Generic placeholder image

Current Analytical Chemistry


ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Iron Sulphur Cluster [Fe4S4(SPh)4]2– Catalyzed Electrochemical Reduction of CO2 on Carbon Electrodes in [Bu4N][BF4]-DMF Mixture

Author(s): Khalaf M. Alenezi*

Volume 16 , Issue 7 , 2020

Page: [854 - 862] Pages: 9

DOI: 10.2174/1573411015666191002170213

Price: $65


Background: An efficient, selective and durable electrocatalytic carbon dioxide (CO2) reduction system is a prerequisite to tackle energy and pollution-related issues. In this context, both organic and inorganic materials have gained a significant interest worldwide.

Objective: In the present work, the electrocatalytic reduction activity of an iron-sulphur (Fe-S) cluster, [Fe4S4(SPh)4]2– for CO2 → carbon monoxide (CO) conversion has been investigated. The effect of catalyst concentration on the yield of CO and H2 was determined. Besides, the influence of reaction conditions (presence or absence of a Brønsted acid, electrolysis time etc.) on faradaic yield and product selectivity was also investigated.

Methods: Cyclic voltammetry (CV) was carried out on vitreous carbon electrode in 0.1 M [Bu4N] [BF4]-DMF electrolyte. At the end of electrolysis, products were collected by tight-gas syringe and analyzed by gas chromatography (GC) system coupled with a thermal conductivity detector.

Results: The Fe-S cluster was found to efficiently catalyse the process on carbon electrode in 0.1 M [Bu4N][BF4]-DMF electrolyte. Moreover, the presence of cluster shifted the reduction potential by ~ 200 mV towards the positive. GC analysis confirmed the formation of CO with a current efficiency of ca. 70%. On the other hand, 12% H2 was observed at the end of electrocatalysis.

Conclusion: In summary, Fe-S cluster was used for the electrocatalytic reduction of CO2 in 0.1 M [Bu4N][BF4]-DMF electrolyte. The use of cluster (catalyst) was found to be important for CO2 reduction as no CO was detected in the absence of the catalyst. This study highlights the potential application of Fe-S cluster for CO2 reduction.

Keywords: Carbon dioxide (CO2), Carbon monoxide (CO), electrocatalysis, electrochemical reduction, gas chromatography, iron sulphur cluster.

Graphical Abstract
Artz, J.; Müller, T.E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Sustainable conversion of carbon dioxide: An integrated review of catalysis and life cycle assessment. Chem. Rev., 2018, 118(2), 434-504.
[] [PMID: 29220170]
Doney, S.C.; Fabry, V.J.; Feely, R.A.; Kleypas, J.A. Ocean acidification: The other CO2 problem. Annu. Rev. Mar. Sci., 2009, 1(1), 169-192.
Wahba, S.; Kamil, B.; Nassar, K.; Abdelsalam, A. Green envelop impact on reducing air temperature and enhancing outdoor thermal comfort in arid climates. Civil Eng. J., 2019, 5(5), 1124-1135.
Appel, A.M.; Bercaw, J.E.; Bocarsly, A.B.; Dobbek, H.; DuBois, D.L.; Dupuis, M.; Ferry, J.G.; Fujita, E.; Hille, R.; Kenis, P.J.; Kerfeld, C.A.; Morris, R.H.; Peden, C.H.; Portis, A.R.; Ragsdale, S.W.; Rauchfuss, T.B.; Reek, J.N.; Seefeldt, L.C.; Thauer, R.K.; Waldrop, G.L. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem. Rev., 2013, 113(8), 6621-6658.
[] [PMID: 23767781]
Ziessel, R. In Carbon Dioxide as a Source of Carbon; Springer: Berlin, 1987, pp. 113-138.
Mikkelsen, M.; Jørgensen, M.; Krebs, F.C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci., 2010, 3(1), 43-81.
Leitner, W. Carbon dioxide as a raw material: The synthesis of formic acid and its derivatives from CO2. Angew. Chem. Int. Ed. Engl., 1995, 34(20), 2207-2221.
Chen, R.; Liu, Y. Catalysis of CO2 Electroreduction. Electrochemical Reduction of Carbon Dioxide: Fundamentals and Technologies; CRC Press: Florida, 2016.
Steinlechner, C.; Roesel, A.; Oberem, E.; Päpcke, A.; Rockstroh, N.; Gloaguen, F.; Lochbrunner, S.; Ludwig, R.; Spannenberg, A.; Junge, H. Selective earth-abundant system for CO2 Reduction: Comparing photo-and electrocatalytic processes. ACS Catal., 2019, 9(3), 2091-2100.
Raciti, D.; Wang, C. Recent advances in CO2 reduction electrocatalysis on copper. ACS Energy Lett., 2018, 3(7), 1545-1556.
Al-Kalbani, H.; Xuan, J.; García, S.; Wang, H. Comparative energetic assessment of methanol production from CO2: Chemical versus electrochemical process. Appl. Energy, 2016, 165, 1-13.
Chen, C.; Khosrowabadi Kotyk, J.F.; Sheehan, S.W. Progress toward commercial application of electrochemical carbon dioxide reduction. Chem, 2018, 4(11), 2571-2586.
Khezri, B.; Fisher, A.C.; Pumera, M. CO 2 reduction: The quest for electrocatalytic materials. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(18), 8230-8246.
Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev., 2014, 43(2), 631-675.
[] [PMID: 24186433]
Francke, R.; Schille, B.; Roemelt, M. Homogeneously catalyzed electroreduction of carbon dioxide-methods, mechanisms, and catalysts. Chem. Rev., 2018, 118(9), 4631-4701.
[] [PMID: 29319300]
Benson, E.E.; Kubiak, C.P.; Sathrum, A.J.; Smieja, J.M. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev., 2009, 38(1), 89-99.
[] [PMID: 19088968]
Elgrishi, N.; Chambers, M.B.; Wang, X.; Fontecave, M. Molecular polypyridine-based metal complexes as catalysts for the reduction of CO2. Chem. Soc. Rev., 2017, 46(3), 761-796.
[] [PMID: 28084485]
Pacardo, D.B.; Slocik, J.M.; Kirk, K.C.; Naik, R.R.; Knecht, M.R. Interrogating the catalytic mechanism of nanoparticle mediated Stille coupling reactions employing bio-inspired Pd nanocatalysts. Nanoscale, 2011, 3(5), 2194-2201.
[] [PMID: 21455527]
Slocik, J.M.; Govorov, A.O.; Naik, R.R. Photoactivated biotemplated nanoparticles as an enzyme mimic. Angew. Chem. Int. Ed. Engl., 2008, 47(29), 5335-5339.
[] [PMID: 18553328]
Yao, W.; Gurubasavaraj, P.M.; Holland, P.L. Molecular Design in Inorganic Biochemistry; Rabinovich, D; Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg,. , 2014, pp. 1-37.
Seino, H.; Hidai, M. Catalytic functions of cubane-type M 4 S 4 clusters. Chem. Sci. (Camb.), 2011, 2(5), 847-857.
Beinert, H.; Kennedy, M.C.; Stout, C.D. Aconitase as iron− sulfur protein, enzyme, and iron-regulatory protein. Chem. Rev., 1996, 96(7), 2335-2374.
[] [PMID: 11848830]
Holm, R.H.; Lo, W. Structural conversions of synthetic and protein-bound iron–sulfur clusters. Chem. Rev., 2016, 116(22), 13685-13713.
[] [PMID: 27933770]
Lee, S.C.; Lo, W.; Holm, R.H. Developments in the biomimetic chemistry of cubane-type and higher nuclearity iron-sulfur clusters. Chem. Rev., 2014, 114(7), 3579-3600.
[] [PMID: 24410527]
Alenezi, K. Electrochemical Transformation of Alkanes, Carbon Dioxide and Protons at Iron-Porphyrins and Iron-Sulfur Clusters; University of East Anglia, 2013.
Nakazawa, M.; Mizobe, Y.; Matsumoto, Y.; Uchida, Y.; Tezuka, M.; Hidai, M. Electrochemical reduction of carbon dioxide using iron-sulfur clusters as catalyst precursors. Bull. Chem. Soc. Jpn., 1986, 59(3), 809-814.
Tomohiro, T.; Uoto, K.; Okuno, H.Y. Electrochemical reduction of carbon dioxide catalysed by macrocyclic Fe 4 S 4 iron–sulphur clusters. J. Chem. Soc. Chem. Commun., 1990, 2, 194-195.
Komeda, N.; Nagao, H.; Matsui, T.; Adachi, G.; Tanaka, K. Electrochemical carbon dioxide fixation to thioesters catalyzed by molybdenum-iron-sulfur cluster [Mo2Fe6S8 (SEt) 9] 3. J. Am. Chem. Soc., 1992, 114(10), 3625-3630.
Tanaka, K.; Wakita, R.; Tanaka, T. Carbon dioxide fixation coupled with nitrite reduction, catalyzed by 4Fe4S cluster. Chem. Lett., 1987, 16(10), 1951-1954.
Goh, C.; Segal, B.M.; Huang, J.; Long, J.R.; Holm, R. Polycubane clusters: Synthesis of [Fe4S4 (PR3) 4] 1+, 0 (R= But, Cy, Pri) and [Fe4S4] 0 core aggregation upon loss of phosphine. J. Am. Chem. Soc., 1996, 118(47), 11844-11853.
Que, L., Jr; Bobrik, M.; Ibers, J.A.; Holm, R. Synthetic analogs of the active sites of iron-sulfur proteins. VII. Ligand substitution reactions of the tetranuclear clusters [Fe4S4 (SR) 2-and the structure of bis (tetramethylammonium)[tetra-. mu.-sulfide-tetrakis (benzenethiolato) tetrairon. J. Am. Chem. Soc., 1974, 96(13), 4168-4178.
[] [PMID: 4854592]
Garrett, B.; Henderson, R.A. Protonation and substitution reactions of [WFe3S4Cl32(μ-L)3]3− (L = SEt or OMe): quantifying how metal content and spectator ligands individually affect reactivity. Dalton Trans., 2010, 39(19), 4586-4592.
[] [PMID: 20386803]
Liu, T.; Dubois, D.L.; Bullock, R.M. An iron complex with pendent amines as a molecular electrocatalyst for oxidation of hydrogen. Nat. Chem., 2013, 5(3), 228-233.
[] [PMID: 23422565]
Alenezi, K. Solar Light-Driven Reduction of CO2 on p-type Silicon semiconducting electrodes by iron (0) pentaflourotetraphenylporphyrin. Int. J. Electrochem. Sci., 2015, 10(5), 4279-4289.
Alenezi, K. Electrocatalytic study of carbon dioxide reduction by Co (TPP). Cl Complex. J. Chem., 2016, 2016, 1.
Bhugun, I.; Lexa, D.; Savéant, J-M. Catalysis of the electrochemical reduction of carbon dioxide by iron (0) porphyrins: Synergystic effect of weak Brönsted acids. J. Am. Chem. Soc., 1996, 118(7), 1769-1776.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy