Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Some Ways for the Synthesis of Chalcones - New Ways for the Synthesis of Flavon-3-ols

Author(s): Cecilia Espíndola *

Volume 17, Issue 6, 2020

Page: [647 - 673] Pages: 27

DOI: 10.2174/1570193X16666190919111252

Price: $65

conference banner
Abstract

The flavonoids by their natural properties and their diverse applications are a group of compounds whose study of origin, characteristics and applications has been dedicated to extensive research. For the organic synthesis of chalcones, due to their interest as precursor molecules of different compounds, several pathways have been developed and reported in numerous works. Analyses on the effect of some of these catalysts on chalcone yield (%), with respect to time and reaction temperature are presented here. Given the importance of flavon-3-ols, as compounds of pharmacological interest mainly, new synthesis routes are proposed, in addition to the existing ones. This paper presents the main pathways for the synthesis of chalcones and analyzes their production. New routes for the synthesis of flavon-3-ols that follow the Claisen-Schmidt condensation and the interconversion of melacacidin are proposed.

Keywords: Flavonoids, (-)melacacidin, chalcones, Claisen-Schmidt condensation, flavon-3-ols, organic synthesis.

Graphical Abstract
[1]
Valant-Vetschera, K.M.; Bhutia, T.D.; Wollenweber, E. Exudate flavonoids of Primula spp: Structural and biogenetic chemodiversity. Nat. Prod. Commun., 2009, 4(3), 365-370.
[http://dx.doi.org/10.1177/1934578X0900400310] [PMID: 19413114]
[2]
Xu, F.; Li, L.; Zhang, W.; Cheng, H.; Sun, N.; Cheng, S.; Wang, Y. Isolation, characterization, and function analysis of a flavonol synthase gene from Ginkgo biloba. Mol. Biol. Rep., 2012, 39, 2285-2296.
[3]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal, 2013, 2013 162750
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[4]
Veitch, N.C.; Grayer, R.J. Chalcones, dihydrochalcones, and aurones. in:Flavonoids. Chemistry, Biochemistry and Applications; Andersen, O.M.; Markham, K.R., Eds.; CRC Press: Florida, 2006, pp. 1003-1071.
[5]
Rozmer, Z.; Perjési, P. Naturally occurring chalcones and their biological activities. Phytochem. Rev., 2016, 15, 87-120.
[http://dx.doi.org/10.1007/s11101-014-9387-8]
[6]
Bohm, A. Introduction to Flavonoids; Harwood Academic Pub: London, 1998.
[7]
Go, M.L.; Wu, X.; Liu, X.L. Chalcones: An update on cytotoxic and chemoprotective properties. Curr. Med. Chem., 2005, 12(4), 481-499.
[http://dx.doi.org/10.2174/0929867053363153] [PMID: 15720256]
[8]
Nowakowska, Z. A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem., 2007, 42(2), 125-137.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.019] [PMID: 17112640]
[9]
Gupta, D.; Jain, D.K.; Trivedi, P. Recent advances in chalcones as antiinfective agents. Int. J. Chem Sci., 2010, 8, 649-654.
[10]
Batovska, D.I.; Todorova, I.T. Trends in utilization of the pharmacological potential of chalcones. Curr. Clin. Pharmacol., 2010, 5(1), 1-29.
[http://dx.doi.org/10.2174/157488410790410579] [PMID: 19891604]
[11]
Dimmock, J.R.; Elias, D.W.; Beazely, M.A.; Kandepu, N.M. Bioactivities of chalcones. Curr. Med. Chem., 1999, 6(12), 1125-1149.
[PMID: 10519918]
[12]
Buckwold, V.E.; Wilson, R.J.H.; Nalca, A.; Beer, B.B.; Voss, T.G.; Turpin, J.A.; Buckheit, R.W., III; Wei, J.; Wenzel-Mathers, M.; Walton, E.M.; Smith, R.J.; Pallansch, M.; Ward, P.; Wells, J.; Chuvala, L.; Sloane, S.; Paulman, R.; Russell, J.; Hartman, T.; Ptak, R. Antiviral activity of hop constituents against a series of DNA and RNA viruses. Antiviral Res., 2004, 61(1), 57-62.
[http://dx.doi.org/10.1016/S0166-3542(03)00155-4] [PMID: 14670594]
[13]
Sen, R.; Chatterjee, M. Plant derived therapeutics for the treatment of Leishmaniasis. Phytomedicine, 2011, 18(12), 1056-1069.
[http://dx.doi.org/10.1016/j.phymed.2011.03.004] [PMID: 21596544]
[14]
Narender, T.; Shweta, G.S. A convenient and biogenetic type synthesis of few naturally occurring chromeno dihydrochalcones and their in vitro antileishmanial activity. Bioorg. Med. Chem. Lett., 2004, 14(15), 3913-3916.
[http://dx.doi.org/10.1016/j.bmcl.2004.05.071] [PMID: 15225696]
[15]
Ni, L.; Meng, C.Q.; Sikorski, J.A. Recent advances in therapeutic chalcones. Expert Opin. Ther. Pat., 2004, 14, 1669-1691.
[http://dx.doi.org/10.1517/13543776.14.12.1669]
[16]
Jandial, D.D.; Blair, C.A.; Zhang, S.; Krill, L.S.; Zhang, Y.B.; Zi, X. Molecular targeted approaches to cancer therapy and prevention using chalcones. Curr. Cancer Drug Targets, 2014, 14(2), 181-200.
[http://dx.doi.org/10.2174/1568009614666140122160515] [PMID: 24467530]
[17]
Batovska, D.I.; Parushev, S.P. An update on the anticancer effects of chalcones. Int. J. Curr. Chem., 2010, 1, 217-236.
[18]
Zhang, E.H.; Wang, R.F.; Guo, S.Z.; Liu, B. An update on antitumor activity of naturally occurring chalcones. Evid. Based Complement. Alternat. Med., 2013, 2013 Article ID: 815621.
[http://dx.doi.org/10.1155/2013/815621]
[19]
Orlikova, B.; Tasdemir, D.; Golais, F.; Dicato, M.; Diederich, M. Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes Nutr., 2011, 6(2), 125-147.
[http://dx.doi.org/10.1007/s12263-011-0210-5] [PMID: 21484163]
[20]
Ember, I.; Neméth, A.; Varga, C.S.; Perjési, P.; Arany, I.; Fehér, K.; Németh, K.; Dombi, Z.; Kiss, I. Molecular and epidemiological markers: A new concept in the preventive medicine with special attention to the prevention of cancer. Cent Eur J Occup Environ Med., 2005, 11, 3-15.
[21]
Yamamoto, T.; Yoshimura, M.; Yamaguchi, F.; Kouchi, T.; Tsuji, R.; Saito, M.; Obata, A.; Kikuchi, M. Anti-allergic activity of naringenin chalcone from a tomato skin extract. Biosci. Biotechnol. Biochem., 2004, 68(8), 1706-1711.
[http://dx.doi.org/10.1271/bbb.68.1706] [PMID: 15322354]
[22]
Nowakowska, Z. Structural assignmentof stilbenethiols and chalconethiols and differentiation of their isomeric derivatives by means of 1H- and 13C-NMR spectroscopy. Spectrosc. Lett., 2005, 38, 477-485.
[http://dx.doi.org/10.1081/SL-200062816]
[23]
Moa, M.J.G.; Mandado, M.; Cordeiro, M.N.D.S.; Mosquera, R.A. QTAIM electron density study of natural chalcones. Chem. Phys. Lett., 2007, 446, 1-7.
[http://dx.doi.org/10.1016/j.cplett.2007.08.021]
[24]
Yamin, L.J.; Gad, E.I.; Blanco, S.E.; Ferretti, F.H. Synthesis and structure of 4-X-chalcones. J. Mol. Struct. THEOCHEM, 1998, 428, 167-174.
[http://dx.doi.org/10.1016/S0166-1280(97)00274-1]
[25]
Larsen, M.; Kromann, H.; Kharazmi, A.; Nielsen, S.F. Conformationally restricted anti-plasmodial chalcones. Bioorg. Med. Chem. Lett., 2005, 15(21), 4858-4861.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.012] [PMID: 16153842]
[26]
Xue, Y.; Gong, X. The conformational, electronic and spectral properties of chalcones: A density functional theory study. J. Mol. Struct. THEOCHEM, 2009, 901, 226-231.
[http://dx.doi.org/10.1016/j.theochem.2009.01.034]
[27]
Venkateshwarlu, G.; Subrahmanyam, B. Conformations of α,β-unsaturated ketones: An IR spectroscopic study. Proc. Indiana Acad. Sci., 1990, 102, 45-50.
[28]
Oumi, M.; Maurice, D.; Head-Gordon, M. Abinitio calculations of the absorption spectrum of chalcone. Spectrochim. Acta A Mol. Biomol. Spectrosc., 1999, 55, 525-537.
[http://dx.doi.org/10.1016/S1386-1425(98)00260-1]
[29]
Climent, M.; Corma, A.; Iborra, S.; Velty, A. Activated hydrotalcites as catalysts for the synthesis of chalcones of pharmaceutical interest. J. Catal., 2004, 221, 474-482.
[http://dx.doi.org/10.1016/j.jcat.2003.09.012]
[30]
Shailendra, M.; Hemendra, P.; Gupta, S.; Moorthy, N.S. Synthesis and characterization of some chalcone derivatives. Trends Appl. Sci. Res., 2007, 2, 52-56.
[http://dx.doi.org/10.3923/tasr.2007.52.56]
[31]
Bukhari, S.N.A.; Jasamai, M.; Jantan, I.; Ahmad, W. Review of methods and various catalysts used for chalcone synthesis. Mini Rev. Org. Chem., 2013, 10, 73-83.
[http://dx.doi.org/10.2174/1570193X11310010006]
[32]
Mahapatra, D.K.; Bharti, S.K.; Asati, V. Chalcone scaffolds as anti-infective agents: Structural and molecular target perspectives. Eur. J. Med. Chem., 2015, 101, 496-524.
[33]
Nielsen, S.F.; Boesen, T.; Larsen, M.; Schønning, K.; Kromann, H. Antibacterial chalcones--bioisosteric replacement of the 4′-hydroxy group. Bioorg. Med. Chem., 2004, 12(11), 3047-3054.
[http://dx.doi.org/10.1016/j.bmc.2004.03.071] [PMID: 15142563]
[34]
Zhao, L.M.; Jin, H.S.; Sun, L.P.; Piao, H.R.; Quan, Z.S. Synthesis and evaluation of antiplatelet activity of trihydroxychalcone derivatives. Bioorg. Med. Chem. Lett., 2005, 15(22), 5027-5029.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.039] [PMID: 16169724]
[35]
Ducki, S.; Forrest, R.; Hadfield, J.A.; Kendall, A.; Lawrence, N.J.; McGown, A.T.; Rennison, D. Potent antimitotic and cell growth inhibitory properties of substituted chalcones. Bioorg. Med. Chem. Lett., 1998, 8(9), 1051-1056.
[http://dx.doi.org/10.1016/S0960-894X(98)00162-0] [PMID: 9871706]
[36]
Cabrera, M.; Simoens, M.; Falchi, G.; Lavaggi, M.L.; Piro, O.E.; Castellano, E.E.; Vidal, A.; Azqueta, A.; Monge, A.; de Ceráin, A.L.; Sagrera, G.; Seoane, G.; Cerecetto, H.; González, M. Synthetic chalcones, flavanones, and flavones as antitumoral agents: Biological evaluation and structure-activity relationships. Bioorg. Med. Chem., 2007, 15(10), 3356-3367.
[http://dx.doi.org/10.1016/j.bmc.2007.03.031] [PMID: 17383189]
[37]
Weber, W.M.; Hunsaker, L.A.; Abcouwer, S.F.; Deck, L.M.; Vander Jagt, D.L. Anti-oxidant activities of curcumin and related enones. Bioorg. Med. Chem., 2005, 13(11), 3811-3820.
[http://dx.doi.org/10.1016/j.bmc.2005.03.035] [PMID: 15863007]
[38]
Kubota, Y.; Ikeya, H.; Sugi, Y.; Yamada, T.; Tatsumi, T. Organicinorganic hybrid catalysts based on ordered porous structures for Michael reaction. J. Mol. Catal. Chem., 2006, 249, 181-190.
[http://dx.doi.org/10.1016/j.molcata.2006.01.015]
[39]
Sivakumar, P.M.; Seenivasan, S.P.; Kumar, V.; Doble, M. Synthesis, antimycobacterial activity evaluation, and QSAR studies of chalcone derivatives. Bioorg. Med. Chem. Lett., 2007, 17(6), 1695-1700.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.112] [PMID: 17276682]
[40]
Ram, V.J.; Saxena, A.S.; Srivastava, S.; Chandra, S. Oxygenated chalcones and bischalcones as potential antimalarial agents. Bioorg. Med. Chem. Lett., 2000, 10(19), 2159-2161.
[http://dx.doi.org/10.1016/S0960-894X(00)00409-1] [PMID: 11012019]
[41]
Wu, X.; Wilairat, P.; Go, M.L. Antimalarial activity of ferrocenyl chalcones. Bioorg. Med. Chem. Lett., 2002, 12(17), 2299-2302.
[http://dx.doi.org/10.1016/S0960-894X(02)00430-4] [PMID: 12161120]
[42]
Kamara, B.I.; Manong, D.T.L.; Brandt, E.V. Isolation and synthesis of a dimeric dihydrochalcone from Agapanthus africanus. Phytochemistry, 2005, 66(10), 1126-1132.
[http://dx.doi.org/10.1016/j.phytochem.2005.04.007] [PMID: 15907963]
[43]
Romano, J.J.; Casillas, E. A short synthesis of morachalcone A. Tetrahedron Lett., 2005, 46, 2323-2326.
[http://dx.doi.org/10.1016/j.tetlet.2005.01.174]
[44]
Ono, M.; Hori, M.; Haratake, M.; Tomiyama, T.; Mori, H.; Nakayama, M. Structure-activity relationship of chalcones and related derivatives as ligands for detecting of beta-amyloid plaques in the brain. Bioorg. Med. Chem., 2007, 15(19), 6388-6396.
[http://dx.doi.org/10.1016/j.bmc.2007.06.055] [PMID: 17644339]
[45]
Bhat, B.A.; Dhar, K.L.; Puri, S.C.; Saxena, A.K.; Shanmugavel, M.; Qazi, G.N. Synthesis and biological evaluation of chalcones and their derived pyrazoles as potential cytotoxic agents. Bioorg. Med. Chem. Lett., 2005, 15(12), 3177-3180.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.121] [PMID: 15893928]
[46]
Nie, A.; Wang, J.; Huang, Z. Microwave-assisted solution-phase parallel synthesis of 2,4,6-trisubstituted pyrimidines. J. Comb. Chem., 2006, 8(5), 646-648.
[http://dx.doi.org/10.1021/cc060053y] [PMID: 16961399]
[47]
Jun, N.; Hong, G.; Jun, K. Synthesis and evaluation of 2′,4′,6′-trihydroxychalcones as a new class of tyrosinase inhibitors. Bioorg. Med. Chem., 2007, 15(6), 2396-2402.
[http://dx.doi.org/10.1016/j.bmc.2007.01.017] [PMID: 17267225]
[48]
Evranos, B. Investigations on Synthesis, Chemical Structure Elucidation and Effects on Monoamine Oxidase Enzyme of Some New Flavonoid Compounds, PhD Thesis. Ankara (Turkey): Ankara University Institute of Health Sciences. 2010.
[49]
Rajendra, P.Y.; Lakshmana, R.A.; Rambabu, R.; Kumar, R.P. Synthesis and biological evaluation of some novel chalcone derivatives. Orient. J. Chem., 2007, 23, 927-937.
[50]
Ballini, R.; Bosica, G.; Maggi, R.; Ricciutelli, M.; Righi, P.; Sartori, G.; Sartorio, R. Clay-catalysed solvent less synthesis of transchalcones. Green Chem., 2001, 3, 178-180.
[http://dx.doi.org/10.1039/b101355f]
[51]
Jozefaciuk, G.; Bowanko, G. Effect of acid and alkali treatment on surface areas and adsorption energies of selected minerals. Clays Clay Miner., 2002, 50, 771-783.
[http://dx.doi.org/10.1346/000986002762090308]
[52]
Selvakumar, N.; Kumar, G.S.; Azhagan, A.M.; Rajulu, G.G.; Sharma, S.; Kumar, M.S.; Das, J.; Iqbal, J.; Trehan, S. Synthesis, SAR and antibacterial studies on novel chalcone oxazolidinone hybrids. Eur. J. Med. Chem., 2007, 42(4), 538-543.
[http://dx.doi.org/10.1016/j.ejmech.2006.10.013] [PMID: 17150281]
[53]
Sasikala, R.; Thirumurthy, K.; Mayavel, P.; Thirunarayanan, G. Eco-friendly synthesis and antimicrobial activities of some 1-phenyl-3(5-bromothiophen-2-yl)-5-(substituted phenyl)-2 pyrazolines. Org. Med. Chem. Lett., 2012, 2(1), 20-32.
[http://dx.doi.org/10.1186/2191-2858-2-20] [PMID: 22686856]
[54]
Thirunarayanan, G.; Mayavel, P.; Thirumurthy, K. Fly-ash: H2SO4 catalyzed solvent free efficient synthesis of some aryl chalcones under microwave irradiation. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 91, 18-22.
[http://dx.doi.org/10.1016/j.saa.2012.01.054] [PMID: 22349887]
[55]
Thirunarayanan, G.; Vanangamudi, G. Synthesis of some aryl chalcones using silica-sulphuric acid reagent under solvent free conditions. J. Chem., 2007, 2007 article id 421435.
[http://dx.doi.org/10.1155/2007/421435]
[56]
Sadeghi, B.; Nejad, M.G. Silica sulfuric acid: An eco-friendly and reusable catalyst for synthesis of benzimidazole derivatives. J. Chem., 2013, 2013 article id 581465.
[http://dx.doi.org/10.1155/2013/581465]
[57]
Won, S.J.; Liu, C.T.; Tsao, L.T.; Weng, J.R.; Ko, H.H.; Wang, J.P.; Lin, C.N. Synthetic chalcones as potential anti-inflammatory and cancer chemopreventive agents. Eur. J. Med. Chem., 2005, 40(1), 103-112.
[http://dx.doi.org/10.1016/j.ejmech.2004.09.006] [PMID: 15642415]
[58]
Severi, F.; Benvenuti, S.; Costantino, L.; Vampa, G.; Melegafi, M.M.; Antolini, L. Synthesis and activity of a new series of chalcones as aldose reductase inhibitors. Eur. J. Med. Chem., 1998, 33, 859-866.
[http://dx.doi.org/10.1016/S0223-5234(99)80010-5]
[59]
Srinivasa, R.M.; Kotesh, J.; Narukulla, R.; Duddeck, H. Synthesis and spectroscopic characterization of some chromanochalcones and their dihydro derivatives. ARKIVOC, 2004, xiv, 96-102.
[60]
Valan-Vetschera, K.M.; Wollenweber, E. Flavones and falvonols. in:Flavonoids. Chemistry, Biochemistry and Applications; Andersen, O.M.; Markham, K.R., Eds.; CRC Press: Florida, 2006, pp. 617-856.
[61]
Macquarrie, D.J.; Nazih, R.; Sebti, S. KF/naturalphosphate as an efficient catalyst for synthesis of 2′-hydroxychalcones and flavanones. Green Chem., 2002, 4, 56-59.
[http://dx.doi.org/10.1039/b109015c]
[62]
Evranos, A.B.; Ertan, R. Chemical and structural properties of chalcones I. FABAD. J. Pharm. Sci., 2011, 36, 223-242.
[63]
Ertan, R. Synthesis Studies on Some Flavanon Ether Derivatives with Spasmolytic Effects II Ankara Ecz Fak Derg., 1981, 11, 9-22.
[http://dx.doi.org/10.1501/Eczfak_0000000176]
[64]
Saiyad, I.Z.; Nadkarni, D.R.; Wheeler, T.S. Chalkones. The condensation of aromatic aldehydes with resacetophenone. J. Chem. Soc., 1937, 1737-1739.
[http://dx.doi.org/10.1039/jr9370001737]
[65]
Shenoi, R.B.; Shah, R.C.; Wheeler, T.S. Chalcones: Production of isoxazoles from some chalcone derivatives. J. Chem. Soc., 1940, 247-251.
[http://dx.doi.org/10.1039/jr9400000247]
[66]
Feuerstein, W.; Kostanecki, St.V. Synthese von flavonderivaten. Chem. Ber., 1898, 31, 710-719.
[http://dx.doi.org/10.1002/cber.189803101149]
[67]
Mahal, H.S. Venkataraman, K. Some 4-styrylcoumarins. J. Chem. Soc., 1933, 616-617.
[http://dx.doi.org/10.1039/jr9330000616]
[68]
Petrov, O.; Ivanova, Y.; Gerova, M. SOCl2/EtOH: Catalytic system for synthesis of chalcones. Catal. Commun., 2008, 9, 315-316.
[http://dx.doi.org/10.1016/j.catcom.2007.06.013]
[69]
Sebti, S.D.; Solhy, A.; Smahi, A.; Kossir, A.; Oumimoun, H. Dramatic activity enhancement of natural phosphate catalyst by lithium nitrate. An efficient synthesis of chalcones. Catal. Commun., 2002, 3, 335-339.
[http://dx.doi.org/10.1016/S1566-7367(02)00137-1]
[70]
Perozo-Rondón, E.; Martín-Aranda, R.M.; Casal, B.; Durán-Valle, C.J.; Lau, W.N.; Zhang, X.F.; Yeung, K.L. Sonocatalysis in solvent free conditions: An efficient eco-friendly methodology to prepare chalcones using a new type of amino graftedzeolites. Catal. Today, 2006, 114, 183-187.
[http://dx.doi.org/10.1016/j.cattod.2006.01.003]
[71]
Comisar, C.; Savage, P. Kinetics of crossed aldol condensations in high-temperature water. Green Chem., 2004, 6, 227-231.
[http://dx.doi.org/10.1039/b314622g]
[72]
Zhang, Z.; Wang, Y. Efficient and clean Aldol condensation catalyzed by sodium carbonate in water. Chem. Lett., 2003, 32, 966-967.
[http://dx.doi.org/10.1246/cl.2003.966]
[73]
Tanemura, K.; Suzuki, T.; Nishida, Y.; Horaguchi, T. Aldol condensation in water using polyethylene glycol 400. Chem. Lett., 2005, 34, 576-577.
[http://dx.doi.org/10.1246/cl.2005.576]
[74]
Thirunarayanan, G.; Vanangamudi, G. Synthesis of some 4-bromo1-naphthyl chalcones using silica-sulfuric acid reagent under solvent free conditions. ARKIVOC, 2006, xii, 58-64.
[75]
Insuasty-Obando, B. Chalcones and their use as precursors in the synthesis of nitrogen heterocyclic compounds. Rev. Acad. Colomb. Cienc. Exactas Fis. Nat., 2016, 40, 234-243.
[http://dx.doi.org/10.18257/raccefyn.309]
[76]
Ganguly, A.; Kaur, S.; Mahata, P.; Biswas, D.; Pramanik, B.; Chan, T. Synthesis and properties of 3-acylpyrones, a novel class of flavones and chromones. Tetrahedron Lett., 2005, 46, 4119-4121.
[http://dx.doi.org/10.1016/j.tetlet.2005.04.010]
[77]
Fukui, K.; Matsumoto, T.; Nakamura, S.; Nakayama, M. Synthetic studies of the flavone derivatives. VII. The synthesis of Jaceidin. Bull. Chem. Soc. Jpn., 1968, 41, 1413-1417.
[http://dx.doi.org/10.1246/bcsj.41.1413]
[78]
Eddarir, S.; Cotelle, N.; Bakkour, Y.; Rolando, C. An efficient synthesis of chalcones based on the Suzuki reaction. Tetrahedron Lett., 2003, 44, 5359-5363.
[http://dx.doi.org/10.1016/S0040-4039(03)01140-7]
[79]
Narender, T.; Reddy, K. A simple and highly efficient method for the synthesis of chalcones by using borontrifluoride-etherate. Tetrahedron Lett., 2007, 48, 3177-3180.
[http://dx.doi.org/10.1016/j.tetlet.2007.03.054]
[80]
Huang, W.H.; Chien, P.Y.; Yang, C.H.; Lee, A.R. Novel synthesis of flavonoids of Scutellaria baicalensis Georgi. Chem. Pharm. Bull. (Tokyo), 2003, 51(3), 339-340.
[http://dx.doi.org/10.1248/cpb.51.339] [PMID: 12612426]
[81]
Jang, S.; Jung, J.C.; Oh, S. Synthesis of 1,3-diphenyl-2-propen-1-one derivatives and evaluation of their biological activities. Bioorg. Med. Chem., 2007, 15(12), 4098-4105.
[http://dx.doi.org/10.1016/j.bmc.2007.03.077] [PMID: 17448664]
[82]
Weng, Y.Y.; Li, J.J.; Su, W.K. An approach to synthesis of (Z)-2-chloro-1,3-diarylpropen-1-ones by Vilsmeier reagent (bis-(trichloromethyl)carbonate/DMF). Chin. Chem. Lett., 2011, 22, 1395-1398.
[http://dx.doi.org/10.1016/j.cclet.2011.07.006]
[83]
Kumar, A.; Sharma, S.; Tripathi, V.D.; Srivastava, S. Synthesis of chalcones and flavanones using Julia-Kocienski olefination. Tetrahedron, 2010, 66, 9445-9449.
[http://dx.doi.org/10.1016/j.tet.2010.09.089]
[84]
Selepe, M.A.; Van Heerden, F.R. Application of the Suzuki-Miyaura reaction in the synthesis of flavonoids. Molecules, 2013, 18(4), 4739-4765.
[http://dx.doi.org/10.3390/molecules18044739] [PMID: 23609624]
[85]
Xu, L.; Li, L.; Xia, C.; Zhao, P. Efficient coupling reactions of arylalkynes and aldehydes leading to the synthesis of enones. Helv. Chim. Acta, 2004, 87, 3080-3084.
[http://dx.doi.org/10.1002/hlca.200490276]
[86]
Chen, D.; Li, Y. New method for synthesizing alpha, betaunsaturated carbonyl compound via one-pot condensation. CN102786371 2011.
[87]
Rueping, M.; Bootwicha, T.; Baars, H.; Sugiono, E. Continuousflow hydration-condensation reaction: Synthesis of α,β-unsaturated ketones from alkynes and aldehydes by using a heterogeneous solid acid catalyst. Beilstein J. Org. Chem., 2011, 7, 1680-1687.
[http://dx.doi.org/10.3762/bjoc.7.198] [PMID: 22238547]
[88]
Schramm, O.G. Multi-Component Heterocycle Syntheses Based Upon So-Nogashira Coupling Isomerization., PhD Thesis. Ruprecht-Karls, University, Heidelberg,. 2006.
[89]
Kerr, D.J.; Hamel, E.; Jung, M.K.; Flynn, B.L. The concise synthesis of chalcone, indanone and indenone analogues of combretastatin A4. Bioorg. Med. Chem., 2007, 15(9), 3290-3298.
[http://dx.doi.org/10.1016/j.bmc.2007.02.006] [PMID: 17360188]
[90]
Inoue, T.; Misono, T. Cloud point phenomena for POE-type nonionic surfactants in imidazolium-based ionic liquids: Effect of anion species of ionic liquids on the cloud point. J. Colloid Interface Sci., 2009, 337(1), 247-253.
[http://dx.doi.org/10.1016/j.jcis.2009.05.002] [PMID: 19486995]
[91]
Bluhm, M.E.; Bradley, M.G.; Butterick, R., III; Kusari, U.; Sneddon, L.G. Amineborane-based chemical hydrogen storage: Enhanced ammonia borane dehydrogenation in ionic liquids. J. Am. Chem. Soc., 2006, 128(24), 7748-7749.
[http://dx.doi.org/10.1021/ja062085v] [PMID: 16771483]
[92]
Ganjal, M.R.; Khoshsafar, H.; Shirzadmehr, A.; Javanbakht, M.; Faridbod, F. Phenylpropanolamine analysis in formulation and urine by potentiometric membrane sensor. Theoretical investigation. Int. J. Electrochem. Sci., 2009, 4, 435-443.
[93]
Gordon, C.M. New developments in catalysis using ionic. Appl. Cat., 2001, A222, 101.
[http://dx.doi.org/10.1016/S0926-860X(01)00834-1]
[94]
Ramenskaya, L.M.; Grishina, E.P.; Pimenova, A.M.; Gruzdev, M.S. Influence of water on the physicochemical characteristics of 1-butyl-3-methylimidazolium bromide ionic liquid. Russ. J. Phys. Chem., 2008, A82, 1098-1103.
[95]
Bates, E.D.; Mayton, R.D.; Ntai, I.; Davis, J.H., Jr. CO2 capture by a task-specific ionic liquid. J. Am. Chem. Soc., 2002, 124(6), 926-927.
[http://dx.doi.org/10.1021/ja017593d] [PMID: 11829599]
[96]
Dong, F.; Jian, C.; Zhenghao, F.; Kai, G.; Zuliang, L. Synthesis of chalcones via Claisen-Schmidt condensation reaction catalyzed by acyclic acidic ionic liquids. Catal. Commun., 2008, 9, 1924-1927.
[http://dx.doi.org/10.1016/j.catcom.2008.03.023]
[97]
Fang, D.; Gong, K.; Shi, Q.; Liu, Z. A green procedure for the protection of carbonyls catalyzed by novel task-specific roomtemperature ionic liquid. Catal. Commun., 2007, 8, 1463-1466.
[http://dx.doi.org/10.1016/j.catcom.2006.12.019]
[98]
Xing, H.; Wang, T.; Zhou, Z.; Dai, Y. Novel Brønsted-acidic ionic liquids for esterifications. Ind. Eng. Chem. Res., 2005, 44, 4147-4150.
[http://dx.doi.org/10.1021/ie0488703]
[99]
Shen, J.; Wang, H.; Liu, H.; Sun, Y.; Liu, Z. Bronsted acidic ionic liquids as dual catalyst and solvent for environmentally friendly synthesis of chalcone. J. Mol. Catal. Chem., 2008, 280, 2428.
[http://dx.doi.org/10.1016/j.molcata.2007.10.021]
[100]
Cole, A.C.; Jensen, J.L.; Ntai, I.; Tran, K.L.T.; Weaver, K.J.; Forbes, D.C.; Davis, J.H. Jr Novel Brønsted acidic ionic liquids and their use as dual solvent-catalysts. J. Am. Chem. Soc., 2002, 124(21), 5962-5963.
[http://dx.doi.org/10.1021/ja026290w] [PMID: 12022828]
[101]
Gui, J.; Cong, X.; Liu, D.; Zhang, X. Hu; Z.; Sun, Z. Novel Brønsted acidic ionic liquid as efficient and reusable catalyst system for esterification. Catal. Commun., 2004, 5, 473-477.
[http://dx.doi.org/10.1016/j.catcom.2004.06.004]
[102]
Gu, Y.; Shi, F.; Deng, Y. SO3H-functionalized ionic liquid as efficient, green and reusable acidic catalyst system for oligomerization of olefins. Catal. Commun., 2003, 4, 597-601.
[http://dx.doi.org/10.1016/j.catcom.2003.09.004]
[103]
Gu, Y.; Shi, F.; Deng, Y. Esterification of aliphatic acids with olefin promoted by Brønsted acidic ionic liquids. J. Mol. Catal. Chem., 2004, 212, 71-75.
[http://dx.doi.org/10.1016/j.molcata.2003.10.039]
[104]
Kunde, L.B.; Gade, S.M.; Kalyani, V.S.; Gupte, S.P. Catalytic synthesis of chalcone and flavanone using Zn-Al hydrotalcite. Catal. Commun., 2009, 10, 1881-1888.
[http://dx.doi.org/10.1016/j.catcom.2009.06.018]
[105]
Sebti, S.A.; Solhy, R.; Tahir, S.; Boulajaj, J.A.; Mayoral, J.M.; Fraile, A.; Kossir, H. Oumimoun. Tetrahedron Lett., 2001, 42, 7953-7955.
[http://dx.doi.org/10.1016/S0040-4039(01)01698-7]
[106]
Cui, X.; Zhang, S.; Shi, F.; Zhang, Q.; Ma, X.; Lu, L.; Deng, Y. The influence of the acidity of ionic liquids on catalysis. ChemSusChem, 2010, 3(9), 1043-1047.
[http://dx.doi.org/10.1002/cssc.201000075] [PMID: 20715284]
[107]
Sarda, S.R.; Jadhav, W.N.; Pawar, R.P. I2-Al2O3: A suitable heterogeneous catalyst for the synthesis of flavones under microwave irradiation. Int. J. Chemtech Res., 2009, 1(3), Corpus ID:212493108.,
[108]
Evranos, B.A.; Ertan, R. Spectral Properties of Chalcones II. FABAD J. Pharm. Sci., 2012, 37, 205-216.
[109]
Harborne, J.B.; Mabry, T.J.; Mabry, H. The Flavanoids; Chapman and Hall: London, 1975.
[http://dx.doi.org/10.1007/978-1-4899-2909-9]
[110]
Issa, F.M.; El-Ansary, A.L.; El-Kerch, M.M.; Issa, R.M. Spectroscopic investigation of some chalcones. Commun. Fac. Sci. Univ. Ank. Series B: Chem. Chem. Eng., 1983, 29, 256-268.
[111]
Kamakshi, R.; Reddy, B.S.R. Synthesis of chalcone based fluorescent polymers: Diels-Alder reaction of chalcones and their polymerization through ROMP. J. Polym. Sci. A Polym. Chem., 2008, 1521-1531.
[http://dx.doi.org/10.1002/pola.22493]
[112]
Van de Sande, C.; Serum, J.W.; Vandewalle, M. Studies in organic Mass spectrometry-XII: Mass spectra of chalcones and flavanones. The isomerisation of 2′-hydroxy-chalcone and flavanone. Org. Mass Spectrom., 1972, 1333-1345.
[http://dx.doi.org/10.1002/oms.1210061208]
[113]
Tai, Y.; Pei, S.; Wan, J.; Cao, X.; Pan, Y. Fragmentation study of protonated chalcones by atmospheric pressure chemical ionization and tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2006, 20(6), 994-1000.
[http://dx.doi.org/10.1002/rcm.2404] [PMID: 16479556]
[114]
George, M.; Sebastian, V.S.; Reddy, P.N.; Srinivas, R.; Giblin, D.; Gross, M.L. Gas-phase nazarov cyclization of protonated 2-methoxy and 2-hydroxychalcone: An example of intramolecular proton-transport catalysis. J. Am. Soc. Mass Spectrom., 2009, 20(5), 805-818.
[http://dx.doi.org/10.1016/j.jasms.2008.12.017] [PMID: 19230703]
[115]
Hwang, D.; Hyun, J.; Jo, G.; Koh, D.; Lim, Y. Synthesis and complete assignment of NMR data of 20 chalcones. Magn. Reson. Chem., 2011, 49(1), 41-45.
[http://dx.doi.org/10.1002/mrc.2707] [PMID: 21113969]
[116]
Yoon, H.; Ahn, S.; Hwang, D.; Jo, G.; Kim, D.W.; Kim, S.H.; Koh, D.; Lim, Y. 1H and 13C NMR spectral assignments of novel chromenylchalcones. Magn. Reson. Chem., 2012, 50(11), 759-764.
[http://dx.doi.org/10.1002/mrc.3873] [PMID: 22961709]
[117]
Yoon, H.; Ahn, S.; Park, M.; Kim, D.W.; Kim, S.H.; Koh, D.; Lim, Y.; Lim, Y. 1H and 13C NMR spectral assignments of chalcones bearing pyrazoline-carbothioamide groups. Magn. Reson. Chem., 2013, 51(8), 500-508.
[http://dx.doi.org/10.1002/mrc.3971] [PMID: 23784987]
[118]
Jung, H.; Ahn, S.; Park, M.; Yoon, H.; Noh, H.J.; Kim, S.Y.; Yoo, J.S.; Koh, D.; Lim, Y. 1H and 13C NMR spectral assignments of 18 novel polymethoxylated naphthochalcones bearing pyrazoline-1-carbothioamide groups. Magn. Reson. Chem., 2015, 53(5), 383-390.
[http://dx.doi.org/10.1002/mrc.4217] [PMID: 25907413]
[119]
Hernandez-Gonzalez, P.E.; Romero-Cerenio, N.; Alvarado-Sánchez, C.; Gómez-Rivera, A.; Lobato-García, C.E.; Romero-Morán, L.J. Synthesis and characterization of a derivative cyclohexanone chalcone-type, as an integral laboratory experience. Av. Cien. Ing., 2015, 6, 63-72.
[120]
Cazarolli, L.H.; Demarchi, K.V.; Zanatta, A.P.; Hisayasu, S.D.O.; Yunes, R.A.; Nunes, R.J.; Pizzolatti, M.G.; Barreto, S.F.R.M. Natural and synthetic chalcones: Tools for the study of targets of action-insulin secretagogue or insuline mimetic? Stud. Nat. Prod. Chem., 2013, 39(6), 58-64.
[121]
Shen, X.; Zhou, Q.; Xong, W.; Pu, W.; Zhang, W.; Zhang, G.; Wang, C. Synthesis of 5-substituted flavonols via Algar-Flynn-Oyamada (AFO) reaction: The mechanistic implication. Tetrahedron, 2017, 73, 4822-4829.
[http://dx.doi.org/10.1016/j.tet.2017.06.064]
[122]
Auwers, K. v. ber. 41, 4233 (1908); 48, 85 (1915); 49, 809 (1916); k. v. auwers, p. pohl, ann, 405, 243 (1914)..
[123]
Sousa, J.L.C.; Proença, C.; Freitas, M.; Fernandes, E.; Silva, A.M.S. New polyhydroxylated flavon-3-ols and 3-hydroxy-2-styrylchromones: Synthesis and ROS/RNS scavenging activities. Eur. J. Med. Chem., 2016, 119, 250-259.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.057] [PMID: 27213247]
[124]
Howell, H.; Malan, E.; Steenkamp, J.A.; Brandt, E.V.; Brand, J. Identification of two novel promelacacinidin dimers from Acacia nigrescens. J. Nat. Prod., 2002, 65(5), 769-771.
[http://dx.doi.org/10.1021/np010460l] [PMID: 12027765]
[125]
Ferreira, D.; Desmond, S.; Marais, J.P.J. Flavans and proantocyanidins. in:Flavonoids. Chemistry, Biochemistry and Applications; Andersen, O.M.; Markham, K.R., Eds.; CRC Press: Florida, 2006, pp. 553-606.
[126]
Tindale, M.D. An extended phytochemical survey of Australian species of Acacia: Chemotaxonomic and phylogenetic aspects. Phytochemistry, 1974, 13, 829-839.
[http://dx.doi.org/10.1016/S0031-9422(00)91147-6]
[127]
Tindale, M.D. A phytochemical survey of the Australian species of Acacia. Chemotaxonomic and phylogenetic aspects. Phytochemistry, 1974, 13, 829-839.
[http://dx.doi.org/10.1016/S0031-9422(00)91147-6]
[128]
Malan, E.; Roux, G. Flavonoids and tanins of Acacia species. Phytochemistry, 1975, 14, 1835-1841.
[http://dx.doi.org/10.1016/0031-9422(75)85306-4]
[129]
Seigler, D.S. Phytochemistry of Acacia- sensu lato. Biochem. Syst. Ecol., 2003, 31, 845-873.
[http://dx.doi.org/10.1016/S0305-1978(03)00082-6]
[130]
Coetzee, J.; Malan, E.; Ferreira, D. The formation and stability of flavans with 2,3-cis-3,4-cis configuration. Tetrahedron, 1999, 55, 9999.
[http://dx.doi.org/10.1016/S0040-4020(99)00558-X]
[131]
Fourie, T.G.; Preez, I.C.; Roux, D.G. 3´,4´,7,8-tetrahydroxyflavonoids from the heartwood of Acacia nigrescens and their conversion products. Phytochemistry, 1972, 11, 1763-1770.
[http://dx.doi.org/10.1016/0031-9422(72)85034-9]
[132]
Catarino, M.D.; Talhi, O.; Rabahi, A.; Silva, A.M.S.; Cardoso, S.M. The anti-inflammatory potential of flavonoids: Mechanistic aspects. Stud. Nat. Prod. Chem., 2016, 48, 65-99.
[133]
Hatnapure, G.D.; Keche, A.P.; Rodge, A.H.; Tale, R.H.; Birajdar, S.S.; Pawar, M.J.; Kamble, V.M. Synthesis and biological evaluation of novel 2´,4´,5´- trimethoxyflavonol derivatives as antiinflammatory and antimicrobial agents. Med. Chem. Res., 2014, 23, 461-470.
[http://dx.doi.org/10.1007/s00044-013-0651-z]
[134]
Ehsan, S.; Faisal, S.; Akbar, W. A facile microwave-assisted synthesis of 3-hydroxy-2-phenyl-4H-chromone-4-one and its derivatives via a novel approach. J. Chem. Soc. Pak., 2016, 38, 1190-1195.
[135]
Von Acker, F.A.A.; Hageman, J.A.; Haenen, G.R.M.M.; van der Vijgh, W.J.F.; Bast, A.; Menge, W.P.B. Synthesis of novel 3,7-substituted-2-(3‘,4‘-dihydroxyphenyl)flavones with improved antioxidant activity. J. Med. Chem., 2000, 43, 3752-3760.
[http://dx.doi.org/10.1021/jm000951n] [PMID: 11020290]
[136]
Marais, J.P.J.; Ferreira, D.; Slade, D. Stereoselective synthesis of monomeric flavonoids. Phytochemistry, 2005, 66, 2145-2176.
[http://dx.doi.org/10.1016/j.phytochem.2005.03.006] [PMID: 16153413]
[137]
Mabry, T.J.; Markham, K.R.; Thomas, M.B. The Ultraviolet Spectra of Flavones and Flavonols.The Systematic Identification of Flavonoids; Springer: Berlin, 1970.
[http://dx.doi.org/10.1007/978-3-642-88458-0]
[138]
Mabry, T.J.; Markham, K.R.; Thomas, M.B. The Ultraviolet Spectra of Isoflavones, Flavanones and Dihydroflavonols.The Systematic Identification of Flavonoids; Springer: Berlin, 1970.
[http://dx.doi.org/10.1007/978-3-642-88458-0]
[139]
Lee, E.; Moon, B-H.; Park, Y.; Hong, S.; Lee, S.; Lee, Y.; Lim, Y. Effects of Hydroxy and Methoxy Substituents on NMR Data in Flavonols. Bull. Korean Chem. Soc., 2008, 29, 507-510.
[http://dx.doi.org/10.5012/bkcs.2008.29.2.507]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy