Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Next-Generation Sequencing: An Emerging Tool for Drug Designing

Author(s): Pooja Tripathi, Jyotsna Singh, Jonathan A. Lal and Vijay Tripathi*

Volume 25, Issue 31, 2019

Page: [3350 - 3357] Pages: 8

DOI: 10.2174/1381612825666190911155508

Price: $65

Abstract

Background: With the outbreak of high throughput next-generation sequencing (NGS), the biological research of drug discovery has been directed towards the oncology and infectious disease therapeutic areas, with extensive use in biopharmaceutical development and vaccine production.

Method: In this review, an effort was made to address the basic background of NGS technologies, potential applications of NGS in drug designing. Our purpose is also to provide a brief introduction of various Nextgeneration sequencing techniques.

Discussions: The high-throughput methods execute Large-scale Unbiased Sequencing (LUS) which comprises of Massively Parallel Sequencing (MPS) or NGS technologies. The Next geneinvolved necessarily executes Largescale Unbiased Sequencing (LUS) which comprises of MPS or NGS technologies. These are related terms that describe a DNA sequencing technology which has revolutionized genomic research. Using NGS, an entire human genome can be sequenced within a single day.

Conclusion: Analysis of NGS data unravels important clues in the quest for the treatment of various lifethreatening diseases and other related scientific problems related to human welfare.

Keywords: Next generation sequencing, drug discovery, high throughput sequencing, infectious disease, human welfare, Large-scale Unbiased Sequencing (LUS).

[1]
Pareek CS, Smoczynski R, Tretyn A. Sequencing technologies and genome sequencing. J Appl Genet 2011; 52(4): 413-35.
[http://dx.doi.org/10.1007/s13353-011-0057-x] [PMID: 21698376]
[2]
Adams J. DNA sequencing technologies. New Educator 2008; 1: 193.
[3]
Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74(12): 5463-7.
[http://dx.doi.org/10.1073/pnas.74.12.5463] [PMID: 271968]
[4]
Mardis ER. Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 2008; 9: 387-402.
[http://dx.doi.org/10.1146/annurev.genom.9.081307.164359] [PMID: 18576944]
[5]
Mardis ER. A decade’s perspective on DNA sequencing technology. Nature 2011; 470(7333): 198-203.
[http://dx.doi.org/10.1038/nature09796] [PMID: 21307932]
[6]
Rizzo JM, Buck MJ. Key principles and clinical applications of “next-generation” DNA sequencing. Cancer Prev Res (Phila) 2012; 5(7): 887-900.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0432] [PMID: 22617168]
[7]
Voelkerding KV, Dames SA, Durtschi JD. Next-generation sequencing: from basic research to diagnostics. Clin Chem 2009; 55(4): 641-58.
[http://dx.doi.org/10.1373/clinchem.2008.112789] [PMID: 19246620]
[8]
Meldrum C, Doyle MA, Tothill RW. Next-generation sequencing for cancer diagnostics: a practical perspective. Clin Biochem Rev 2011; 32(4): 177-95.
[PMID: 22147957]
[9]
Thudi M, Li Y, Jackson SA, May GD, Varshney RK. Current state-of-art of sequencing technologies for plant genomics research. Brief Funct Genomics 2012; 11(1): 3-11.
[http://dx.doi.org/10.1093/bfgp/elr045] [PMID: 22345601]
[10]
Liu L, Li Y, Li S, et al. Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012; 2012 251364
[http://dx.doi.org/10.1155/2012/251364] [PMID: 22829749]
[11]
Maxam AM, Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci USA 1977; 74(2): 560-4.
[http://dx.doi.org/10.1073/pnas.74.2.560] [PMID: 265521]
[12]
Besser J, Carleton HA, Gerner-Smidt P, Lindsey RL, Trees E. Next-generation sequencing technologies and their application to the study and control of bacterial infections. Clin Microbiol Infect 2018; 24(4): 335-41.
[http://dx.doi.org/10.1016/j.cmi.2017.10.013] [PMID: 29074157]
[13]
Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74(12): 5463-7.
[http://dx.doi.org/10.1073/pnas.74.12.5463] [PMID: 271968]
[14]
Hutchison CA III. DNA sequencing: bench to bedside and beyond. Nucleic Acids Res 2007; 35(18): 6227-37.
[http://dx.doi.org/10.1093/nar/gkm688] [PMID: 17855400]
[15]
Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science 2001; 291(5507): 1304-51.
[http://dx.doi.org/10.1126/science.1058040] [PMID: 11181995]
[16]
Schuster SC. Next-generation sequencing transforms today’s biology. Nat Methods 2008; 5(1): 16-8.
[http://dx.doi.org/10.1038/nmeth1156] [PMID: 18165802]
[17]
Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet 2010; 11(1): 31-46.
[http://dx.doi.org/10.1038/nrg2626] [PMID: 19997069]
[18]
Munroe DJ, Harris TJ. Third-generation sequencing fireworks at Marco Island. Nat Biotechnol 2010; 28(5): 426-8.
[http://dx.doi.org/10.1038/nbt0510-426] [PMID: 20458306]
[19]
Schadt EE, Turner S, Kasarskis A. A window into third-generation sequencing. Hum Mol Genet 2010; 19(R2): R227-40.
[http://dx.doi.org/10.1093/hmg/ddq416] [PMID: 20858600]
[20]
Mardis ER. The impact of next-generation sequencing technology on genetics. Trends Genet 2008; 24(3): 133-41.
[http://dx.doi.org/10.1016/j.tig.2007.12.007] [PMID: 18262675]
[21]
Quail MA, Smith M, Coupland P, et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 2012; 13: 341.
[http://dx.doi.org/10.1186/1471-2164-13-341] [PMID: 22827831]
[22]
Strausberg RL, Levy S, Rogers YH. Emerging DNA sequencing technologies for human genomic medicine. Drug Discov Today 2008; 13(13-14): 569-77.
[http://dx.doi.org/10.1016/j.drudis.2008.03.025] [PMID: 18598911]
[23]
Reuter JA, Spacek DV, Snyder MP. High-throughput sequencing technologies. Mol Cell 2015; 58(4): 586-97.
[http://dx.doi.org/10.1016/j.molcel.2015.05.004] [PMID: 26000844]
[24]
Schones DE, Zhao K. Genome-wide approaches to studying chromatin modifications. Nat Rev Genet 2008; 9(3): 179-91.
[http://dx.doi.org/10.1038/nrg2270] [PMID: 18250624]
[25]
Margulies M, Egholm M, Altman WE, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005; 437(7057): 376-80.
[http://dx.doi.org/10.1038/nature03959] [PMID: 16056220]
[26]
Knierim E, Lucke B, Schwarz JM, Schuelke M, Seelow D. Systematic comparison of three methods for fragmentation of long-range PCR products for next generation sequencing. PLoS One 2011; 6(11) e28240
[http://dx.doi.org/10.1371/journal.pone.0028240] [PMID: 22140562]
[27]
Bennett S. Solexa Ltd. Pharmacogenomics 2004; 5(4): 433-8.
[http://dx.doi.org/10.1517/14622416.5.4.433] [PMID: 15165179]
[28]
McCoy RC, Taylor RW, Blauwkamp TA, et al. Illumina TruSeq synthetic long-reads empower de novo assembly and resolve complex, highly-repetitive transposable elements. PLoS One 2014; 9(9)e106689
[http://dx.doi.org/10.1371/journal.pone.0106689] [PMID: 25188499]
[29]
Tripathi R, Sharma P, Chakraborty P, Varadwaj P. Next-generation sequencing revolution through big data analytics. Front Life Sci 2016; 9: 119-49.
[http://dx.doi.org/10.1080/21553769.2016.1178180]
[30]
Metzker ML. Emerging technologies in DNA sequencing. Genome Res 2005; 15(12): 1767-76.
[http://dx.doi.org/10.1101/gr.3770505] [PMID: 16339375]
[31]
Caruccio N. Preparation of next-generation sequencing libraries using Nextera™ technology: simultaneous DNA fragmentation and adaptor tagging by in vitro transposition. Methods Mol Biol 2011; 733: 241-55.
[http://dx.doi.org/10.1007/978-1-61779-089-8_17] [PMID: 21431775]
[32]
Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol 2008; 26(10): 1135-45.
[http://dx.doi.org/10.1038/nbt1486] [PMID: 18846087]
[33]
van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. Ten years of next-generation sequencing technology. Trends Genet 2014; 30(9): 418-26.
[http://dx.doi.org/10.1016/j.tig.2014.07.001] [PMID: 25108476]
[34]
Rothberg JM, Hinz W, Rearick TM, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature 2011; 475(7356): 348-52.
[http://dx.doi.org/10.1038/nature10242] [PMID: 21776081]
[35]
Rusk N. Cheap third-generation sequencing. Nat Methods 2009; 6: 244.
[http://dx.doi.org/10.1038/nmeth0409-244a]
[36]
Diekstra A, Bosgoed E, Rikken A, et al. Translating sanger-based routine DNA diagnostics into generic massive parallel ion semiconductor sequencing. Clin Chem 2015; 61(1): 154-62.
[http://dx.doi.org/10.1373/clinchem.2014.225250] [PMID: 25274553]
[37]
van Dijk EL, Jaszczyszyn Y, Naquin D, Thermes C. The third revolution in sequencing technology. Trends Genet 2018; 34(9): 666-81.
[http://dx.doi.org/10.1016/j.tig.2018.05.008] [PMID: 29941292]
[38]
Bleidorn C. Third generation sequencing: technology and its potential impact on evolutionary biodiversity research. J Syst Biodiv 2016; 14: 1-8.
[http://dx.doi.org/10.1080/14772000.2015.1099575]
[39]
Rhoads A, Au KF. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 2015; 13(5): 278-89.
[http://dx.doi.org/10.1016/j.gpb.2015.08.002] [PMID: 26542840]
[40]
Travers KJ, Chin CS, Rank DR, Eid JS, Turner SW. A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res 2010; 38(15) e159
[http://dx.doi.org/10.1093/nar/gkq543] [PMID: 20571086]
[41]
Eid J, Fehr A, Gray J, et al. Real-time DNA sequencing from single polymerase molecules. Science 2009; 323(5910): 133-8.
[http://dx.doi.org/10.1126/science.1162986] [PMID: 19023044]
[42]
Sakai H, Naito K, Ogiso-Tanaka E, et al. The power of single molecule real-time sequencing technology in the de novo assembly of a eukaryotic genome. Sci Rep 2015; 5: 16780.
[http://dx.doi.org/10.1038/srep16780] [PMID: 26616024]
[43]
Chin CS, Peluso P, Sedlazeck FJ, et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat Methods 2016; 13(12): 1050-4.
[http://dx.doi.org/10.1038/nmeth.4035] [PMID: 27749838]
[44]
Bayley H. Nanopore sequencing: from imagination to reality. Clin Chem 2015; 61(1): 25-31.
[http://dx.doi.org/10.1373/clinchem.2014.223016] [PMID: 25477535]
[45]
Wang Y, Yang Q, Wang Z. The evolution of nanopore sequencing. Front Genet 2015; 5: 449.
[http://dx.doi.org/10.3389/fgene.2014.00449] [PMID: 25610451]
[46]
Mikheyev AS, Tin MM. A first look at the Oxford Nanopore MinION sequencer. Mol Ecol Resour 2014; 14(6): 1097-102.
[http://dx.doi.org/10.1111/1755-0998.12324] [PMID: 25187008]
[47]
Laehnemann D, Borkhardt A, McHardy AC. Denoising DNA deep sequencing data-high-throughput sequencing errors and their correction. Brief Bioinform 2016; 17(1): 154-79.
[http://dx.doi.org/10.1093/bib/bbv029] [PMID: 26026159]
[48]
Lu H, Giordano F, Ning Z. Oxford nanopore MinION sequencing and genome assembly. Genomics Proteomics Bioinformatics 2016; 14(5): 265-79.
[http://dx.doi.org/10.1016/j.gpb.2016.05.004] [PMID: 27646134]
[49]
Jain M, Olsen HE, Paten B, Akeson M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol 2016; 17(1): 239.
[http://dx.doi.org/10.1186/s13059-016-1103-0] [PMID: 27887629]
[50]
Bayley H, Cremer PS. Stochastic sensors inspired by biology. Nature 2001; 413(6852): 226-30.
[http://dx.doi.org/10.1038/35093038] [PMID: 11557992]
[51]
Stoddart D, Heron AJ, Mikhailova E, Maglia G, Bayley H. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc Natl Acad Sci USA 2009; 106(19): 7702-7.
[http://dx.doi.org/10.1073/pnas.0901054106] [PMID: 19380741]
[52]
Ansorge WJ. Next generation DNA sequencing (II): techniques, applications. Next Generat Sequenc & Applic 2016; S1 005
[53]
Bell DC, Thomas WK, Murtagh KM, et al. DNA base identification by electron microscopy. Microsc Microanal 2012; 18(5): 1049-53.
[http://dx.doi.org/10.1017/S1431927612012615] [PMID: 23046798]
[54]
Mankos M, Shadman K, N'diaye AT, et al. Progress toward an aberration-corrected low energy electron microscope for DNA sequencing and surface analysis. J Vac Sci Technol B Nanotechnol Microelectron 2012; 30 6F402
[55]
Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol 2008; 26(10): 1135-45.
[http://dx.doi.org/10.1038/nbt1486] [PMID: 18846087]
[56]
Thompson JF, Steinmann KE. Single-molecule sequencing with a HeliScope genetic analysis system. In: Curr Protoc Mol Biol. 2010.Chapter 7: Unit 7.10.
[http://dx.doi.org/10.1002/0471142727.mb0710s92]
[57]
Fuller CW, Middendorf LR, Benner SA, et al. The challenges of sequencing by synthesis. Nat Biotechnol 2009; 27(11): 1013-23.
[http://dx.doi.org/10.1038/nbt.1585] [PMID: 19898456]
[58]
Buermans HP, den Dunnen JT. Next generation sequencing technology: advances and applications. Biochim Biophys Acta 2014; 1842(10): 1932-41.
[http://dx.doi.org/10.1016/j.bbadis.2014.06.015] [PMID: 24995601]
[59]
Edwards RA, Rohwer F. Viral metagenomics. Nat Rev Microbiol 2005; 3(6): 504-10.
[http://dx.doi.org/10.1038/nrmicro1163] [PMID: 15886693]
[60]
Pallen MJ, Wren BW. Bacterial pathogenomics. Nature 2007; 449(7164): 835-42.
[http://dx.doi.org/10.1038/nature06248] [PMID: 17943120]
[61]
Jovel J, Patterson J, Wang W, et al. Characterization of the gut microbiome using 16S or shotgun metagenomics. Front Microbiol 2016; 7: 459.
[http://dx.doi.org/10.3389/fmicb.2016.00459] [PMID: 27148170]
[62]
Fraser-Liggett CM. Insights on biology and evolution from microbial genome sequencing. Genome Res 2005; 15(12): 1603-10.
[http://dx.doi.org/10.1101/gr.3724205] [PMID: 16339357]
[63]
March R. Pharmacogenomics: the genomics of drug response. Yeast 2000; 17(1): 16-21.
[http://dx.doi.org/10.1002/(SICI)1097-0061(200004)17:1<16:AID-YEA6>3.0.CO;2-E] [PMID: 10797598]
[64]
Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet 2009; 10(3): 155-9.
[http://dx.doi.org/10.1038/nrg2521] [PMID: 19188922]
[65]
Morozova O, Marra MA. Applications of next-generation sequencing technologies in functional genomics. Genomics 2008; 92(5): 255-64.
[http://dx.doi.org/10.1016/j.ygeno.2008.07.001] [PMID: 18703132]
[66]
Morgan S, Grootendorst P, Lexchin J, Cunningham C, Greyson D. The cost of drug development: a systematic review. Health Policy 2011; 100(1): 4-17.
[http://dx.doi.org/10.1016/j.healthpol.2010.12.002] [PMID: 21256615]
[67]
Kumar G, Chaudhary KK, Misra K, Tripathi A. Next-generation sequencing for drug designing and development: an omics approach for cancer treatment. Int J Pharmacol 2017; 13: 709-23.
[http://dx.doi.org/10.3923/ijp.2017.709.723]
[68]
Ng SB, Buckingham KJ, Lee C, et al. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 2010; 42(1): 30-5.
[http://dx.doi.org/10.1038/ng.499] [PMID: 19915526]
[69]
Ley TJ, Mardis ER, Ding L, et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 2008; 456(7218): 66-72.
[http://dx.doi.org/10.1038/nature07485] [PMID: 18987736]
[70]
Ley TJ, Minx PJ, Walter MJ, et al. A pilot study of high-throughput, sequence-based mutational profiling of primary human acute myeloid leukemia cell genomes. Proc Natl Acad Sci USA 2003; 100(24): 14275-80.
[http://dx.doi.org/10.1073/pnas.2335924100] [PMID: 14614138]
[71]
Lighten J, van Oosterhout C, Bentzen P. Critical review of NGS analyses for de novo genotyping multigene families. Mol Ecol 2014; 23(16): 3957-72.
[http://dx.doi.org/10.1111/mec.12843] [PMID: 24954669]
[72]
Gottlieb B, Alvarado C, Wang C, et al. Making sense of intratumor genetic heterogeneity: altered frequency of androgen receptor CAG repeat length variants in breast cancer tissues. Hum Mutat 2013; 34(4): 610-8.
[http://dx.doi.org/10.1002/humu.22287] [PMID: 23377847]
[73]
Grumbt B, Eck SH, Hinrichsen T, Hirv K. Diagnostic applications of next generation sequencing in immunogenetics and molecular oncology. Transfus Med Hemother 2013; 40(3): 196-206.
[http://dx.doi.org/10.1159/000351267] [PMID: 23922545]
[74]
Gullapalli RR, Lyons-Weiler M, Petrosko P, Dhir R, Becich MJ, LaFramboise WA. Clinical integration of next-generation sequencing technology. Clin Lab Med 2012; 32(4): 585-99.
[http://dx.doi.org/10.1016/j.cll.2012.07.005] [PMID: 23078661]
[75]
Bamshad MJ, Ng SB, Bigham AW, et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 2011; 12(11): 745-55.
[http://dx.doi.org/10.1038/nrg3031] [PMID: 21946919]
[76]
Bao R, Huang L, Andrade J, et al. Review of current methods, applications, and data management for the bioinformatics analysis of whole exome sequencing. Cancer Inform 2014; 13(Suppl. 2): 67-82.
[http://dx.doi.org/10.4137/CIN.S13779] [PMID: 25288881]
[77]
Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 2009; 6(5): 377-82.
[http://dx.doi.org/10.1038/nmeth.1315] [PMID: 19349980]
[78]
Hoelder S, Clarke PA, Workman P. Discovery of small molecule cancer drugs: successes, challenges and opportunities. Mol Oncol 2012; 6(2): 155-76.
[http://dx.doi.org/10.1016/j.molonc.2012.02.004] [PMID: 22440008]
[79]
Colombo PE, Milanezi F, Weigelt B, Reis-Filho JS. Microarrays in the 2010s: the contribution of microarray-based gene expression profiling to breast cancer classification, prognostication and prediction. Breast Cancer Res 2011; 13(3): 212.
[http://dx.doi.org/10.1186/bcr2890] [PMID: 21787441]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy