Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Marine Actinomycetes Derived Pyrrolo Compounds Mediated Green Synthesis of AgO and Ag2O3 Nanoparticles and its Antidermatophytic Activity

Author(s): Lokesh Ravi, Riven Chocalingam, Vignesh Menta and Kannabiran Krishnan*

Volume 10, Issue 6, 2020

Page: [868 - 875] Pages: 8

DOI: 10.2174/2210681209666190923110244

Price: $65

Abstract

Background: Antimicrobial potential of silver nanoparticles synthesised by using various biological sources was already been reported by many researchers. The green synthesis of silver nanoparticles using microbial sources has been proved to be more effective.

Methods: In this study, anti-dermatophytic silver nanoparticles were synthesised by using pyrrolo metabolites producing actinomycetes as a green catalyst. Different characterization methods such as UV-Visible, XRD, and AFM were used to identify the physiochemical characteristics of synthesised nanoparticles.

Results: The synthesised nanoparticles showed λ-max at 427 nm and 402 nm, respectively. The XRD analysis based on the JCPDS database identified the two synthesized nanoparticles as silver oxide nanoparticles (AgO NPs) and silver peroxide nanoparticles (Ag2O3 NPs). The size of these nanoparticles was found to be in the range of 40-44 nm (AgO NPs) and 23-25 nm (Ag2O3 NPs), respectively. The synthesized nanoparticles demonstrated significant anti-fungal activity against dermatophytic fungi Trichophyton mentagrophyes with the zone of inhibition of 38 mm by AgO NP and 17 mm by Ag2O3 NPs.

Conclusion: Screening of marine actinomycetes LG003 and LG005 revealed the presence of pyrrolo derivatives as the major metabolites, suggesting that these pyrrolo derivatives could be responsible for synthesis and stabilization of AgO and Ag2O3NPs. Among the synthesized NPs, the AgO NPs showed great potential as an anti-dermatophytic agent. This study provides further research opportunities for AgONPs as anti-fungal agents.

Keywords: Marine actinomycetes, green synthesis, AgO and Ag2O3 nanoparticles, dermatophytes, anti-dermatophytic activity, pyrrolo compounds.

Graphical Abstract
[1]
Borgers, M.; Degreef, H.; Cauwenbergh, G. Fungal infections of the skin: Infection process and antimycotic therapy. Curr. Drug Targets, 2005, 6(8), 849-862.
[http://dx.doi.org/10.2174/138945005774912726] [PMID: 16375669]
[2]
Lakshmipathy, D.T.; Kannabiran, K. A morphological, biochemical and biological studies of halophilic Streptomyces sp. isolated from saltpan environment. Am. J. Infect. Dis., 2009, 5, 200-206.
[http://dx.doi.org/10.3844/ajidsp.2009.207.213]
[3]
Lakshmipathy, D.T.; Kannabiran, K. Review on dermatomycosis: Pathogenesis and treatment. Nat. Sci., 2010, 2, 726-731.
[4]
Singer, R.S.; Finch, R. Wegener; Bywater, R.; Walters, J.; Lipsitch, M. Antibiotic resistance-the interplay between antibiotic use in animals and human beings. Lancet Infect. Dis., 2003, 3, 47-51.
[http://dx.doi.org/10.1016/S1473-3099(03)00490-0] [PMID: 12505035]
[5]
Barrett, D. From natural products to clinically useful antifungals. Biochim. Biophys. Acta, 2002, 1587(2-3), 224-233.
[http://dx.doi.org/10.1016/S0925-4439(02)00085-6] [PMID: 12084464]
[6]
Martinez-Rossi, N.M.; Peres, N.T.; Rossi, A. Antifungal resistance mechanisms in dermatophytes. Mycopathologia, 2008, 166(5-6), 369-383.
[http://dx.doi.org/10.1007/s11046-008-9110-7] [PMID: 18478356]
[7]
Sharma, K.K.; Saikia, R.; Kotoky, J.; Kalita, J.C.; Devi, R. Antifungal activity of Solanum melongena L., Lawsoniainermis L. and Justicia gendarussa B. against dermatophytes. Int. J. Pharm. Tech. Res., 2011, 3, 1635-1640.
[8]
Weitzman, I.; Summerbell, R.C. The dermatophytes. Clin. Microbiol. Rev., 1995, 8(2), 240-259.
[http://dx.doi.org/10.1128/CMR.8.2.240] [PMID: 7621400]
[9]
Noorbakhsh, F. Antifungal effects of silver nanoparticle alone and with combination of antifungal drug on dermatophyte pathogen Trichophyton Rubrum. Int. Conf. Biosci. Biochem. Bioinformatics, 2011, pp. 364-367.
[10]
Subashini, J.; Kannabiran, K. Antimicrobial activity of Streptomyces sp. VITBT7 and its synthesized silver nanoparticles against medically important fungal and bacterial pathogens. Der. Pharm. Lett., 2013, 5, 192-200.
[11]
Suwan, N.; Boonying, W.; Nalumpang, S. Antifungal activity of soil actinomycetes to control chilli anthracnose caused by Colletotrichum gloeosporioide. Agric. Technol. Thail., 2012, 8, 725-737.
[12]
Fong, J.; Wood, F. Nanocrystalline silver dressings in wound management: a review. Int. J. Nanomedicine, 2006, 1(4), 441-449.
[http://dx.doi.org/10.2147/nano.2006.1.4.441] [PMID: 17722278]
[13]
Kim, J.; Kwon, S.; Ostler, E. Antimicrobial effect of silver-impregnated cellulose: Potential for antimicrobial therapy. J. Biol. Eng., 2009, 3, 20.
[http://dx.doi.org/10.1186/1754-1611-3-20] [PMID: 19961601]
[14]
Kim, E.M.; Jeong, H.J. Current status and future direction of nanomedicine: Focus on advanced biological and medical appli-cations. Nucl. Med. Mol. Imaging, 2017, 51(2), 106-117.
[http://dx.doi.org/10.1007/s13139-016-0435-8] [PMID: 28559935]
[15]
Alimuddin; Widada, J; Asmara, W.; Mustofa. Antifungal production of a strain of actinomycetes spp. isolated from the rhizosphere of Cajuput plant: Selection and detection of exhibiting activity against tested fungi. Indones. J. Biotechnol., 2011, 16, 1-10.
[16]
Sharma, H.; Parihar, L. Antifungal activity of extracts obtained from actinomycetes. J. Yeast Fungal Res., 2010, 1, 197-200.
[17]
Bharti, A.; Kumar, V.; Gusain, O.; Bisht, G.S. Antifungal activity of actinomycetes isolated from Garhwal Region. J. Sci. Eng. Technol., 2010, 2, 3-9.
[18]
Poosarla, A.; Ramana, V.; Krishna, R.M. Isolation of potent anti-biotic producing actinomycetes from marine sediments of Andaman and Nicobar Marine Islands. J. Microbiol. Antimicrob., 2013, 5, 6-12.
[http://dx.doi.org/10.5897/JMA11.075]
[19]
Kokare, C.R.; Mahadik, K.R.; Kadam, S.S.; Chopade, B.A. Isolation of bioactive marine actinomycetes from sediments isolated from Goa and Maharashtra coastlines (west coast of India). Indian J. Geo-Mar. Sci., 2004, 33, 248-256.
[20]
Shepherd, M.D.; Kharel, M.K.; Bosserman, M.A.; Rohr, J. Laboratory maintenance of Streptomyces species. Curr. Protoc. Microbiol., 2010, 10E, 1.
[21]
Kumar, K.N.; Ganesan, T.; Elavarasi, A. Studies on antimicrobial activity of marine actinomycetes isolated from Rameswaram. Int. J. Pharm. Biol. Sci. Arch., 2013, 4, 706-710.
[22]
Abdeen, S.; Geo, S. Sukanya; Praseetha, P.K.; Dhanya, R.P. Biosynthesis of silver nanoparticles from actinomycetes for therapeutic applications. Int. J. Nanodimens., 2014, 5, 155-162.
[23]
Febina, B.S.; Saranya, M.; Daniel, R.R. Screening and characterization of actinomycetes with antibacterial activity from shore line soil of Tiruchendur. Med. Sci., 2014, 6, 27-33.
[24]
Khusro, A.; Aarti, C.; Pretamj, J.; Panicker, S.G. In vitro studies on antibacterial activity of aquoes extract of spices and vegetables in against Bacillus licheniformis strain 018 and Bacillus tequilensis strain ARMATI. Int. J. Curr. Microbiol. Appl. Sci., 2013, 2, 79-88.
[25]
Abirami, M.; Kannabiran, K. Streptomyces ghanaensis VITHM1 mediated green synthesis of silver nanoparticles: Mechanism and biological applications. Front. Chem. Sci. Eng., 2016, 10, 542-551.
[http://dx.doi.org/10.1007/s11705-016-1599-6]
[26]
Meerpoel, L.; Van Gestel, J.; Van Gerven, F.; Woestenborghs, F.; Marichal, P.; Sipido, V.; Terence, G.; Nash, R.; Corens, D.; Richards, R.D. Pyrrolo[1,2-a][1,4]benzodiazepine: A novel class of non-azole anti-dermatophyte anti-fungal agents. Bioorg. Med. Chem. Lett., 2005, 15(14), 3453-3458.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.007] [PMID: 15950472]
[27]
El-Gaby, M.S.; Gaber, A.M.; Atalla, A.A.; Abd Al-Wahab, K.A. Novel synthesis and antifungal activity of pyrrole and pyrrolo[2,3-d]pyrimidine derivatives containing sulfonamido moieties. Farmaco, 2002, 57(8), 613-617.
[http://dx.doi.org/10.1016/S0014-827X(01)01178-8] [PMID: 12361227]
[28]
Paulussen, C.; de Wit, K.; Boulet, G.; Cos, P.; Meerpoel, L.; Maes, L. Pyrrolo[1,2-α][1,4]benzodiazepines show potent in vitro antifungal activity and significant in vivo efficacy in a Microsporum canis dermatitis model in guinea pigs. J. Antimicrob. Chemother., 2014, 69(6), 1608-1610.
[http://dx.doi.org/10.1093/jac/dku034] [PMID: 24535279]
[29]
Kim, K-J.; Sung, W.S.; Moon, S.K.; Choi, J.S.; Kim, J.G.; Lee, D.G. Anti-fungal effect of silver nanoparticles on dermatophytes. J. Microbiol. Biotechnol., 2008, 18, 482-1484.
[30]
Nisha, N.S.; Aysha, O.S.; Rahaman, S.N.; Kumar, V.P.; Valli, S.; Nirmala, P.; Reena, A. Spectrochimica Acta - Part A: Mol. Biomol. Spectroscopy, 2014, 24, 194-198.
[31]
Ouf, S.A.; Mohamed, A.H.; El-Adly, A.A. Enhancement of the antidermatophytic activity of silver nanoparticles by Q-switched Nd:YAG laser and monoclonal antibody conjugation. Med. Mycol., 2017, 55(5), 495-506.
[PMID: 28339548]
[32]
Kaur1, R.; Rani1, V.; Abbot, V.; Kapoor, Y.; Konar, D; Kumar, K. Recent synthetic and medicinal perspectives of pyrroles: An overview. J. Pharm. Chem. Chem. Sci., 2017, 1, 17-32.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy