Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

The Antioxidant, Anticarcinogenic and Antimicrobial Properties of Verbascum thapsus L.

Author(s): Saman Mahdavi*, Morteza Amiradalat, Marzieh Babashpour, Hosein Sheikhlooei and Mohammad Miransari

Volume 16, Issue 7, 2020

Page: [991 - 995] Pages: 5

DOI: 10.2174/1573406415666190828155951

Price: $65

conference banner
Abstract

Background: The antioxidant, anticarcinogenic, and antimicrobial activities of Verbascum Thapsus L., known as great mullein, (an important medicinal plant containing different biochemical compounds including sesquiterpenes, flavonoids, saponins and lignins) were determined. There is not much data, to our knowledge, in this respect.

Methods: The antioxidant activities of V. Thapsus were investigated by the DPPH (2, 2- diphenyl- 1-picrylhydrazyl) method. Using GC-MS, the presence of different anticarcinogenic products including 1-hexzanol (2.11%), 2-hexene (1.95%), etc. was determined in the ethanolic extract of V. Thapsus. The antimicrobial activities of V. Thapsus were determined by the minimum inhibiting concentration (MIC) and minimum bactericidal concentration (MBC) methods using the Grampositive and -negative bacterial strains.

Results: The least concentration of V. Thapsus L. ethanolic extract (50 mg/l) resulted in only 21.26% inhibition of DPPH free radicals, however, the concentrations of 300 mg/l resulted in almost the highest inhibition (91.31%) of DPPH free radicals. The antioxidant activities of synthesized antioxidant BHT at the concentration of 300 mg/l or higher were similar to the antioxidant activities of V. Thapsus L. ethanolic extract. Both the isolated and the standard Gram-negative bacterial strains were more tolerant to the V. Thapsus ethanolic extract, compared with the Grampositive bacterial strains. Bacillus cereus was the most sensitive bacterial strain among the tested bacterial strains.

Conclusion: The medicinal plant V. Thapsus L. can be used for the treatment of different diseases, such as cancer and infectious diseases.

Keywords: Verbascum thapsus L., ethanolic extract, antioxidant, anticarcinogenic and antimicrobial, Bacillus cereus, gramnegative bacterial strains.

« Previous
Graphical Abstract
[1]
Jamshidi-Kia, F.; Lorigooini, Z.; Asgari, S.; Saeidi, K. Iranian species of Verbascum: a review of botany, phytochemistry, and pharmacological effects. Toxin Rev., 2019, 38, 255-262.
[http://dx.doi.org/10.1080/15569543.2018.1457055]
[2]
Mayank, A.P.; Murti, K.; Vijay, L. Pharmacological properties of Verbascum thapsus- A review. Int. J. Pharm. Sci. Rev. Res., 2010, 5, 73-77.
[3]
Kalalian-Moghaddam, H.; Mirzaii, M.; Khaksari, M.; Fazli, M.; Rahimi, F.; Behzadi, A.A. Antibacterial and anti-adherent activity of Great Mullein (Verbascum thapsus L.) ethanolic extract on in vitro biofilm formation of three oral Streptococci. Int. J. Health Stud., 2015, 1, 34-37.
[4]
Zhao, Y.L.; Wang, S.F.; Li, Y.; He, Q.X.; Liu, K.C.; Yang, Y.P.; Li, X.L. Isolation of chemical constituents from the aerial parts of Verbascum thapsus and their antiangiogenic and antiproliferative activities. Arch. Pharm. Res., 2011, 34(5), 703-707.
[http://dx.doi.org/10.1007/s12272-011-0501-9] [PMID: 21656353]
[5]
Dulger, G.; Tutenocakli, T.; Dulger, B. Antimicrobial potential of the leaves of common mullein (Verbascum thapsus L., Scrophulariaceae) on microorganisms isolated from urinary tract infections. J. Med. Plants Stud., 2015, 3, 86-89.
[6]
Valko, M.; Jomova, K.; Rhodes, C.J.; Kuča, K.; Musílek, K. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch. Toxicol., 2016, 90(1), 1-37.
[http://dx.doi.org/10.1007/s00204-015-1579-5] [PMID: 26343967]
[7]
Gutteridge, J.M.C.; Halliwell, B. Mini-Review: Oxidative stress, redox stress or redox success? Biochem. Biophys. Res. Commun., 2018, 502(2), 183-186.
[http://dx.doi.org/10.1016/j.bbrc.2018.05.045] [PMID: 29752940]
[8]
Mahdavi, S.; Hesami, B.; Sharafi, Y. Antimicrobial and antioxidant activities of Iranian Sumac (Rhus coriaria L.) fruit ethanolic extract. J. Appl. Microbiol. Biochem., 2018, 2, 5.
[http://dx.doi.org/10.21767/2576-1412.100021]
[9]
Saei Dehkordi, S.; Tajik, H.; Moradi, M.; Jafari Dehkordi, A.; Ghasemi, S. Chemical composition and antibacterial effects of Rosmarinus officinalis L. essential oil with lysozyme on Listeria monocytogenes. Armaghane Danesh, 2009, 14, 1-11.
[10]
Ghasemi, F.; Rezaei, F.; Araghi, A.; Tabari, M.A. Antimicrobial Activity of Aqueous-Alcoholic Extracts and the Essential Oil of Verbascum thapsusL. Jundishapur J. Nat. Pharm. Prod., 2015, 10e23004
[http://dx.doi.org/10.17795/jjnpp-23004]
[11]
Burt, S. Essential oils: their antibacterial properties and potential applications in foods--a review. Int. J. Food Microbiol., 2004, 94(3), 223-253.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2004.03.022] [PMID: 15246235]
[12]
Mohammadi, M.; Asadi-Gharneh, H.A. How the morphological properties of Mentha longifolia.(L.) Huds. may be affected by geographical differences. J. Photochem. Photobiol. B, 2018, 178, 237-242.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.10.032] [PMID: 29161650]
[13]
Sepahi, S.; Ghorani-Azam, A.; Sepahi, S.; Asoodeh, A.; Rostami, S. In vitro study to evaluate antibacterial and non-haemolytic activities of four Iranian medicinal plants. West Indian Med. J., 2014, 63(4), 289-293.
[PMID: 25429470]
[14]
Escobar, F.M.; Sabini, M.C.; Zanon, S.M.; Tonn, C.E.; Sabini, L.I. Antiviral effect and mode of action of methanolic extract of Verbascum thapsus L. on pseudorabies virus (strain RC/79). Nat. Prod. Res., 2012, 26(17), 1621-1625.
[http://dx.doi.org/10.1080/14786419.2011.576394] [PMID: 21999656]
[15]
Ginovyan, M.M.; Trchounian, A.H. Screening of some plant materials used in Armenian traditional medicine for their antimicrobial activity. Chem. Biol., 2017, 51, 44-53.
[16]
Jan, H.A.; Wali, S.; Ahmad, L.; Jan, S.; Ahmad, N.; Ullah, N. Ethnomedicinal survey of medicinal plants of Chinglai valley, Buner district, Pakistan. Eur. J. Integr. Med., 2017, 13, 64-74.
[http://dx.doi.org/10.1016/j.eujim.2017.06.007]
[17]
Miara, M.D.; Bendif, H.; Rebbas, K.; Rabah, B.; Hammou, M.A.; Maggi, F. Medicinal plants and their traditional uses in the highland region of Bordj Bou Arreridj (Northeast Algeria). J. Herb. Med., 2019, 16100262
[http://dx.doi.org/10.1016/j.hermed.2019.100262]
[18]
Tatli, I.I.; Akdemir, Z. Traditional uses and biological activities of Verbascum species. J. Pharm. Sci., 2006, 31, 85-96.
[19]
Langhasova, L.; Hanusova, V.; Rezek, J.; Stohanslova, B.; Ambroz, M.; Kralova, V.; Vanek, T.; Lou, J.D.; Yun, Z.L.; Yang, J.; Skalova, L. Essential oil from Myrica rubra leaves inhibits cancer cell proliferation and induces apoptosis in several human intestinal lines. Ind. Crops Prod., 2014, 59, 20-26.
[http://dx.doi.org/10.1016/j.indcrop.2014.04.018]
[20]
Meng, T.; Yang, M.; Li, Y.X.; Jia, Q.; Yu, G.C.; Dai, Y.F. Effect of mitogen-activated protein kinase signaling pathway on apoptosis induced by chloroacetic acid in human normal bronchial epithelial 16HBE cells. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2017, 35(5), 321-327.
[PMID: 28780785]
[21]
Sauraj.; Kumar, S.U.; Gopinath, P.; Negi, Y.S. Synthesis and bio-evaluation of xylan-5-fluorouracil-1-acetic acid conjugates as prodrugs for colon cancer treatment. Carbohydr. Polym., 2017, 157, 1442-1450.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.096] [PMID: 27987854]
[22]
Grunt, T.W. Interacting Cancer machineries: cell signaling, lipid metabolism, and epigenetics. Trends Endocrinol. Metab., 2018, 29(2), 86-98.
[http://dx.doi.org/10.1016/j.tem.2017.11.003] [PMID: 29203141]
[23]
Yoo, Y.C.; Shin, B.H.; Hong, J.H.; Lee, J.; Chee, H.Y.; Song, K.S.; Lee, K.B. Isolation of fatty acids with anticancer activity from Protaetia brevitarsis larva. Arch. Pharm. Res., 2007, 30(3), 361-365.
[http://dx.doi.org/10.1007/BF02977619] [PMID: 17424944]
[24]
Hamid, A.A.; Aiyelaagbe, O.O.; Negi, A.S.; Luqman, S.; Kaneez, F. Isolation and antiproliferative activity of chemical constituents from Asystasia buettneri Lindau. Nat. Prod. Res., 2018, 32(17), 2076-2080.
[http://dx.doi.org/10.1080/14786419.2017.1360883] [PMID: 28774190]
[25]
Vijayabaskar, G.; Elango, V. Characterization of bioactive compounds in alcoholic extract of Hemidimus indicus and Alpenia officinarum using GC-MS technique. World J. Sci. Res., 2018, 3, 16-22.
[26]
Jan, R.; Saxena, D.C.; Singh, S. Comparative study of raw and germinated Chenopodium (Chenopodium album) flour on the basis of thermal, rheological, minerals, fatty acid profile and phytocomponents. Food Chem., 2018, 269, 173-180.
[http://dx.doi.org/10.1016/j.foodchem.2018.07.003] [PMID: 30100421]
[27]
Pavithra, P.S.; Mehta, A.; Verma, R.S. Synergistic interaction of β-caryophyllene with aromadendrene oxide 2 and phytol induces apoptosis on skin epidermoid cancer cells. Phytomedicine, 2018, 47, 121-134.
[http://dx.doi.org/10.1016/j.phymed.2018.05.001] [PMID: 30166097]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy