Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Multi-objective Design Optimization of Microdisk Resonator

Author(s): M. Sutagundar *, B.G. Sheeparamatti and D.S. Jangamshetti

Volume 10, Issue 4, 2020

Page: [478 - 485] Pages: 8

DOI: 10.2174/2210681209666190912152649

Price: $65

Abstract

Objective: This paper presents a multi-objective design optimization of MEMS disk resonator using two techniques.

Methods: Determining the optimized dimensions of disk resonator for a particular resonance frequency so as to achieve higher quality factor and lower motional resistance is attempted. One technique used is constraint-based multi-objective optimization using the interior-point algorithm. The second technique is based on multi-objective genetic algorithm.

Results: The algorithms are implemented using MATLAB. The two techniques of optimization are compared.

Conclusion: The developed optimization methods can provide faster design optimization compared to full-wave simulators resulting in significant reduction of design time.

Keywords: MEMS disk resonator, design optimization, multi-objective optimization, interior point method, constrained optimization, genetic algorithm, resonance frequency, quality factor, motional resistance.

Graphical Abstract
[1]
Jagadeesh, R.V.; Junge, H.; Beller, M. “Nanorust”-catalyzed benign oxidation of amines for selective synthesis of nitriles. ChemSusChem, 2015, 8(1), 92-96.
[2]
Liu, J.; Zheng, H-X.; Yao, C-Z.; Sun, B-F.; Kang, Y-B. Pharmaceutical-oriented selective synthesis of mononitriles and dinitriles directly from Methyl(Hetero)Arenes: Access to chiral nitriles and Citalopram. J. Am. Chem. Soc., 2016, 138(10), 3294-3297.
[3]
Quinn, D.J.; Haun, G.J.; Moura-Letts, G. Direct synthesis of nitriles from aldehydes with Hydroxylamine-O-Sulfonic acid in acidic water. Tetrahedron Lett., 2016, 57(34), 3844-3847.
[4]
Kelly, C.B.; Lambert, K.M.; Mercadante, M.A.; Ovian, J.M.; Bailey, W.F.; Leadbeater, N.E. Access to nitriles from aldehydes mediated by an Oxoammonium salt. Angew. Chem. Int. Ed., 2015, 54(14), 4241-4245.
[5]
Yu, L.; Li, H.; Zhang, X.; Ye, J.; Liu, J.; Xu, Q.; Lautens, M. Organoselenium-catalyzed mild dehydration of aldoximes: An unexpected practical method for organonitrile synthesis. Org. Lett., 2014, 16(5), 1346-1349.
[6]
Lambert, K.M.; Bobbitt, J.M.; Eldirany, S.A.; Wiberg, K.B.; Bailey, W.F. Facile oxidation of primary amines to nitriles using an oxoammonium salt. Org. Lett., 2014, 16(24), 6484-6487.
[7]
Pradal, A.; Evano, G. A Vinylic Rosenmund–von Braun reaction: Practical synthesis of Acrylonitriles. Chem. Commun., 2014, 50(80), 11907-11910.
[8]
Zhao, M.; Zhang, W.; Shen, Z. Cu-catalyzed Cyanation of Indoles with Acetonitrile as a Cyano source. J. Org. Chem., 2015, 80(17), 8868-8873.
[9]
Anbarasan, P.; Schareina, T.; Beller, M. Recent developments and perspectives in Palladium-catalyzed Cyanation of Aryl Halides: Synthesis of Benzonitriles. Chem. Soc. Rev., 2011, 40(10), 5049.
[10]
Sueoka, S.; Mitsudome, T.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Supported monomeric vanadium catalyst for dehydration of amides to form nitriles. Chem. Commun., 2010, 46(43), 8243.
[11]
Vaccari, D.; Davoli, P.; Spaggiari, A.; Prati, F. A mild synthesis of nitriles by von braun degradation of amides using Triphenyl Phosphite-Halogen-based reagents. Synlett, 2008, 2008(9), 1317-1320.
[12]
Iida, S.; Togo, H. Direct oxidative conversion of alcohols and amines to nitriles with molecular Iodine and DIH in Aq NH3. Tetrahedron, 2007, 63(34), 8274-8281.
[13]
Bajpai, A.R.; Deshpande, A.B.; Samant, S.D. An efficient one-pot synthesis of aromatic nitriles from aldehydes using fe modified K10. Synth. Commun., 2000, 30(15), 2785-2791.
[14]
Polshettiwar, V.; Basset, J-M.; Astruc, D. Editorial: Nanoscience makes catalysis greener. ChemSusChem, 2012, 5(1), 6-8.
[15]
Gandeepan, P.; Cheng, C-H. Transition-metal-catalyzed π-bond-assisted C-H bond functionalization: An emerging trend in organic synthesis. Chem. Asian J., 2015, 10(4), 824-838.
[16]
Polshettiwar, V.; Varma, R.S. Green chemistry by nano-catalysis. Green Chem., 2010, 12(5), 743.
[17]
Correa, A.; García Mancheño, O.; Bolm, C. Iron-catalysed Carbon–Heteroatom and Heteroatom–Heteroatom bond forming processes. Chem. Soc. Rev., 2008, 37(6), 1108.
[18]
Enthaler, S.; Junge, K.; Beller, M. Sustainable metal catalysis with Iron: From rust to a rising star? Angew. Chem. Int. Ed., 2008, 47(18), 3317-3321.
[19]
Gupta, A.K.; Gupta, M. Synthesis and surface engineering of Iron Oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26(18), 3995-4021.
[20]
Jenck, J.F.; Agterberg, F.; Droescher, M.J. Products and processes for a sustainable chemical industry: A review of achievements and prospects. Green Chem., 2004, 6(11), 544.
[21]
Chavan, P.; Pednekar, S.; Chaughule, R.; Patkar, D. Microwave assisted synthesis of magnetic nanoparticles with higher relaxivities as contrast agents for MRI. Int. J. Recent Sci. Res., 2017, 8(4), 16687-16691.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy