Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Melatonin As a Modulator of Degenerative and Regenerative Signaling Pathways in Injured Retinal Ganglion Cells

Author(s): Kobra B. Juybari, Azam Hosseinzadeh, Habib Ghaznavi, Mahboobeh Kamali, Ahad Sedaghat, Saeed Mehrzadi and Masood Naseripour*

Volume 25, Issue 28, 2019

Page: [3057 - 3073] Pages: 17

DOI: 10.2174/1381612825666190829151314

Price: $65

conference banner
Abstract

Optic neuropathies refer to the dysfunction or degeneration of optic nerve fibers caused by any reasons including ischemia, inflammation, trauma, tumor, mitochondrial dysfunction, toxins, nutritional deficiency, inheritance, etc. Post-mitotic CNS neurons, including retinal ganglion cells (RGCs) intrinsically have a limited capacity for axon growth after either trauma or disease, leading to irreversible vision loss. In recent years, an increasing number of laboratory evidence has evaluated optic nerve injuries, focusing on molecular signaling pathways involved in RGC death. Trophic factor deprivation (TFD), inflammation, oxidative stress, mitochondrial dysfunction, glutamate-induced excitotoxicity, ischemia, hypoxia, etc. have been recognized as important molecular mechanisms leading to RGC apoptosis. Understanding these obstacles provides a better view to find out new strategies against retinal cell damage. Melatonin, as a wide-spectrum antioxidant and powerful freeradical scavenger, has the ability to protect RGCs or other cells against a variety of deleterious conditions such as oxidative/nitrosative stress, hypoxia/ischemia, inflammatory processes, and apoptosis. In this review, we primarily highlight the molecular regenerative and degenerative mechanisms involved in RGC survival/death and then summarize the possible protective effects of melatonin in the process of RGC death in some ocular diseases including optic neuropathies. Based on the information provided in this review, melatonin may act as a promising agent to reduce RGC death in various retinal pathologic conditions.

Keywords: Retinal ganglion cell survival/death, inflammation, oxidative stress, apoptosis, melatonin, excitotoxic damage.

[1]
You Y, Gupta VK, Li JC, Klistorner A, Graham SL. Optic neuropathies: Characteristic features and mechanisms of retinal ganglion cell loss. Rev Neurosci 2013; 24(3): 301-21.
[http://dx.doi.org/10.1515/revneuro-2013-0003] [PMID: 23612594]
[2]
Beck RW, Balcer L. Abnormalities of the optic nerve and retina Neurology in clinical practice. 4th ed. Philadelphia: Butterworth Heinemann 2004; pp. 185-90.
[3]
Zode GS, Clark AF, Wordinger RJ. Activation of the BMP canonical signaling pathway in human optic nerve head tissue and isolated optic nerve head astrocytes and lamina cribrosa cells. Invest Ophthalmol Vis Sci 2007; 48(11): 5058-67.
[http://dx.doi.org/10.1167/iovs.07-0127] [PMID: 17962458]
[4]
Kapupara K, Wen Y-T, Tsai R-K, Huang S-P. Soluble P-selectin promotes retinal ganglion cell survival through activation of Nrf2 signaling after ischemia injury. Cell Death Dis 2017; 8(11)e3172
[http://dx.doi.org/10.1038/cddis.2017.566] [PMID: 29144506]
[5]
Aranda ML, González Fleitas MF, De Laurentiis A, et al. Neuroprotective effect of melatonin in experimental optic neuritis in rats. J Pineal Res 2016; 60(3): 360-72.
[http://dx.doi.org/10.1111/jpi.12318] [PMID: 26882296]
[6]
Dworak DP, Nichols J. A review of optic neuropathies. Dis Mon 2014; 60(6): 276-81.
[http://dx.doi.org/10.1016/j.disamonth.2014.03.008] [PMID: 24906673]
[7]
Chien J-Y, Sheu J-H, Wen Z-H, Tsai R-K, Huang S-P. Neuroprotective effect of 4-(Phenylsulfanyl)butan-2-one on optic nerve crush model in rats. Exp Eye Res 2016; 143: 148-57.
[http://dx.doi.org/10.1016/j.exer.2015.10.004] [PMID: 26472213]
[8]
Niwa M, Aoki H, Hirata A, Tomita H, Green PG, Hara A. Retinal cell degeneration in animal models. Int J Mol Sci 2016; 17(1): 110.
[http://dx.doi.org/10.3390/ijms17010110] [PMID: 26784179]
[9]
Athanasiou D, Aguilà M, Bevilacqua D, Novoselov SS, Parfitt DA, Cheetham ME. The cell stress machinery and retinal degeneration. FEBS Lett 2013; 587(13): 2008-17.
[http://dx.doi.org/10.1016/j.febslet.2013.05.020] [PMID: 23684651]
[10]
Saxton WM, Hollenbeck PJ. The axonal transport of mitochondria. J Cell Sci 2012; 125(Pt 9): 2095-104.
[http://dx.doi.org/10.1242/jcs.053850] [PMID: 22619228]
[11]
Carelli V, Ross-Cisneros FN, Sadun AA. Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retin Eye Res 2004; 23(1): 53-89.
[http://dx.doi.org/10.1016/j.preteyeres.2003.10.003] [PMID: 14766317]
[12]
Levin LA. Axonal loss and neuroprotection in optic neuropathies. Can J Ophthalmol 2007; 42(3): 403-8.
[http://dx.doi.org/10.3129/i07-046] [PMID: 17508035]
[13]
O’Neill EC, Danesh-Meyer HV, Connell PP, et al. The optic nerve head in acquired optic neuropathies. Nat Rev Neurol 2010; 6(4): 221-36.
[http://dx.doi.org/10.1038/nrneurol.2010.5] [PMID: 20212512]
[14]
Dahlmann-Noor AH, Vijay S, Limb GA, Khaw PT. Strategies for optic nerve rescue and regeneration in glaucoma and other optic neuropathies. Drug Discov Today 2010; 15(7-8): 287-99.
[http://dx.doi.org/10.1016/j.drudis.2010.02.007] [PMID: 20197108]
[15]
Almasieh M, Wilson AM, Morquette B, Cueva Vargas JL, Di Polo A. The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res 2012; 31(2): 152-81.
[http://dx.doi.org/10.1016/j.preteyeres.2011.11.002] [PMID: 22155051]
[16]
Qu J, Wang D, Grosskreutz CL. Mechanisms of retinal ganglion cell injury and defense in glaucoma. Exp Eye Res 2010; 91(1): 48-53.
[http://dx.doi.org/10.1016/j.exer.2010.04.002] [PMID: 20394744]
[17]
Shum JWH, Liu K, So KF. The progress in optic nerve regeneration, where are we? Neural Regen Res 2016; 11(1): 32-6.
[http://dx.doi.org/10.4103/1673-5374.175038] [PMID: 26981073]
[18]
Wei J, Ma LS, Liu DJ, Guo J, Jiang WK, Yu HJ. Melatonin regulates traumatic optic neuropathy via targeting autophagy. Eur Rev Med Pharmacol Sci 2017; 21(21): 4946-51.
[PMID: 29164563]
[19]
Pavlova M. Circadian rhythm sleep-wake disorders Continuum (Minneap Minn) 2017; 23(4, Sleep Neurology): 1051-63
[PMID: 28777176]
[20]
Hosseinzadeh A, Javad-Moosavi SA, Reiter RJ, Yarahmadi R, Ghaznavi H, Mehrzadi S. Oxidative/nitrosative stress, autophagy and apoptosis as therapeutic targets of melatonin in idiopathic pulmonary fibrosis. Expert Opin Ther Targets 2018; 22(12): 1049-61.
[http://dx.doi.org/10.1080/14728222.2018.1541318] [PMID: 30445883]
[21]
Hosseinzadeh A, Kamrava SK, Moore BCJ, et al. Molecular aspects of melatonin treatment in tinnitus: A review. Curr Drug Targets 2019; 20(11): 1112-28.
[http://dx.doi.org/10.2174/1389450120666190319162147] [PMID: 30892162]
[22]
Hosseinzadeh A, Kamrava SK, Joghataei MT, et al. Apoptosis signaling pathways in osteoarthritis and possible protective role of melatonin. J Pineal Res 2016; 61(4): 411-25.
[http://dx.doi.org/10.1111/jpi.12362] [PMID: 27555371]
[23]
Liu J, Somera-Molina KC, Hudson RL, Dubocovich ML. Melatonin potentiates running wheel-induced neurogenesis in the dentate gyrus of adult C3H/HeN mice hippocampus. J Pineal Res 2013; 54(2): 222-31.
[http://dx.doi.org/10.1111/jpi.12023] [PMID: 23190173]
[24]
Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci 2015; 11(6): 1164-78.
[http://dx.doi.org/10.5114/aoms.2015.56342] [PMID: 26788077]
[25]
Daryani A, Montazeri M, Pagheh AS, et al. The potential use of melatonin to treat protozoan parasitic infections: A review. Biomed Pharmacother 2018; 97: 948-57.
[http://dx.doi.org/10.1016/j.biopha.2017.11.007] [PMID: 29136773]
[26]
Sarlak G, Jenwitheesuk A, Chetsawang B, Govitrapong P. Effects of melatonin on nervous system aging: neurogenesis and neurodegeneration. J Pharmacol Sci 2013; 123(1): 9-24.
[http://dx.doi.org/10.1254/jphs.13R01SR] [PMID: 23985544]
[27]
Itoh MT, Takahashi N, Abe M, Shimizu K. Expression and cellular localization of melatonin-synthesizing enzymes in the rat lens. J Pineal Res 2007; 42(1): 92-6.
[http://dx.doi.org/10.1111/j.1600-079X.2006.00389.x] [PMID: 17198543]
[28]
Mehrzadi S, Kamrava SK, Dormanesh B, et al. Melatonin synergistically enhances protective effect of atorvastatin against gentamicin-induced nephrotoxicity in rat kidney. Can J Physiol Pharmacol 2016; 94(3): 265-71.
[http://dx.doi.org/10.1139/cjpp-2015-0277] [PMID: 26762621]
[29]
Slominski A, Wortsman J, Tobin DJ. The cutaneous serotoninergic/melatoninergic system: securing a place under the sun. FASEB J 2005; 19(2): 176-94.
[http://dx.doi.org/10.1096/fj.04-2079rev] [PMID: 15677341]
[30]
Tan DX, Manchester LC, Reiter RJ, et al. Identification of highly elevated levels of melatonin in bone marrow: its origin and significance. Biochim Biophys Acta 1999; 1472(1-2): 206-14.
[http://dx.doi.org/10.1016/S0304-4165(99)00125-7] [PMID: 10572942]
[31]
Dehdashtian E, Mehrzadi S, Yousefi B, et al. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress. Life Sci 2018; 193: 20-33.
[PMID: 29203148]
[32]
Reiter RJ, Tan D-X, Manchester LC, Pilar Terron M, Flores LJ, Koppisepi S. Medical implications of melatonin: Receptor-mediated and receptor-independent actions. Adv Med Sci 2007; 52: 11-28.
[PMID: 18217386]
[33]
Hosseinzadeh A, Javad-Moosavi SA, Reiter RJ, Hemati K, Ghaznavi H, Mehrzadi S. Idiopathic pulmonary fibrosis (IPF) signaling pathways and protective roles of melatonin. Life Sci 2018; 201: 17-29.
[http://dx.doi.org/10.1016/j.lfs.2018.03.032] [PMID: 29567077]
[34]
Miller E, Morel A, Saso L, Saluk J. Melatonin redox activity. Its potential clinical applications in neurodegenerative disorders. Curr Top Med Chem 2015; 15(2): 163-9.
[http://dx.doi.org/10.2174/1568026615666141209160556] [PMID: 25985818]
[35]
Peschke E, Bähr I, Mühlbauer E. Experimental and clinical aspects of melatonin and clock genes in diabetes. J Pineal Res 2015; 59(1): 1-23.
[http://dx.doi.org/10.1111/jpi.12240] [PMID: 25904189]
[36]
Sun CK, Lee FY, Kao YH, et al. Systemic combined melatonin-mitochondria treatment improves acute respiratory distress syndrome in the rat. J Pineal Res 2015; 58(2): 137-50.
[http://dx.doi.org/10.1111/jpi.12199] [PMID: 25491480]
[37]
Xin Z, Jiang S, Jiang P, et al. Melatonin as a treatment for gastrointestinal cancer: A review. J Pineal Res 2015; 58(4): 375-87.
[http://dx.doi.org/10.1111/jpi.12227] [PMID: 25752643]
[38]
Alarma-Estrany P, Pintor J. Melatonin receptors in the eye: Location, second messengers and role in ocular physiology. Pharmacol Ther 2007; 113(3): 507-22.
[http://dx.doi.org/10.1016/j.pharmthera.2006.11.003] [PMID: 17229466]
[39]
Meyer P, Pache M, Loeffler KU, et al. Melatonin MT-1-receptor immunoreactivity in the human eye. Br J Ophthalmol 2002; 86(9): 1053-7.
[http://dx.doi.org/10.1136/bjo.86.9.1053] [PMID: 12185137]
[40]
Scher J, Wankiewicz E, Brown GM, Fujieda H. MT(1) melatonin receptor in the human retina: expression and localization. Invest Ophthalmol Vis Sci 2002; 43(3): 889-97.
[PMID: 11867612]
[41]
Wiechmann AF, Smith AR. Melatonin receptor RNA is expressed in photoreceptors and displays a diurnal rhythm in Xenopus retina. Brain Res Mol Brain Res 2001; 91(1-2): 104-11.
[http://dx.doi.org/10.1016/S0169-328X(01)00134-6] [PMID: 11457497]
[42]
Natesan AK, Cassone VM. Melatonin receptor mRNA localization and rhythmicity in the retina of the domestic chick, Gallus domesticus. Vis Neurosci 2002; 19(3): 265-74.
[http://dx.doi.org/10.1017/S0952523802192042] [PMID: 12392176]
[43]
Reppert SM, Godson C, Mahle CD, Weaver DR, Slaugenhaupt SA, Gusella JF. Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc Natl Acad Sci USA 1995; 92(19): 8734-8.
[http://dx.doi.org/10.1073/pnas.92.19.8734] [PMID: 7568007]
[44]
Katargina LA, Chesnokova NB, Beznos OV, Osipova NA. Melatonin as a new promising agent for the treatment and prevention of retinopathy of prematurity. Vestn Oftalmol 2016; 132(6): 59-63.
[http://dx.doi.org/10.17116/oftalma2016132659-63] [PMID: 28121300]
[45]
Sande PH, Álvarez J, Calcagno J, Rosenstein RE. Preliminary findings on the effect of melatonin on the clinical outcome of cataract surgery in dogs. Vet Ophthalmol 2016; 19(3): 184-94.
[http://dx.doi.org/10.1111/vop.12282] [PMID: 25959258]
[46]
Celebi S, Dilsiz N, Yilmaz T, Kükner AS. Effects of melatonin, vitamin E and octreotide on lipid peroxidation during ischemia-reperfusion in the guinea pig retina. Eur J Ophthalmol 2002; 12: 77-83.
[http://dx.doi.org/10.1177/112067210201200201]
[47]
Aranda ML, Fleitas MFG, Dieguez H, et al. Melatonin as a therapeutic resource for inflammatory visual diseases. Curr Neuropharmacol 2017; 15(7): 951-62.
[http://dx.doi.org/10.2174/1570159X15666170113122120] [PMID: 28088912]
[48]
Sande PH, Dorfman D, Fernandez DC, et al. Treatment with melatonin after onset of experimental uveitis attenuates ocular inflammation. Br J Pharmacol 2014; 171(24): 5696-707.
[http://dx.doi.org/10.1111/bph.12873] [PMID: 25131343]
[49]
Gramajo AL, Marquez GE, Torres VE, Juárez CP, Rosenstein RE, Luna JD. Therapeutic benefit of melatonin in refractory central serous chorioretinopathy. Eye (Lond) 2015; 29(8): 1036-45.
[http://dx.doi.org/10.1038/eye.2015.104] [PMID: 26160525]
[50]
Salido EM, Bordone M, De Laurentiis A, et al. Therapeutic efficacy of melatonin in reducing retinal damage in an experimental model of early type 2 diabetes in rats. J Pineal Res 2013; 54(2): 179-89.
[http://dx.doi.org/10.1111/jpi.12008] [PMID: 22946773]
[51]
Belforte NA, Moreno MC, de Zavalía N, et al. Melatonin: a novel neuroprotectant for the treatment of glaucoma. J Pineal Res 2010; 48(4): 353-64.
[http://dx.doi.org/10.1111/j.1600-079X.2010.00762.x] [PMID: 20374442]
[52]
Sadun AA. Optic neuropathies and retinal ganglion cell death. Neuroophthalmology 2000; 24: 387-94.
[http://dx.doi.org/10.1076/noph.24.3.387.7144]
[53]
Porciatti V, Ventura LM. Retinal ganglion cell functional plasticity and optic neuropathy: A comprehensive model. J Neuroophthalmol 2012; 32: 354.
[http://dx.doi.org/10.1097/WNO.0b013e3182745600]
[54]
So K-F, Yip HK. Regenerative capacity of retinal ganglion cells in mammals. Vision Res 1998; 38(10): 1525-35.
[http://dx.doi.org/10.1016/S0042-6989(97)00226-5] [PMID: 9667017]
[55]
Singer PA, Mehler S, Fernandez HL. Blockade of retrograde axonal transport delays the onset of metabolic and morphologic changes induced by axotomy. J Neurosci 1982; 2(9): 1299-306.
[http://dx.doi.org/10.1523/JNEUROSCI.02-09-01299.1982] [PMID: 6181234]
[56]
Purves D, Njå A. Effect of nerve growth factor on synaptic depression after axotomy. Nature 1976; 260(5551): 535-6.
[http://dx.doi.org/10.1038/260535a0] [PMID: 177879]
[57]
Varon S, Adler R. Trophic and specifying factors directed to neuronal cells. Adv Cell Neurobiol 1981; 2: 115-63.
[http://dx.doi.org/10.1016/B978-0-12-008302-2.50009-2]
[58]
Pietrucha-Dutczak M, Amadio M, Govoni S, Lewin-Kowalik J, Smedowski A. The role of endogenous neuroprotective mechanisms in the prevention of retinal ganglion cells degeneration. Front Neurosci 2018; 12: 834.
[http://dx.doi.org/10.3389/fnins.2018.00834] [PMID: 30524222]
[59]
Johnson EM Jr, Deckwerth TL. Molecular mechanisms of developmental neuronal death. Annu Rev Neurosci 1993; 16: 31-46.
[http://dx.doi.org/10.1146/annurev.ne.16.030193.000335] [PMID: 8460896]
[60]
Vaux DL. Toward an understanding of the molecular mechanisms of physiological cell death. Proc Natl Acad Sci USA 1993; 90(3): 786-9.
[http://dx.doi.org/10.1073/pnas.90.3.786] [PMID: 8430086]
[61]
Kang KD, Majid ASA, Kim K-A, et al. Sulbutiamine counteracts trophic factor deprivation induced apoptotic cell death in transformed retinal ganglion cells. Neurochem Res 2010; 35(11): 1828-39.
[http://dx.doi.org/10.1007/s11064-010-0249-5] [PMID: 20809085]
[62]
Johnson EC, Guo Y, Cepurna WO, Morrison JC. Neurotrophin roles in retinal ganglion cell survival: Lessons from rat glaucoma models. Exp Eye Res 2009; 88(4): 808-15.
[http://dx.doi.org/10.1016/j.exer.2009.02.004] [PMID: 19217904]
[63]
Shen S, Wiemelt AP, McMorris FA, Barres BA. Retinal ganglion cells lose trophic responsiveness after axotomy. Neuron 1999; 23(2): 285-95.
[http://dx.doi.org/10.1016/S0896-6273(00)80780-1] [PMID: 10399935]
[64]
Cui Q, Harvey AR. At least two mechanisms are involved in the death of retinal ganglion cells following target ablation in neonatal rats. J Neurosci 1995; 15(12): 8143-55.
[http://dx.doi.org/10.1523/JNEUROSCI.15-12-08143.1995] [PMID: 8613749]
[65]
Mowatt L, Mc Intosh M. Glaucoma-Basic and Clinical Aspects, Ed: 1st: Strategies for Neuroprotection in Glaucoma, Publisher: In tech Publishers, Ed: Shimon Rumelt, pp. 201-226, 2013. In:
[http://dx.doi.org/10.5772/53776]
[66]
Takihara Y, Inatani M, Hayashi H, et al. Dynamic imaging of axonal transport in living retinal ganglion cells in vitro. Invest Ophthalmol Vis Sci 2011; 52(6): 3039-45.
[http://dx.doi.org/10.1167/iovs.10-6435] [PMID: 21310905]
[67]
Chao MV. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 2003; 4(4): 299-309.
[http://dx.doi.org/10.1038/nrn1078] [PMID: 12671646]
[68]
Chao MV, Bothwell M. Neurotrophins: to cleave or not to cleave. Neuron 2002; 33(1): 9-12.
[http://dx.doi.org/10.1016/S0896-6273(01)00573-6] [PMID: 11779474]
[69]
Hu B, Yip HK, So KF. Localization of p75 neurotrophin receptor in the retina of the adult SD rat: an immunocytochemical study at light and electron microscopic levels. Glia 1998; 24(2): 187-97.
[http://dx.doi.org/10.1002/(SICI)1098-1136(199810)24:2<187:AID-GLIA4>3.0.CO;2-1] [PMID: 9728765]
[70]
Lebrun-Julien F, Morquette B, Douillette A, Saragovi HU, Di Polo A. Inhibition of p75(NTR) in glia potentiates TrkA-mediated survival of injured retinal ganglion cells. Mol Cell Neurosci 2009; 40(4): 410-20.
[http://dx.doi.org/10.1016/j.mcn.2008.12.005] [PMID: 19146958]
[71]
Lebrun-Julien F, Bertrand MJ, De Backer O, et al. ProNGF induces TNFalpha-dependent death of retinal ganglion cells through a p75NTR non-cell-autonomous signaling pathway. Proc Natl Acad Sci USA 2010; 107(8): 3817-22.
[http://dx.doi.org/10.1073/pnas.0909276107] [PMID: 20133718]
[72]
Teng HK, Teng KK, Lee R, et al. ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci 2005; 25(22): 5455-63.
[http://dx.doi.org/10.1523/JNEUROSCI.5123-04.2005] [PMID: 15930396]
[73]
Cheng L, Sapieha P, Kittlerová P, Hauswirth WW, Di Polo A. TrkB gene transfer protects retinal ganglion cells from axotomy-induced death in vivo. J Neurosci 2002; 22(10): 3977-86.
[http://dx.doi.org/10.1523/JNEUROSCI.22-10-03977.2002] [PMID: 12019317]
[74]
Du JL, Poo MM. Rapid BDNF-induced retrograde synaptic modification in a developing retinotectal system. Nature 2004; 429(6994): 878-83.
[http://dx.doi.org/10.1038/nature02618] [PMID: 15215865]
[75]
Minichiello L. TrkB signalling pathways in LTP and learning. Nat Rev Neurosci 2009; 10(12): 850-60.
[http://dx.doi.org/10.1038/nrn2738] [PMID: 19927149]
[76]
Hu Y, Cho S, Goldberg JL. Neurotrophic effect of a novel TrkB agonist on retinal ganglion cells. Invest Ophthalmol Vis Sci 2010; 51(3): 1747-54.
[http://dx.doi.org/10.1167/iovs.09-4450] [PMID: 19875669]
[77]
Ríos-Muñoz W, Soto I, Duprey-Díaz MV, Blagburn J, Blanco RE. Fibroblast growth factor 2 applied to the optic nerve after axotomy increases Bcl-2 and decreases Bax in ganglion cells by activating the extracellular signal-regulated kinase signaling pathway. J Neurochem 2005; 93(6): 1422-33.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03129.x] [PMID: 15935058]
[78]
Soto I, Rosenthal JJ, Blagburn JM, Blanco RE. Fibroblast growth factor 2 applied to the optic nerve after axotomy up-regulates BDNF and TrkB in ganglion cells by activating the ERK and PKA signaling pathways. J Neurochem 2006; 96(1): 82-96.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03510.x] [PMID: 16269011]
[79]
Blanco RE, Soto I, Duprey-Díaz M, Blagburn JM. Up-regulation of brain-derived neurotrophic factor by application of fibroblast growth factor-2 to the cut optic nerve is important for long-term survival of retinal ganglion cells. J Neurosci Res 2008; 86(15): 3382-92.
[http://dx.doi.org/10.1002/jnr.21793] [PMID: 18655198]
[80]
Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y, Jacobson MD. Programmed cell death and the control of cell survival: lessons from the nervous system. Science 1993; 262(5134): 695-700.
[http://dx.doi.org/10.1126/science.8235590] [PMID: 8235590]
[81]
Kuehn MH, Fingert JH, Kwon YH. Retinal ganglion cell death in glaucoma: Mechanisms and neuroprotective strategies. Ophthalmol Clin North Am 2005; 18(3): 383-95.
[http://dx.doi.org/10.1016/j.ohc.2005.04.002] [PMID: 16054996]
[82]
Klöcker N, Kermer P, Weishaupt JH, Labes M, Ankerhold R, Bähr M. Brain-derived neurotrophic factor-mediated neuroprotection of adult rat retinal ganglion cells in vivo does not exclusively depend on phosphatidyl-inositol-3′-kinase/protein kinase B signaling. J Neurosci 2000; 20(18): 6962-7.
[http://dx.doi.org/10.1523/JNEUROSCI.20-18-06962.2000] [PMID: 10995840]
[83]
Chen H, Weber AJ. BDNF enhances retinal ganglion cell survival in cats with optic nerve damage. Invest Ophthalmol Vis Sci 2001; 42(5): 966-74.
[PMID: 11274073]
[84]
Martin KR, Quigley HA, Zack DJ, et al. Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model. Invest Ophthalmol Vis Sci 2003; 44(10): 4357-65.
[http://dx.doi.org/10.1167/iovs.02-1332] [PMID: 14507880]
[85]
Ren R, Li Y, Liu Z, Liu K, He S. Long-term rescue of rat retinal ganglion cells and visual function by AAV-mediated BDNF expression after acute elevation of intraocular pressure. Invest Ophthalmol Vis Sci 2012; 53(2): 1003-11.
[http://dx.doi.org/10.1167/iovs.11-8484] [PMID: 22247466]
[86]
Chen A, Xiong L-J, Tong Y, Mao M. The neuroprotective roles of BDNF in hypoxic ischemic brain injury. Biomed Rep 2013; 1(2): 167-76.
[http://dx.doi.org/10.3892/br.2012.48] [PMID: 24648914]
[87]
Luo Y, Peng M, Wei H. Melatonin promotes brain-derived neurotrophic factor (BDNF) expression and anti-apoptotic effects in neonatal hemolytic hyperbilirubinemia via a phospholipase (PLC)-mediated mechanism. Med Sci Monit 2017; 23: 5951-9.
[http://dx.doi.org/10.12659/MSM.907592] [PMID: 29247156]
[88]
Kilic E, Hermann DM, Isenmann S, Bähr M. Effects of pinealectomy and melatonin on the retrograde degeneration of retinal ganglion cells in a novel model of intraorbital optic nerve transection in mice. J Pineal Res 2002; 32(2): 106-11.
[http://dx.doi.org/10.1034/j.1600-079x.2002.1823.x] [PMID: 12071467]
[89]
Klöcker N, Cellerino A, Bähr M. Free radical scavenging and inhibition of nitric oxide synthase potentiates the neurotrophic effects of brain-derived neurotrophic factor on axotomized retinal ganglion cells In vivo. J Neurosci 1998; 18(3): 1038-46.
[http://dx.doi.org/10.1523/JNEUROSCI.18-03-01038.1998] [PMID: 9437024]
[90]
Blanks JC, Hinton DR, Sadun AA, Miller CA. Retinal ganglion cell degeneration in Alzheimer’s disease. Brain Res 1989; 501(2): 364-72.
[http://dx.doi.org/10.1016/0006-8993(89)90653-7] [PMID: 2819446]
[91]
Harten SK, Ashcroft M, Maxwell PH. Prolyl hydroxylase domain inhibitors: A route to HIF activation and neuroprotection. Antioxid Redox Signal 2010; 12: 459-80.
[http://dx.doi.org/10.1089/ars.2009.2870]
[92]
Cheng L, Yu H, Yan N, Lai K, Xiang M. Hypoxia-inducible factor-1α target genes contribute to retinal neuroprotection. Front Cell Neurosci 2017; 11: 20.
[http://dx.doi.org/10.3389/fncel.2017.00020] [PMID: 28289375]
[93]
Sullivan TA, Geisert EE, Hines-Beard J, Rex TS. Systemic adeno-associated virus-mediated gene therapy preserves retinal ganglion cells and visual function in DBA/2J glaucomatous mice. Hum Gene Ther 2011; 22(10): 1191-200.
[http://dx.doi.org/10.1089/hum.2011.052] [PMID: 21542676]
[94]
Kilic U, Kilic E, Soliz J, Bassetti CI, Gassmann M, Hermann DM. Erythropoietin protects from axotomy-induced degeneration of retinal ganglion cells by activating ERK-1/-2. FASEB J 2005; 19(2): 249-51.
[http://dx.doi.org/10.1096/fj.04-2493fje] [PMID: 15556972]
[95]
Sobacı G, Güngör R, Özge G. Effects of multiple intravitreal anti-VEGF injections on retinal nerve fiber layer and intraocular pressure: A comparative clinical study. Int J Ophthalmol 2013; 6(2): 211-5.
[PMID: 23638426]
[96]
He M, Pan H, Chang RC-C, So K-F, Brecha NC, Pu M. Activation of the Nrf2/HO-1 antioxidant pathway contributes to the protective effects of Lycium barbarum polysaccharides in the rodent retina after ischemia-reperfusion-induced damage. PLoS One 2014; 9(1)e84800
[http://dx.doi.org/10.1371/journal.pone.0084800] [PMID: 24400114]
[97]
Peng P-H, Ko M-L, Chen C-F, Juan S-H. Haem oxygenase-1 gene transfer protects retinal ganglion cells from ischaemia/reperfusion injury. Clin Sci (Lond) 2008; 115(11): 335-42.
[http://dx.doi.org/10.1042/CS20070384] [PMID: 18341478]
[98]
Böcker-Meffert S, Rosenstiel P, Röhl C, et al. Erythropoietin and VEGF promote neural outgrowth from retinal explants in postnatal rats. Invest Ophthalmol Vis Sci 2002; 43(6): 2021-6.
[PMID: 12037014]
[99]
Junk AK, Mammis A, Savitz SI, et al. Erythropoietin administration protects retinal neurons from acute ischemia-reperfusion injury. Proc Natl Acad Sci USA 2002; 99(16): 10659-64.
[http://dx.doi.org/10.1073/pnas.152321399] [PMID: 12130665]
[100]
Gassmann M, Heinicke K, Soliz J, Ogunshola OO. Non-erythroid functions of erythropoietin. Adv Exp Med Biol 2003; 543: 323-30.
[http://dx.doi.org/10.1007/978-1-4419-8997-0_22]
[101]
Colella P, Iodice C, Di Vicino U, Annunziata I, Surace EM, Auricchio A. Non-erythropoietic erythropoietin derivatives protect from light-induced and genetic photoreceptor degeneration. Hum Mol Genet 2011; 20(11): 2251-62.
[http://dx.doi.org/10.1093/hmg/ddr115] [PMID: 21421996]
[102]
Beazley-Long N, Hua J, Jehle T, et al. VEGF-A165b is an endogenous neuroprotective splice isoform of vascular endothelial growth factor A in vivo and in vitro. Am J Pathol 2013; 183(3): 918-29.
[http://dx.doi.org/10.1016/j.ajpath.2013.05.031] [PMID: 23838428]
[103]
Hegazy KA, Dunn MW, Sharma SC. Functional human heme oxygenase has a neuroprotective effect on adult rat ganglion cells after pressure-induced ischemia. Neuroreport 2000; 11(6): 1185-9.
[http://dx.doi.org/10.1097/00001756-200004270-00008] [PMID: 10817588]
[104]
Himori N, Maruyama K, Yamamoto K, et al. Critical neuroprotective roles of heme oxygenase-1 induction against axonal injury-induced retinal ganglion cell death. J Neurosci Res 2014; 92(9): 1134-42.
[http://dx.doi.org/10.1002/jnr.23398] [PMID: 24799032]
[105]
Tezel G, Wax MB. Inhibition of caspase activity in retinal cell apoptosis induced by various stimuli in vitro. Invest Ophthalmol Vis Sci 1999; 40(11): 2660-7.
[PMID: 10509663]
[106]
Tezel G, Wax MB. Hypoxia-inducible factor 1α in the glaucomatous retina and optic nerve head. Arch Ophthalmol 2004; 122(9): 1348-56.
[http://dx.doi.org/10.1001/archopht.122.9.1348] [PMID: 15364715]
[107]
Arjamaa O, Nikinmaa M. Oxygen-dependent diseases in the retina: role of hypoxia-inducible factors. Exp Eye Res 2006; 83(3): 473-83.
[http://dx.doi.org/10.1016/j.exer.2006.01.016] [PMID: 16750526]
[108]
Park S-W, Lee H-S, Sung M-S, Kim S-J. The effect of melatonin on retinal ganglion cell survival in ischemic retina. Chonnam Med J 2012; 48(2): 116-22.
[http://dx.doi.org/10.4068/cmj.2012.48.2.116] [PMID: 22977753]
[109]
Kaur C, Sivakumar V, Foulds WS, Luu CD, Ling E-A. Cellular and vascular changes in the retina of neonatal rats after an acute exposure to hypoxia. Invest Ophthalmol Vis Sci 2009; 50(11): 5364-74.
[http://dx.doi.org/10.1167/iovs.09-3552] [PMID: 19474404]
[110]
Kaur C, Sivakumar V, Yong Z, Lu J, Foulds W, Ling E. Blood-retinal barrier disruption and ultrastructural changes in the hypoxic retina in adult rats: The beneficial effect of melatonin administration. J Pathol 2007; 212: 429-39.
[http://dx.doi.org/10.1002/path.2195]
[111]
Jarrett SG, Boulton ME. Consequences of oxidative stress in age-related macular degeneration. Mol Aspects Med 2012; 33(4): 399-417.
[http://dx.doi.org/10.1016/j.mam.2012.03.009] [PMID: 22510306]
[112]
Beatty S, Koh H, Phil M, Henson D, Boulton M. The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 2000; 45(2): 115-34.
[http://dx.doi.org/10.1016/S0039-6257(00)00140-5] [PMID: 11033038]
[113]
Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG. Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci USA 2004; 101(22): 8491-6.
[http://dx.doi.org/10.1073/pnas.0402531101] [PMID: 15152078]
[114]
Rusciano D, Pezzino S, Mutolo MG, Giannotti R, Librando A, Pescosolido N. Neuroprotection in glaucoma: Old and new promising treatments. Adv Pharmacol Sci 2017; 20174320408
[115]
Siu AW, Ortiz GG, Benitez-King G, To CH, Reiter RJ. Effects of melatonin on the nitric oxide treated retina. Br J Ophthalmol 2004; 88(8): 1078-81.
[http://dx.doi.org/10.1136/bjo.2003.037879] [PMID: 15258029]
[116]
Ung L, Pattamatta U, Carnt N, Wilkinson-Berka JL, Liew G, White AJR. Oxidative stress and reactive oxygen species: a review of their role in ocular disease. Clin Sci (Lond) 2017; 131(24): 2865-83.
[http://dx.doi.org/10.1042/CS20171246] [PMID: 29203723]
[117]
Nita M, Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev 2016; 20163164734
[http://dx.doi.org/10.1155/2016/3164734]
[118]
Cui H, Kong Y, Zhang H. Oxidative stress, mitochondrial dysfunction, and aging. J Signal Transduct 2012; 2012646354
[http://dx.doi.org/10.1155/2012/646354]
[119]
Finkel T. Signal transduction by reactive oxygen species. J Cell Biol 2011; 194(1): 7-15.
[http://dx.doi.org/10.1083/jcb.201102095] [PMID: 21746850]
[120]
Munemasa Y, Kitaoka Y. Molecular mechanisms of retinal ganglion cell degeneration in glaucoma and future prospects for cell body and axonal protection. Front Cell Neurosci 2013; 6: 60.
[http://dx.doi.org/10.3389/fncel.2012.00060] [PMID: 23316132]
[121]
Motohashi H, Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 2004; 10(11): 549-57.
[http://dx.doi.org/10.1016/j.molmed.2004.09.003] [PMID: 15519281]
[122]
Chen X-L, Kunsch C. Induction of cytoprotective genes through Nrf2/antioxidant response element pathway: A new therapeutic approach for the treatment of inflammatory diseases. Curr Pharm Des 2004; 10(8): 879-91.
[http://dx.doi.org/10.2174/1381612043452901] [PMID: 15032691]
[123]
Xu Z, Cho H, Hartsock MJ, et al. Neuroprotective role of Nrf2 for retinal ganglion cells in ischemia-reperfusion. J Neurochem 2015; 133(2): 233-41.
[http://dx.doi.org/10.1111/jnc.13064] [PMID: 25683606]
[124]
Tezel G. Oxidative stress in glaucomatous neurodegeneration: Mechanisms and consequences. Prog Retin Eye Res 2006; 25(5): 490-513.
[http://dx.doi.org/10.1016/j.preteyeres.2006.07.003] [PMID: 16962364]
[125]
Stirban A, Gawlowski T, Roden M. Vascular effects of advanced glycation endproducts: Clinical effects and molecular mechanisms. Mol Metab 2013; 3(2): 94-108.
[http://dx.doi.org/10.1016/j.molmet.2013.11.006] [PMID: 24634815]
[126]
Tezel G, Luo C, Yang X. Accelerated aging in glaucoma: immunohistochemical assessment of advanced glycation end products in the human retina and optic nerve head. Invest Ophthalmol Vis Sci 2007; 48(3): 1201-11.
[http://dx.doi.org/10.1167/iovs.06-0737] [PMID: 17325164]
[127]
Reiter RJ, Tan DX, Mayo JC, Sainz RM, Leon J, Czarnocki Z. Melatonin as an antioxidant: Biochemical mechanisms and pathophysiological implications in humans. Acta Biochim Pol 2003; 50(4): 1129-46.
[PMID: 14740000]
[128]
Majidinia M, Sadeghpour A, Mehrzadi S, Reiter RJ, Khatami N, Yousefi B. Melatonin: A pleiotropic molecule that modulates DNA damage response and repair pathways. J Pineal Res 2017; 63(1)
[http://dx.doi.org/10.1111/jpi.12416] [PMID: 28439991]
[129]
Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L. Melatonin as an antioxidant: Under promises but over delivers. J Pineal Res 2016; 61(3): 253-78.
[http://dx.doi.org/10.1111/jpi.12360] [PMID: 27500468]
[130]
Mehrzadi S, Safa M, Kamrava SK, Darabi R, Hayat P, Motevalian M. Protective mechanisms of melatonin against hydrogen-peroxide-induced toxicity in human bone-marrow-derived mesenchymal stem cells. Can J Physiol Pharmacol 2017; 95(7): 773-86.
[http://dx.doi.org/10.1139/cjpp-2016-0409] [PMID: 28177678]
[131]
Goudarzi M, Khodayar MJ, Hosseini Tabatabaei SMT, Ghaznavi H, Fatemi I, Mehrzadi S. Pretreatment with melatonin protects against cyclophosphamide-induced oxidative stress and renal damage in mice. Fundam Clin Pharmacol 2017; 31(6): 625-35.
[http://dx.doi.org/10.1111/fcp.12303] [PMID: 28692163]
[132]
Ghaznavi H, Mehrzadi S, Dormanesh B, et al. Comparison of the protective effects of melatonin and silymarin against gentamicin-induced nephrotoxicity in rats. J Evid Based Complementary Altern Med 2016; 21(4): NP49-55.
[http://dx.doi.org/10.1177/2156587215621672] [PMID: 26703224]
[133]
Mehrzadi S, Motevalian M, Rezaei Kanavi M, Fatemi I, Ghaznavi H, Shahriari M. Protective effect of melatonin in the diabetic rat retina. Fundam Clin Pharmacol 2018; 32(4): 414-21.
[http://dx.doi.org/10.1111/fcp.12361] [PMID: 29495082]
[134]
Vriend J, Reiter RJ. The Keap1-Nrf2-antioxidant response element pathway: A review of its regulation by melatonin and the proteasome. Mol Cell Endocrinol 2015; 401: 213-20.
[http://dx.doi.org/10.1016/j.mce.2014.12.013] [PMID: 25528518]
[135]
Reiter RJ, Tan D-X, Qi W, Manchester LC, Karbownik M, Calvo JR. Pharmacology and physiology of melatonin in the reduction of oxidative stress in vivo. Biol Signals Recept 2000; 9(3-4): 160-71.
[http://dx.doi.org/10.1159/000014636] [PMID: 10899701]
[136]
Hardeland R. Atioxidative protection by melatonin. Endocrine 2005; 27: 119-30.
[http://dx.doi.org/10.1385/ENDO:27:2:119] [PMID: 16217125]
[137]
Kim TW, Kang KB, Choung H-K, Park KH, Kim DM. Elevated glutamate levels in the vitreous body of an in vivo model of optic nerve ischemia. Arch Ophthalmol 2000; 118(4): 533-6.
[http://dx.doi.org/10.1001/archopht.118.4.533] [PMID: 10766139]
[138]
Baltan S, Besancon EF, Mbow B, Ye Z, Hamner MA, Ransom BR. White matter vulnerability to ischemic injury increases with age because of enhanced excitotoxicity. J Neurosci 2008; 28(6): 1479-89.
[http://dx.doi.org/10.1523/JNEUROSCI.5137-07.2008] [PMID: 18256269]
[139]
Beretta S, Mattavelli L, Sala G, et al. Leber hereditary optic neuropathy mtDNA mutations disrupt glutamate transport in cybrid cell lines. Brain 2004; 127(Pt 10): 2183-92.
[http://dx.doi.org/10.1093/brain/awh258] [PMID: 15342361]
[140]
Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels. Pharmacol Rev 1999; 51(1): 7-61.
[PMID: 10049997]
[141]
Nakazawa T, Kitaoka Y, Harada T. Neuroprotection and neuroregeneration for retinal diseases. Springer 2014.
[http://dx.doi.org/10.1007/978-4-431-54965-9]
[142]
Kanai Y, Hediger MA. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 1992; 360(6403): 467-71.
[http://dx.doi.org/10.1038/360467a0] [PMID: 1280334]
[143]
Fairman WA, Vandenberg RJ, Arriza JL, Kavanaugh MP, Amara SG. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 1995; 375(6532): 599-603.
[http://dx.doi.org/10.1038/375599a0] [PMID: 7791878]
[144]
Arriza JL, Eliasof S, Kavanaugh MP, Amara SG. Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci USA 1997; 94(8): 4155-60.
[http://dx.doi.org/10.1073/pnas.94.8.4155] [PMID: 9108121]
[145]
Pines G, Danbolt NC, Bjørås M, et al. Cloning and expression of a rat brain L-glutamate transporter. Nature 1992; 360(6403): 464-7.
[http://dx.doi.org/10.1038/360464a0] [PMID: 1448170]
[146]
Storck T, Schulte S, Hofmann K, Stoffel W. Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci USA 1992; 89(22): 10955-9.
[http://dx.doi.org/10.1073/pnas.89.22.10955] [PMID: 1279699]
[147]
Rauen T, Wiessner M. Fine tuning of glutamate uptake and degradation in glial cells: Common transcriptional regulation of GLAST1 and GS. Neurochem Int 2000; 37(2-3): 179-89.
[http://dx.doi.org/10.1016/S0197-0186(00)00021-8] [PMID: 10812203]
[148]
Pow DV. Visualising the activity of the cystine-glutamate antiporter in glial cells using antibodies to aminoadipic acid, a selectively transported substrate. Glia 2001; 34(1): 27-38.
[http://dx.doi.org/10.1002/glia.1037] [PMID: 11284017]
[149]
Kikuchi M, Tenneti L, Lipton SA. Role of p38 mitogen-activated protein kinase in axotomy-induced apoptosis of rat retinal ganglion cells. J Neurosci 2000; 20(13): 5037-44.
[http://dx.doi.org/10.1523/JNEUROSCI.20-13-05037.2000] [PMID: 10864961]
[150]
Dong C-J, Guo Y, Agey P, Wheeler L, Hare WA. α2 adrenergic modulation of NMDA receptor function as a major mechanism of RGC protection in experimental glaucoma and retinal excitotoxicity. Invest Ophthalmol Vis Sci 2008; 49(10): 4515-22.
[http://dx.doi.org/10.1167/iovs.08-2078] [PMID: 18566471]
[151]
Lam TT, Siew E, Chu R, Tso MO. Ameliorative effect of MK-801 on retinal ischemia. J Ocul Pharmacol Ther 1997; 13(2): 129-37.
[http://dx.doi.org/10.1089/jop.1997.13.129] [PMID: 9090613]
[152]
Laabich A, Li G, Cooper NG. Characterization of apoptosis-genes associated with NMDA mediated cell death in the adult rat retina. Brain Res Mol Brain Res 2001; 91(1-2): 34-42.
[http://dx.doi.org/10.1016/S0169-328X(01)00116-4] [PMID: 11457490]
[153]
Chiu K, Lam TT, Ying Li WW, Caprioli J, Kwong Kwong JM. Calpain and N-methyl-d-aspartate (NMDA)-induced excitotoxicity in rat retinas. Brain Res 2005; 1046(1-2): 207-15.
[http://dx.doi.org/10.1016/j.brainres.2005.04.016] [PMID: 15878434]
[154]
Takeda H, Kitaoka Y, Hayashi Y, et al. Calcium/calmodulin-dependent protein kinase II regulates the phosphorylation of CREB in NMDA-induced retinal neurotoxicity. Brain Res 2007; 1184: 306-15.
[http://dx.doi.org/10.1016/j.brainres.2007.09.055] [PMID: 17961520]
[155]
Khodorov B. Glutamate-induced deregulation of calcium homeostasis and mitochondrial dysfunction in mammalian central neurones. Prog Biophys Mol Biol 2004; 86(2): 279-351.
[http://dx.doi.org/10.1016/j.pbiomolbio.2003.10.002] [PMID: 15288761]
[156]
Nicholls DG. Mitochondrial dysfunction and glutamate excitotoxicity studied in primary neuronal cultures. Curr Mol Med 2004; 4(2): 149-77.
[http://dx.doi.org/10.2174/1566524043479239] [PMID: 15032711]
[157]
Rathnasamy G, Sivakumar V, Rangarajan P, Foulds WS, Ling EA, Kaur C. NF-κB-mediated nitric oxide production and activation of caspase-3 cause retinal ganglion cell death in the hypoxic neonatal retina. Invest Ophthalmol Vis Sci 2014; 55(9): 5878-89.
[http://dx.doi.org/10.1167/iovs.13-13718] [PMID: 25139733]
[158]
Choi JS, Sungjoo KY, Joo CK. NF-κ B activation following optic nerve transection. Korean J Ophthalmol 1998; 12(1): 19-24.
[http://dx.doi.org/10.3341/kjo.1998.12.1.19] [PMID: 9753947]
[159]
Fahrenthold BK, Fernandes KA, Libby RT. Assessment of intrinsic and extrinsic signaling pathway in excitotoxic retinal ganglion cell death. Sci Rep 2018; 8(1): 4641.
[http://dx.doi.org/10.1038/s41598-018-22848-y] [PMID: 29545615]
[160]
Lebrun-Julien F, Duplan L, Pernet V, et al. Excitotoxic death of retinal neurons in vivo occurs via a non-cell-autonomous mechanism. J Neurosci 2009; 29(17): 5536-45.
[http://dx.doi.org/10.1523/JNEUROSCI.0831-09.2009] [PMID: 19403821]
[161]
Munemasa Y, Ohtani-Kaneko R, Kitaoka Y, et al. Contribution of mitogen-activated protein kinases to NMDA-induced neurotoxicity in the rat retina. Brain Res 2005; 1044(2): 227-40.
[http://dx.doi.org/10.1016/j.brainres.2005.03.014] [PMID: 15885221]
[162]
Isenmann S, Bähr M. Expression of c-Jun protein in degenerating retinal ganglion cells after optic nerve lesion in the rat. Exp Neurol 1997; 147(1): 28-36.
[http://dx.doi.org/10.1006/exnr.1997.6585] [PMID: 9294400]
[163]
Roth S, Shaikh AR, Hennelly MM, Li Q, Bindokas V, Graham CE. Mitogen-activated protein kinases and retinal ischemia. Invest Ophthalmol Vis Sci 2003; 44(12): 5383-95.
[http://dx.doi.org/10.1167/iovs.03-0451] [PMID: 14638742]
[164]
Munemasa Y, Ootani-Kaneko R, Yamashita K, et al. P–JNK expression of the rat retina in NMDA–induced neurotoxicity. Invest Ophthalmol Vis Sci 2004; 45: 724-4.
[165]
Kwong JM, Caprioli J. Expression of phosphorylated c-Jun N-terminal protein kinase (JNK) in experimental glaucoma in rats. Exp Eye Res 2006; 82(4): 576-82.
[http://dx.doi.org/10.1016/j.exer.2005.08.017] [PMID: 16197943]
[166]
Del Valle Bessone C, Fajreldines HD, de Barboza GED, et al. Protective role of melatonin on retinal ganglionar cell: In vitro an in vivo evidences. Life Sci 2019; 218: 233-40.
[http://dx.doi.org/10.1016/j.lfs.2018.12.053] [PMID: 30605647]
[167]
Jahanban‐Esfahlan R, Mehrzadi S, Reiter RJ, et al. Melatonin in regulation of inflammatory pathways in rheumatoid arthritis and osteoarthritis: involvement of circadian clock genes. Br J Pharmacol 2018; 175(16): 3230-8.
[PMID: 28585236]
[168]
Mauriz JL, Collado PS, Veneroso C, Reiter RJ, González-Gallego J. A review of the molecular aspects of melatonin’s anti-inflammatory actions: recent insights and new perspectives. J Pineal Res 2013; 54(1): 1-14.
[http://dx.doi.org/10.1111/j.1600-079X.2012.01014.x] [PMID: 22725668]
[169]
Benítez-King G, Huerto-Delgadillo L, Antón-Tay F. Binding of 3H-melatonin to calmodulin. Life Sci 1993; 53(3): 201-7.
[http://dx.doi.org/10.1016/0024-3205(93)90670-X] [PMID: 8321083]
[170]
Pozo D, Reiter RJ, Calvo JR, Guerrero JM. Physiological concentrations of melatonin inhibit nitric oxide synthase in rat cerebellum. Life Sci 1994; 55(24): PL455-60.
[http://dx.doi.org/10.1016/0024-3205(94)00532-X] [PMID: 7527477]
[171]
Tezel G, Li LY, Patil RV, Wax MB. TNF-α and TNF-α receptor-1 in the retina of normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 2001; 42(8): 1787-94.
[PMID: 11431443]
[172]
Tezel G, Yang X, Yang J, Wax MB. Role of tumor necrosis factor receptor-1 in the death of retinal ganglion cells following optic nerve crush injury in mice. Brain Res 2004; 996(2): 202-12.
[http://dx.doi.org/10.1016/j.brainres.2003.10.029] [PMID: 14697498]
[173]
Husain S, Liou GI, Crosson CE. Opioid receptor activation: suppression of ischemia/reperfusion-induced production of TNF-α in the retina. Invest Ophthalmol Vis Sci 2011; 52(5): 2577-83.
[http://dx.doi.org/10.1167/iovs.10-5629] [PMID: 21282567]
[174]
Tezel G. TNF-α signaling in glaucomatous neurodegeneration. Prog Brain Res 2008; 173: 409-21.
[http://dx.doi.org/10.1016/S0079-6123(08)01128-X] [PMID: 18929124]
[175]
Yuan L, Neufeld AH. Tumor necrosis factor-α: a potentially neurodestructive cytokine produced by glia in the human glaucomatous optic nerve head. Glia 2000; 32(1): 42-50.
[http://dx.doi.org/10.1002/1098-1136(200010)32:1<42:AID-GLIA40>3.0.CO;2-3] [PMID: 10975909]
[176]
Kaur C, Rathnasamy G, Foulds W, Ling E. Cellular and molecular mechanisms of retinal ganglion cell death in hypoxic-ischemic injuries. J Neurol Exp Neurosci 2015; 1: 10-9.
[http://dx.doi.org/10.17756/jnen.2015-003]
[177]
Larrick JW, Wright SC. Cytotoxic mechanism of tumor necrosis factor-alpha. FASEB J 1990; 4(14): 3215-23.
[http://dx.doi.org/10.1096/fasebj.4.14.2172061] [PMID: 2172061]
[178]
Shen H-M, Pervaiz S. TNF receptor superfamily-induced cell death: Redox-dependent execution. FASEB J 2006; 20(10): 1589-98.
[http://dx.doi.org/10.1096/fj.05-5603rev] [PMID: 16873882]
[179]
Delhalle S, Deregowski V, Benoit V, Merville M-P, Bours V. NF-kappaB-dependent MnSOD expression protects adenocarcinoma cells from TNF-α-induced apoptosis. Oncogene 2002; 21(24): 3917-24.
[http://dx.doi.org/10.1038/sj.onc.1205489] [PMID: 12032830]
[180]
Goossens V, Stangé G, Moens K, Pipeleers D, Grooten J. Regulation of tumor necrosis factor-induced, mitochondria-and reactive oxygen species-dependent cell death by the electron flux through the electron transport chain complex I. Antioxid Redox Signal 1999; 1: 285-95.
[181]
Schulze-Osthoff K, Beyaert R, Vandevoorde V, Haegeman G, Fiers W. Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-inductive effects of TNF. EMBO J 1993; 12(8): 3095-104.
[http://dx.doi.org/10.1002/j.1460-2075.1993.tb05978.x] [PMID: 8344250]
[182]
Kaur C, Sivakumar V, Robinson R, Foulds WS, Luu CD, Ling EA. Neuroprotective effect of melatonin against hypoxia-induced retinal ganglion cell death in neonatal rats. J Pineal Res 2013; 54(2): 190-206.
[http://dx.doi.org/10.1111/jpi.12016] [PMID: 23113620]
[183]
Jiang T, Chang Q, Cai J, Fan J, Zhang X, Xu G. Protective effects of melatonin on retinal inflammation and oxidative stress in experimental diabetic retinopathy. Oxid Med Cell Longev 2016; 20163528274
[http://dx.doi.org/10.1155/2016/3528274]
[184]
Hengartner MO. The biochemistry of apoptosis. Nature 2000; 407(6805): 770-6.
[http://dx.doi.org/10.1038/35037710] [PMID: 11048727]
[185]
Benn SC, Woolf CJ. Adult neuron survival strategies-slamming on the brakes. Nat Rev Neurosci 2004; 5(9): 686-700.
[http://dx.doi.org/10.1038/nrn1477] [PMID: 15322527]
[186]
Thomas CN, Berry M, Logan A, Blanch RJ, Ahmed Z. Caspases in retinal ganglion cell death and axon regeneration. Cell Death Discov 2017; 3: 17032.
[http://dx.doi.org/10.1038/cddiscovery.2017.32] [PMID: 29675270]
[187]
Nakazawa T, Nakazawa C, Matsubara A, et al. Tumor necrosis factor-α mediates oligodendrocyte death and delayed retinal ganglion cell loss in a mouse model of glaucoma. J Neurosci 2006; 26(49): 12633-41.
[http://dx.doi.org/10.1523/JNEUROSCI.2801-06.2006] [PMID: 17151265]
[188]
Cory S, Adams JM. The BCl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2002; 2(9): 647-56.
[http://dx.doi.org/10.1038/nrc883] [PMID: 12209154]
[189]
Yin XM. Signal transduction mediated by Bid, a pro-death Bcl-2 family proteins, connects the death receptor and mitochondria apoptosis pathways. Cell Res 2000; 10(3): 161-7.
[http://dx.doi.org/10.1038/sj.cr.7290045] [PMID: 11032168]
[190]
Cowling V, Downward J. Caspase-6 is the direct activator of caspase-8 in the cytochrome c-induced apoptosis pathway: absolute requirement for removal of caspase-6 prodomain. Cell Death Differ 2002; 9(10): 1046-56.
[http://dx.doi.org/10.1038/sj.cdd.4401065] [PMID: 12232792]
[191]
Radogna F, Cristofanon S, Paternoster L, et al. Melatonin antagonizes the intrinsic pathway of apoptosis via mitochondrial targeting of Bcl-2. J Pineal Res 2008; 44(3): 316-25.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00532.x] [PMID: 18339127]
[192]
Wei J, Ma LS, Liu DJ, Guo J, Jiang WK, Yu HJ. Melatonin regulates traumatic optic neuropathy via targeting autophagy. Eur Rev Med Pharmacol Sci 2017; 21(21): 4946-51.
[PMID: 29164563]
[193]
Weishaupt JH, Diem R, Kermer P, Krajewski S, Reed JC, Bähr M. Contribution of caspase-8 to apoptosis of axotomized rat retinal ganglion cells in vivo. Neurobiol Dis 2003; 13(2): 124-35.
[http://dx.doi.org/10.1016/S0969-9961(03)00032-9] [PMID: 12828936]
[194]
Kermer P, Klöcker N, Labes M, Thomsen S, Srinivasan A, Bähr M. Activation of caspase-3 in axotomized rat retinal ganglion cells in vivo. FEBS Lett 1999; 453(3): 361-4.
[http://dx.doi.org/10.1016/S0014-5793(99)00747-4] [PMID: 10405176]
[195]
Grosskreutz CL, Hänninen VA, Pantcheva MB, Huang W, Poulin NR, Dobberfuhl AP. FK506 blocks activation of the intrinsic caspase cascade after optic nerve crush. Exp Eye Res 2005; 80(5): 681-6.
[http://dx.doi.org/10.1016/j.exer.2004.11.017] [PMID: 15862175]
[196]
McKinnon SJ, Lehman DM, Kerrigan-Baumrind LA, et al. Caspase activation and amyloid precursor protein cleavage in rat ocular hypertension. Invest Ophthalmol Vis Sci 2002; 43(4): 1077-87.
[PMID: 11923249]
[197]
Levkovitch-Verbin H, Dardik R, Vander S, Melamed S. Mechanism of retinal ganglion cells death in secondary degeneration of the optic nerve. Exp Eye Res 2010; 91(2): 127-34.
[http://dx.doi.org/10.1016/j.exer.2009.11.014] [PMID: 19951705]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy