Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Review Article

Metabolite Detection and Profiling Using Analytical Methods

Author(s): Lovekesh Mehta*, Parul Grover, Tanveer Naved and Debaraj Mukherjee

Volume 17, Issue 1, 2021

Published on: 06 September, 2019

Page: [2 - 9] Pages: 8

DOI: 10.2174/1573412915666190906142536

Price: $65

Abstract

To develop effective and safe drugs and to take them to the market in short period of time is the mission of pharmaceutical research companies. A selection of few of the lead compounds are done for the evaluation of safety and their ADMET (absorption, distribution, metabolism, excretion and toxicology) properties are tested in in-vitro (test systems), in-vivo (living organisms) and in-silico (computational methods). From initial stages to final stages of modern drug discovery processes, the vital tool for detecting and characterizing metabolites is MS (Mass spectrometry) hyphenated with other techniques. The methods used for generation of metabolites are in vitro techniques and cell lines (containing expressing drug metabolizing enzymes and heterologous genes). The use of HPLC-MS/UPLC-MS and high resolution MS, enables the in depth metabolite detection and profiling studies and it may also be likely to identify and characterize the site and types of biotransformation.

Keywords: Forced degradation study, biotransformation, regioselective, preformulation, ICH, pharmacokinetics.

Graphical Abstract
[1]
Ma, S.; Chowdhury, S.K. Application of liquid chromatography/mass spectrometry for metabolite identification. Drug Metabolism in Drug Design and Development: Basic Concepts and Practice, Donglu Zhang, M. Z; Humphreys, W.G., Ed.; John Wiley & Sons: NJ, USA, 2007, pp. 319-368.
[http://dx.doi.org/10.1002/9780470191699.ch11]
[2]
Anari, M.R.; Sanchez, R.I.; Bakhtiar, R.; Franklin, R.B.; Baillie, T.A. Integration of knowledge-based metabolic predictions with liquid chromatography data-dependent tandem mass spectrometry for drug metabolism studies: application to studies on the biotransformation of indinavir. Anal. Chem., 2004, 76(3), 823-832.
[http://dx.doi.org/10.1021/ac034980s] [PMID: 14750881]
[3]
Levsen, K.; Schiebel, H-M.; Behnke, B.; Dötzer, R.; Dreher, W.; Elend, M.; Thiele, H. Structure elucidation of phase II metabolites by tandem mass spectrometry: an overview. J. Chromatogr. A, 2005, 1067(1-2), 55-72.
[http://dx.doi.org/10.1016/j.chroma.2004.08.165 PMID: 15844510]
[4]
Rushmore, T.H.; Reider, P.J.; Slaughter, D.; Assang, C.; Shou, M. Bioreactor systems in drug metabolism: synthesis of cytochrome P450-generated metabolites. Metab. Eng., 2000, 2(2), 115-125.
[http://dx.doi.org/10.1006/mben.2000.0147 PMID: 10935727]
[5]
Iwata, H.; Fujita, K.; Kushida, H.; Suzuki, A.; Konno, Y.; Nakamura, K.; Fujino, A.; Kamataki, T. High catalytic activity of human cytochrome P450 co-expressed with human NADPH-cytochrome P450 reductase in Escherichia coli. Biochem. Pharmacol., 1998, 55(8), 1315-1325.
[http://dx.doi.org/10.1016/S0006-2952(97)00643-6 PMID: 9719488]
[6]
Alsante, K.M.; Martin, L.; Baertschi, S.W. A stress testing benchmarking study. Pharm. tech, , 2003, 27(2), 60-73.
[7]
Brown, R.; Caphart, M.; Faustino, P.; Frankewich, R.; Gibbs, J.; Leutzinger, E.; Lunn, G.; Ng, L.; Rajagopalan, R.; Chiu, Y. Analytical procedures and method validation: Highlights of the FDA’s draft guidance. LC GC N. Am., 2001, 19(1), 74-79.
[8]
Tolonen, A.; Turpeinen, M.; Pelkonen, O. Liquid chromatography-mass spectrometry in in vitro drug metabolite screening. Drug Discov. Today, 2009, 14(3-4), 120-133.
[http://dx.doi.org/10.1016/j.drudis.2008.11.002 ] [PMID: 19059358]
[9]
Singh, S.; Bakshi, M. guidance on conduct of stress tests to determine inherent stability of drugs. Pharm. Tech, 2000, 1-14.
[10]
Williams, I.S.; Chib, S.; Nuthakki, V.K.; Gatchie, L.; Joshi, P.; Narkhede, N.A.; Vishwakarma, R.A.; Bharate, S.B.; Saran, S.; Chaudhuri, B. Biotransformation of chrysin to baicalein: Selective C6-hydroxylation of 5, 7-dihydroxyflavone using whole yeast cells stably expressing human CYP1A1 enzyme. J. Agric. Food Chem., 2017, 65(34), 7440-7446.
[http://dx.doi.org/10.1021/acs.jafc.7b02690 ] [PMID: 28782952]
[11]
Sordon, S.; Madej, A.; Popłoński, J.; Bartmańska, A.; Tronina, T.; Brzezowska, E.; Juszczyk, P.; Huszcza, E. Regioselective ortho-hydroxylations of flavonoids by yeast. J. Agric. Food Chem., 2016, 64(27), 5525-5530.
[http://dx.doi.org/10.1021/acs.jafc.6b02210] [PMID: 2732495]
[12]
Kinne, M.; Poraj-Kobielska, M.; Aranda, E.; Ullrich, R.; Hammel, K.E.; Scheibner, K.; Hofrichter, M. Regioselective preparation of 5-hydroxypropranolol and 4′-hydroxydiclofenac with a fungal peroxygenase. Bioorg. Med. Chem. Lett., 2009, 19(11), 3085-3087.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.015] [PMID: 19394224]
[13]
Park, J.E.; Kim, K.B.; Bae, S.K.; Moon, B.S.; Liu, K.H.; Shin, J.G. Contribution of cytochrome P450 3A4 and 3A5 to the metabolism of atorvastatin. Xenobiotica, 2008, 38(9), 1240-1251.
[http://dx.doi.org/10.1080/00498250802334391] [PMID: 18720283]
[14]
Guaratini, T.; Silva, D.B.; Bizaro, A.C.; Sartori, L.R.; Humpf, H-U.; Lopes, N.P.; Costa-Lotufo, L.V.; Lopes, J.L.C. In vitro metabolism studies of erythraline, the major spiroalkaloid from Erythrina verna. BMC Complement. Altern. Med., 2014, 14(1), 61.
[http://dx.doi.org/10.1186/1472-6882-14-61] [PMID: 24548728]
[15]
Obach, R.S.; Cox, L.M.; Tremaine, L.M. Sertraline is metabolized by multiple cytochrome P450 enzymes, monoamine oxidases, and glucuronyl transferases in human: an in vitro study. Drug Metab. Dispos., 2005, 33(2), 262-270.
[http://dx.doi.org/10.1124/dmd.104.002428] [PMID: 15547048]
[16]
Szultka-Mlynska, M.; Buszewski, B. Study of in-vitro metabolism of selected antibiotic drugs in human liver microsomes by liquid chromatography coupled with tandem mass spectrometry. Anal. Bioanal. Chem., 2016, 408(29), 8273-8287.
[http://dx.doi.org/10.1007/s00216-016-9929-6] [PMID: 27704178]
[17]
Reynolds, D. W.; Facchine, K. L.; Mullaney, J. F.; Alsante, K. M.; Hatajik, T.D.; Mo, M.G. Available guidelines and best practices for conducting forced degradation studies. Pharm. tech, 2002, 26, 48-55.
[18]
ICH-Q1A-(R2). Stability testing of new drug substances and products. 2003, 1-2.
[19]
Bakshi, M.; Singh, S. Development of validated stability-indicating assay methods-critical review. J. Pharm. Biomed. Anal., 2002, 28(6), 1011-1040.
[http://dx.doi.org/10.1016/S0731-7085(02)00047-X] [PMID: 12049968]
[20]
Sequeira, F.; Vozone, C. Photo-stability studies of drug substances and products. Pharm. tech,, 2000, 24(8), 30-30.
[21]
Oliveira, M.A.; Yoshida, M.I.; Belinelo, V.J.; Valotto, R.S. Degradation kinetics of atorvastatin under stress conditions and chemical analysis by HPLC. Molecules, 2013, 18(2), 1447-1456.
[http://dx.doi.org/10.3390/molecules18021447] [PMID: 23348997]
[22]
Vukkum, P.; Moses Babu, J.; Muralikrishna, R. Stress degradation behavior of atorvastatin calcium and development of a suitable stability-indicating lc method for the determination of atorvastatin, its related impurities, and its degradation products. Sci. Pharm., 2013, 81(1), 93-114.
[http://dx.doi.org/10.3797/scipharm.1208-06] [PMID: 23641331]
[23]
Chovan, L.E.; Black-Schaefer, C.; Dandliker, P.J.; Lau, Y.Y. Automatic mass spectrometry method development for drug discovery: application in metabolic stability assays. Rapid Commun. Mass Spectrom., 2004, 18(24), 3105-3112.
[http://dx.doi.org/10.1002/rcm.1735] [PMID: 15565734]
[24]
Jenkins, K.M.; Angeles, R.; Quintos, M.T.; Xu, R.; Kassel, D.B.; Rourick, R.A. Automated high throughput ADME assays for metabolic stability and cytochrome P450 inhibition profiling of combinatorial libraries. J. Pharm. Biomed. Anal., 2004, 34(5), 989-1004.
[http://dx.doi.org/10.1016/j.jpba.2003.08.001] [PMID: 15019033]
[25]
Youdim, K.A.; Saunders, K.C. A review of LC-MS techniques and high-throughput approaches used to investigate drug metabolism by cytochrome P450s. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2010, 878(17-18), 1326-1336.
[http://dx.doi.org/10.1016/j.jchromb.2010.02.013] [PMID: 20207203]
[26]
Castro-Perez, J.; Plumb, R.; Granger, J.H.; Beattie, I.; Joncour, K.; Wright, A. Increasing throughput and information content for in vitro drug metabolism experiments using ultra-performance liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer. Rapid Commun. Mass Spectrom., 2005, 19(6), 843-848.
[http://dx.doi.org/10.1002/rcm.1859] [PMID: 15723446]
[27]
Plumb, R.S.; Mather, J.; Little, D.; Rainville, P.D.; Twohig, M.; Harland, G.; Kenny, D.J.; Nicholson, J.K.; Wilson, I.D.; Kass, I.J. A novel LC-MS approach for the detection of metabolites in DMPK studies. Bioanalysis, 2010, 2(10), 1767-1778.
[http://dx.doi.org/10.4155/bio.10.115] [PMID: 21083328]
[28]
Tiwari, R.N.; Shah, N.; Bhalani, V.; Mahajan, A.LC MSn and LC-MS/MS studies for the characterization of degradation products of amlodipine. J. Pharm. Anal., 2015, 5(1), 33-42.
[http://dx.doi.org/10.1016/j.jpha.2014.07.005] [PMID: 29403913]
[29]
Shillingford, S.; Bishop, L.; Smith, C.J.; Payne, R.; Wilson, I.D.; Edge, A.M. Application of high temperature lc to the separation of azd5438 (4-(1-isopropyl-2-methyl-1h-imidazol-5-yl)-n-[4-(methylsulfonyl) phenyl] pyrimidin-2-amine) and its metabolites: comparison of LC, UPLC and HPTLC. Chromatographia, 2009, 70(1-2), 37-44.
[http://dx.doi.org/10.1365/s10337-009-1135-7]
[30]
Thompson, R.A.; Isin, E.M.; Li, Y.; Weidolf, L.; Page, K.; Wilson, I.; Swallow, S.; Middleton, B.; Stahl, S.; Foster, A.J.; Dolgos, H.; Weaver, R.; Kenna, J.G. In vitro approach to assess the potential for risk of idiosyncratic adverse reactions caused by candidate drugs. Chem. Res. Toxicol., 2012, 25(8), 1616-1632.
[http://dx.doi.org/10.1021/tx300091x] [PMID: 22646477]
[31]
Ma, S.; Zhu, M. Recent advances in applications of liquid chromatography-tandem mass spectrometry to the analysis of reactive drug metabolites. Chem. Biol. Interact., 2009, 179(1), 25-37.
[http://dx.doi.org/10.1016/j.cbi.2008.09.014] [PMID: 18848531]
[32]
Yan, Z.; Caldwell, G.W.; Maher, N. Unbiased high-throughput screening of reactive metabolites on the linear ion trap mass spectrometer using polarity switch and mass tag triggered data-dependent acquisition. Anal. Chem., 2008, 80(16), 6410-6422.
[http://dx.doi.org/10.1021/ac800887h] [PMID: 18642850]
[33]
Plenis, A.; Bączek, T. Modern chromatographic and electrophoretic measurements of antidepressants and their metabolites in biofluids. Biomed. Chromatogr., 2011, 25(1-2), 164-198.
[http://dx.doi.org/10.1002/bmc.1558] [PMID: 21121008]
[34]
Kamel, A.; Prakash, C. High performance liquid chromatography/atmospheric pressure ionization/tandem mass spectrometry (HPLC/API/MS/MS) in drug metabolism and toxicology. Curr. Drug Metab., 2006, 7(8), 837-852.
[http://dx.doi.org/10.2174/138920006779010593] [PMID: 17168686]
[35]
Teunissen, S.F.; Rosing, H.; Schinkel, A.H.; Schellens, J.H.; Beijnen, J.H. Bioanalytical methods for determination of tamoxifen and its phase I metabolites: a review. Anal. Chim. Acta, 2010, 683(1), 21-37.
[http://dx.doi.org/10.1016/j.aca.2010.10.009] [PMID: 21094378]
[36]
Nobilis, M.; Vybíralová, Z.; Szotáková, B.; Sládková, K.; Kuneš, M.; Svoboda, Z. High-performance liquid chromatographic determination of tiapride and its phase I metabolite in blood plasma using tandem UV photodiode-array and fluorescence detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(32), 3845-3852.
[http://dx.doi.org/10.1016/j.jchromb.2011.10.032] [PMID: 22100559]
[37]
Taylor, P.J. Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry. Clin. Biochem., 2005, 38(4), 328-334.
[http://dx.doi.org/10.1016/j.clinbiochem.2004.11.007] [PMID: 15766734]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy