Roscovitine, a CDK5 inhibitor, alleviates sevoflurane-induced cognitive dysfunction via regulation TAU/GSK3β and ERK/PPARΓ/CREB signaling. Cell. Physiol. Biochem., 2017, 44(2), 423-435.
[http://dx.doi.org/10.1159/000485008] [PMID: 29141245]
[216]
Dong, P.; Zhao, J.; Li, N.; Lu, L.; Li, L.; Zhang, X.; Yang, B.; Zhang, L.; Li, D. Sevoflurane exaggerates cognitive decline in a rat model of chronic intermittent hypoxia by aggravating microglia-mediated neuroinflammation via downregulation of PPAR-γ in the hippocampus. Behav. Brain Res., 2018, 347, 325-331.
[http://dx.doi.org/10.1016/j.bbr.2018.03.031] [PMID: 29574103]
[217]
Wang, J.; Meng, F.; Cottrell, J.E.; Sacktor, T.C.; Kass, I.S. Metabotropic actions of the volatile anaesthetic sevoflurane increase protein kinase M synthesis and induce immediate preconditioning protection of rat hippocampal slices. J. Physiol., 2012, 590(16), 4093-4107.
[http://dx.doi.org/10.1113/jphysiol.2012.233965] [PMID: 22674720]
[218]
Guo, S.; Liu, L.; Wang, C.; Jiang, Q.; Dong, Y.; Tian, Y. Repeated exposure to sevoflurane impairs the learning and memory of older male rats. Life Sci., 2018, 192, 75-83.
[http://dx.doi.org/10.1016/j.lfs.2017.11.025] [PMID: 29155302]
[219]
Wang, J.Y.; Feng, Y.; Fu, Y.H.; Liu, G.L. Effect of sevoflurane anesthesia on brain is mediated by lncrna hotair. J. Mol. Neurosci., 2018, 64(3), 346-351.
[http://dx.doi.org/10.1007/s12031-018-1029-y] [PMID: 29352445]
[220]
Chen, J.; Jiao, Z.; Wang, A.; Zhong, W.; Liu, B.; Gan, N. MicroRNA-181 inhibitor protects against sevoflurane-induced hippocampal apoptosis and memory impairment. Int. J. Clin. Exp. Pathol., 2016, 9(6), 6195-6202.
[221]
Yi, W.; Li, D.; Guo, Y.; Zhang, Y.; Huang, B.; Li, X. Sevoflurane inhibits the migration and invasion of glioma cells by upregulating microRNA-637. Int. J. Mol. Med., 2016, 38(6), 1857-1863.
[http://dx.doi.org/10.3892/ijmm.2016.2797] [PMID: 27840895]
[222]
Jiang, J.; Chen, Z.; Yang, Y.; Yan, J.; Jiang, H. Sevoflurane downregulates IGF-1 via microRNA-98. Mol. Med. Rep., 2017, 15(4), 1863-1868.
[http://dx.doi.org/10.3892/mmr.2017.6219] [PMID: 28260068]
[223]
Zhang, D.X.; Jiang, S.; Yu, L.N.; Zhang, F.J.; Zhuang, Q.; Yan, M. The effect of sevoflurane on the cognitive function of rats and its association with the inhibition of synaptic transmission. Int. J. Clin. Exp. Med., 2015, 8(11), 20853-20860.
[PMID: 26885010]
[224]
Zhu, Q.L.; Luo, Y.; Xue, Q.S.; Zhang, F.J.; Yu, B.W. Different doses of sevoflurane facilitate and impair learning and memory function through activation of the ERK pathway and synthesis of ARC protein in the rat hippocampus. Brain Res., 2018, 1678, 174-179.
[http://dx.doi.org/10.1016/j.brainres.2017.10.019] [PMID: 29074343]
[225]
Haseneder, R.; Kratzer, S.; von Meyer, L.; Eder, M.; Kochs, E.; Rammes, G. Isoflurane and sevoflurane dose-dependently impair hippocampal long-term potentiation. Eur. J. Pharmacol., 2009, 623(1-3), 47-51.
[http://dx.doi.org/10.1016/j.ejphar.2009.09.022] [PMID: 19765574]
[226]
Ye, B.O.; Ji, Y.; Yuan, Q.; Zhang, G-R.; Fan, Q.; Wei, G.; Yin, Z.; Tao, L. Sevoflurane inhibits the antioxidant capacity of erythrocytes. Exp. Ther. Med., 2016, 11(2), 650-654.
[http://dx.doi.org/10.3892/etm.2015.2938] [PMID: 26893661]
[227]
Arslan, M.; Ozkose, Z.; Akyol, G.; Barit, G. The age- and gender-dependent effects of desflurane and sevoflurane on rat liver. Exp. Toxicol. Pathol., 2010, 62(1), 35-43.
[http://dx.doi.org/10.1016/j.etp.2008.12.011] [PMID: 19181502]
[228]
Minguet, G.; Franck, T.; Joris, J.; Serteyn, D. Sevoflurane modulates the release of reactive oxygen species, myeloperoxidase, and elastase in human whole blood: effects of different stimuli on neutrophil response to volatile anesthetic in vitro. Int. J. Immunopathol. Pharmacol., 2017, 30(4), 362-370.
[http://dx.doi.org/10.1177/0394632017739530] [PMID: 29087224]
[229]
(a)Ong Sio, L.C.L.; Dela Cruz, R.G.C.; Bautista, A.F. Sevoflurane and renal function: a meta-analysis of randomized trials. Med. Gas Res., 2017, 7(3), 186-193.
[http://dx.doi.org/10.4103/2045-9912.215748] [PMID: 29152212]
(b)Ong Sio, L.C.L.; Dela Cruz, R.G.C.; Bautista, A.F. A comparison of renal responses to sevoflurane and isoflurane in patients undergoing donor nephrectomy: a randomized controlled trial. Med. Gas Res., 2017, 7(1), 19-27.
[http://dx.doi.org/10.4103/2045-9912.202906] [PMID: 28480028]
[230]
Luethy, A.; Boghosian, J.D.; Srikantha, R.; Cotten, J.F. Halogenated ether, alcohol, and alkane anesthetics activate task-3 tandem pore potassium channels likely through a common mechanism. Mol. Pharmacol., 2017, 91(6), 620-629.
[http://dx.doi.org/10.1124/mol.117.108290] [PMID: 28325748]
[231]
Lehmke, L.; Coburn, M.; Möller, M.; Blaumeiser-Debarry, R.; Lenzig, P.; Wiemuth, D.; Gründer, S. Inhalational anesthetics accelerate desensitization of acid-sensing ion channels. Neuropharmacology, 2018, 135, 496-505.
[http://dx.doi.org/10.1016/j.neuropharm.2018.04.004] [PMID: 29627444]
[232]
Vasigh, A.; Najafi, F.; Jaafarpour, M.; Khajavikhan, J.; Khani, A. The effect of sevoflurane plus propofol on pain and complications after laminectomy: a randomized double-blind clinical trial. J. Clin. Diagn. Res., 2017, 11(4), UC05-UC08.
[http://dx.doi.org/10.7860/JCDR/2017/23565.9643] [PMID: 28571236]
[233]
Kinoshita, H.; Matsuda, N.; Kimoto, Y.; Tohyama, S.; Hama, K.; Nakahata, K.; Hatano, Y. Sevoflurane, but not propofol, prevents rho kinase-dependent contraction induced by sphingosylphosphorylcholine in the porcine coronary artery. Anesth. Analg., 2007, 105(2), 325-329.
[http://dx.doi.org/10.1213/01.ane.0000270207.84083.ba] [PMID: 17646484]
[234]
(a)Burns, T.H.S.; Hall, J.M.; Bracken, A.; Gouldstone, G. An investigation of new fluorine compounds in anaesthesia. 4. Examination of an ethane and four ethers. Anaesthesia, 1961, 16(4), 440-444.
[http://dx.doi.org/10.1111/j.1365-2044.1961.tb13424.x] [PMID: 13874993]
(b)Speers, L.; Szur, A.J.; Terrell, R.C.; Treadwell, J.; Ucciardi, T.U. General anesthetics. 2. Halogenated methyl isopropyl ethers. J. Med. Chem., 1971, 14(17), 593-595.
[http://dx.doi.org/10.1021/jm00289a009] [PMID: 5164450]
(c)Terrell, R.C.; Speers, L.; Szur, A.J.; Ucciardi, T.; Vitcha, J.F. General anesthetics. 3. Fluorinated methyl ethyl ethers as anesthetic agents. J. Med. Chem., 1972, 15(6), 604-606.
[http://dx.doi.org/10.1021/jm00276a008] [PMID: 5030924]
(d)Koblin, D.D.; Laster, M.J.; Ionescu, P.; Gong, D.; Eger, E.I., II; Halsey, M.J.; Hudlicky, T. Polyhalogenated methyl ethyl ethers: solubilities and anesthetic properties. Anesth. Analg., 1999, 88(5), 1161-1167.
[http://dx.doi.org/10.1213/00000539-199905000-00036] [PMID: 10320188]
[235]
(a)Johri, K.K.; DesMarteau, D.D. Comparison of the reactivity of CF3OX (X = Cl, F) with some simple alkenes. J. Org. Chem., 1983, 48(2), 242-250.
[http://dx.doi.org/10.1021/jo00150a019]
(b)Randolph, B.B.; DesMarteau, D.D. Synthesis of functionalized polyfluoroalkyl hypochlorites and fluoroxy compounds and their reactions with some fluoroalkenes. J. Fluor. Chem., 1993, 64, 129-149.
[http://dx.doi.org/10.1016/S0022-1139(00)80070-6]
[236]
Speers, L.; Szur, A.J.; Terrell, R.C. General anesthetics. 4. Methyl pentahaloethyl and methyl heptahaloisopropyl ethers as anesthetic agents. J. Med. Chem., 1972, 15(6), 606-608.
[http://dx.doi.org/10.1021/jm00276a009] [PMID: 5030925]
[237]
Hudlicky, T.; Duan, C.; Reed, J.W.; Yan, F.; Hudlicky, M.; Endoma, M.A.; Eger, E.I., II Practical preparation of potentially anesthetic fluorinated ethyl methyl ethers by means of bromine trifluoride and other methods. J. Fluor. Chem., 2000, 102, 363-367.
[http://dx.doi.org/10.1016/S0022-1139(99)00302-4]
[238]
(a)Harris, J.F.; Coffman, D.D. Synthesis of polyfluoroöxetanes by photoinitiated addition of fluorocarbonyl compounds to fluoroölefins. J. Am. Chem. Soc., 1962, 84(9), 1553-1561.
[http://dx.doi.org/10.1021/ja00868a009]
(b)Bissell, E.R.; Fields, D.B. Addition of acetaldehyde to fluoroethylenes1. J. Org. Chem., 1964, 29(1), 249-252.
[http://dx.doi.org/10.1021/jo01024a523]
(c)Barlow, M.G.; Coles, B.; Haszeldine, R.N. Heterocyclic polyfluoro-compounds. Part 33. Photochemical oxetane formation from fluoro ketones and perfluoro aldehydes and 1,2-difluoroethylene. J. Chem. Soc., Perkin Trans. 1, 1980, 10, 2258-2267.
[http://dx.doi.org/10.1039/p19800002258]
(d)Tarrant, P.; Bull, R.N. The reaction of some 3- and 4-fluorooexetanes with acids. J. Fluor. Chem., 1988, 40, 201-215.
[http://dx.doi.org/10.1016/S0022-1139(00)83066-3]
[239]
Cook, E.W.; Landrum, B.F. Synthesis of partially fluorinated oxetanes. J. Heterocycl. Chem., 1965, 2(3), 327-328.
[http://dx.doi.org/10.1002/jhet.5570020329]
[240]
Rozov, L.A.; Rafalko, P.W.; Evans, S.M.; Brockunier, L.; Ramig, K. Asymmetric synthesis of the volatile anesthetic 1,2,2,2-tetrafluoroethyl chlorofluoromethyl ether using a stereospecific decarboxylation of unusual stereochemical outcome. J. Org. Chem., 1995, 60(5), 1319-1325.
[http://dx.doi.org/10.1021/jo00110a041]
[241]
Jia, X.; Liu, Y.; Sun, J.; Sun, H.; Su, Z.; Pan, X.; Wang, R. Theoretical investigation of the reactions of CF(3)CHFOCF(3) with the OH radical and Cl atom. J. Phys. Chem. A, 2010, 114(1), 417-424.
[http://dx.doi.org/10.1021/jp908228h] [PMID: 19950919]
[242]
Burns, T.H.S.; Hall, J.M.; Bracken, A.; Gouldstone, G. Fluorine compounds in anæsthesia (6) examination of fourteen heavily halogenated ring compounds. Anaesthesia, 1964, 19(2), 167-176.
[http://dx.doi.org/10.1111/j.1365-2044.1964.tb00364.x] [PMID: 14150671]
[243]
Burns, T.H.S.; Hall, J.M.; Bracken, A.; Gouldstone, G. Fluorine compounds in anaesthesia (7). Examination of two derivatives of normal butane and nine heavily halogenated ring compounds. Anaesthesia, 1966, 21(1), 42-50.
[http://dx.doi.org/10.1111/j.1365-2044.1966.tb02563.x] [PMID: 5901796]
[244]
Vorberg, R.; Trapp, N.; Zimmerli, D.; Wagner, B.; Fischer, H.; Kratochwil, N.A.; Kansy, M.; Carreira, E.M.; Müller, K. Effect of partially fluorinated n‐alkyl‐substituted piperidine‐2‐carboxamides on pharmacologically relevant properties. ChemMedChem, 2016, 11(19), 2216-2239.
[http://dx.doi.org/10.1002/cmdc.201600325] [PMID: 27629993]
[245]
(a)Qiu, L.; Lin, J.; Liu, Q.; Wang, S.; Lv, G.; Li, K.; Shi, H.; Huang, Z.; Bertaccini, E.J. The role of the hydroxyl group in propofol-protein target recognition: insights from oniom studies. J. Phys. Chem. B, 2017, 121(24), 5883-5896.
[http://dx.doi.org/10.1021/acs.jpcb.7b02079] [PMID: 28548837]
(b)Yip, G.M.S.; Chen, Z-W.; Edge, C.J.; Smith, E.H.; Dickinson, R.; Hohenester, E.; Townsend, R.R.; Fuchs, K.; Sieghart, W.; Evers, A.S.; Franks, N.P. A propofol binding site on mammalian GABAA receptors identified by photolabeling. Nat. Chem. Biol., 2013, 9(11), 715-720.
[http://dx.doi.org/10.1038/nchembio.1340] [PMID: 24056400]
(c)Zhang, H.; Xu, X.; Chen, Y.; Qiu, Y.; Liu, X.; Liu, B.F.; Zhang, G. Synthesis and evaluation of fluorine-substituted phenyl acetate derivatives as ultra-short recovery sedative/hypnotic agents. PLoS One, 2014, 9(5) e96518
[http://dx.doi.org/10.1371/journal.pone.0096518] [PMID: 24796695]
(d)Baker, M.T.; Naguib, M. Fluorine-substituted alkyl phenol compounds and their uses.Patent No. US 20030176513A1,, 2003.
(e)Baker, M.T. Hydrofluoroalkyl phenols having anesthetic properties.Patent No. WO 2008008492A2,, 2008.
(f)Lu, H. One kind anesthesia class compound and its production and use.Patent No. CN 107556167A, 2018.
(g)Li, Q.; Wang, T.; Wu, T.; Zeng, L.; Wang, Y.; Mao, W.; Chen, G. Water-soluble propofol derivatives and uses thereof. Patent No. WO 2015120821A1, 2015.
[246]
(a)Erlandsson, M.; Karimi, F.; Lindhe, O.; Långström, B. (18)F-labelled metomidate analogues as adrenocortical imaging agents. Nucl. Med. Biol., 2009, 36(4), 435-445.
[http://dx.doi.org/10.1016/j.nucmedbio.2009.01.014] [PMID: 19423012]
(b)Erlandsson, M.; Hall, H.; Långström, B. Synthesis and in vitro evaluation of 18F‐labelled di‐ and tri(ethylene glycol) metomidate esters. J. Labelled Comp. Radiopharm., 2009, 52(7), 278-285.
[http://dx.doi.org/10.1002/jlcr.1597]
(c)Wadsak, W.; Mitterhauser, M. Synthesis of [18F]FETO, a novel potential 11-β hydroxylase inhibitor. J. Labelled Comp. Radiopharm., 2003, 46(4), 379-388.
[http://dx.doi.org/10.1002/jlcr.680]
(d)Mitterhauser, M.; Wadsak, W.; Wabnegger, L.; Sieghart, W.; Viernstein, H.; Kletter, K.; Dudczak, R. In vivo and in vitro evaluation of [18F]FETO with respect to the adrenocortical and GABAergic system in rats. Eur. J. Nucl. Med. Mol. Imaging, 2003, 30(10), 1398-1401.
[http://dx.doi.org/10.1007/s00259-003-1252-8] [PMID: 12845489]
(e)Li, Q.; Wang, T.; Zeng, L.; Zhang, G.; Xu, X.; Ren, L. Etomidate derivative and intermediate, preparation method and use thereof. WO 2017059827A1,. 2017.
[247]
Fee, J.P.H.; Thompson, G.H. Comparative tolerability profiles of the inhaled anaesthetics. Drug Saf., 1997, 16(3), 157-170.
[http://dx.doi.org/10.2165/00002018-199716030-00002] [PMID: 9098654]
[248]
Guimarães, M.C.; Duarte, M.H.; Silla, J.M.; Freitas, M.P. Is conformation a fundamental descriptor in QSAR? A case for halogenated anesthetics. Beilstein J. Org. Chem., 2016, 12, 760-768.
[http://dx.doi.org/10.3762/bjoc.12.76] [PMID: 27340468]
[249]
Yin, H.; Anders, M.W.; Korzekwa, K.R.; Higgins, L.; Thummel, K.E.; Kharasch, E.D.; Jones, J.P. Designing safer chemicals: predicting the rates of metabolism of halogenated alkanes. Proc. Natl. Acad. Sci. USA, 1995, 92(24), 11076-11080.
[http://dx.doi.org/10.1073/pnas.92.24.11076] [PMID: 7479940]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy