Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Small Molecular Gemcitabine Prodrugs for Cancer Therapy

Author(s): He Miao, Xuehong Chen and Yepeng Luan*

Volume 27 , Issue 33 , 2020

Page: [5562 - 5582] Pages: 21

DOI: 10.2174/0929867326666190816230650

Price: $65

Abstract

Gemcitabine as a pyrimidine nucleoside analog anticancer drug has high efficacy for a broad spectrum of solid tumors. Gemcitabine is activated within tumor cells by sequential phosphorylation carried out by deoxycytidine kinase to mono-, di-, and triphosphate nucleotides with the last one as the active form. But the instability, drug resistance and toxicity severely limited its utilization in clinics. In the field of medicinal chemistry, prodrugs have proven to be a very effective means for elevating drug stability and decrease undesirable side effects including the nucleoside anticancer drug such as gemcitabine. Many works have been accomplished in design and synthesis of gemcitabine prodrugs, majority of which were summarized in this review.

Keywords: Gemcitabine, prodrug, amide, ester, derivative, anticancer.

[1]
Robins, R.K. The potential of nucleotide analogs as inhibitors of retroviruses and tumors. Pharm. Res., 1984, 1(1), 11-18.
[http://dx.doi.org/10.1023/A:1016370407633] [PMID: 24277178]
[2]
Hatse, S.; De Clercq, E.; Balzarini, J. Role of antimetabolites of purine and pyrimidine nucleotide metabolism in tumor cell differentiation. Biochem. Pharmacol., 1999, 58(4), 539-555.
[http://dx.doi.org/10.1016/S0006-2952(99)00035-0] [PMID: 10413291]
[3]
Hertel, L.W.; Boder, G.B.; Kroin, J.S.; Rinzel, S.M.; Poore, G.A.; Todd, G.C.; Grindey, G.B. Evaluation of the antitumor activity of gemcitabine (2′,2′-difluoro-2′-deoxycytidine). Cancer Res., 1990, 50(14), 4417-4422.
[PMID: 2364394]
[4]
Braakhuis, B.J.; Ruiz van Haperen, V.W.; Welters, M.J.; Peters, G.J. Schedule-dependent therapeutic efficacy of the combination of gemcitabine and cisplatin in head and neck cancer xenografts. Eur. J. Cancer, 1995, 31A(13-14), 2335-2340.
[http://dx.doi.org/10.1016/0959-8049(95)00419-X] [PMID: 8652266]
[5]
Merriman, R.L.; Hertel, L.W.; Schultz, R.M.; Houghton, P.J.; Houghton, J.A.; Rutherford, P.G.; Tanzer, L.R.; Boder, G.B.; Grindey, G.B. Comparison of the antitumor activity of gemcitabine and ara-C in a panel of human breast, colon, lung and pancreatic xenograft models. Invest. New Drugs, 1996, 14(3), 243-247.
[http://dx.doi.org/10.1007/BF00194526] [PMID: 8958178]
[6]
Manegold, C. Gemcitabine (Gemzar) in non-small cell lung cancer. Expert Rev. Anticancer Ther., 2004, 4(3), 345-360.
[http://dx.doi.org/10.1586/14737140.4.3.345] [PMID: 15161434]
[7]
Heinemann, V. Gemcitabine in metastatic breast cancer. Expert Rev. Anticancer Ther., 2005, 5(3), 429-443.
[http://dx.doi.org/10.1586/14737140.5.3.429] [PMID: 16001951]
[8]
Eckel, F.; Schneider, G.; Schmid, R.M. Pancreatic cancer: a review of recent advances. Expert Opin. Investig. Drugs, 2006, 15(11), 1395-1410.
[http://dx.doi.org/10.1517/13543784.15.11.1395] [PMID: 17040199]
[9]
Toschi, L.; Finocchiaro, G.; Bartolini, S.; Gioia, V.; Cappuzzo, F. Role of gemcitabine in cancer therapy. Future Oncol., 2005, 1(1), 7-17.
[http://dx.doi.org/10.1517/14796694.1.1.7] [PMID: 16555971]
[10]
van Haperen, V.W.; Veerman, G.; Vermorken, J.B.; Pinedo, H.M.; Peters, G. Regulation of phosphorylation of deoxycytidine and 2′,2′-difluorodeoxycytidine (gemcitabine); effects of cytidine 5′-triphosphate and uridine 5′-triphosphate in relation to chemosensitivity for 2′,2′-difluorodeoxycytidine. Biochem. Pharmacol., 1996, 51(7), 911-918.
[http://dx.doi.org/10.1016/0006-2952(95)02402-6] [PMID: 8651941]
[11]
Medinger, M.; Drevs, J. Receptor tyrosine kinases and anticancer therapy. Curr. Pharm. Des., 2005, 11(9), 1139-1149.
[http://dx.doi.org/10.2174/1381612053507611] [PMID: 15853662]
[12]
Wagh, P.K.; Peace, B.E.; Waltz, S.E. Met-related receptor tyrosine kinase ron in tumor growth and metastasis. Adv. Cancer Res., 2008, 100, 1-33.
[http://dx.doi.org/10.1016/S0065-230X(08)00001-8] [PMID: 18620091]
[13]
Infante, J.R.; Hollebecque, A.; Postel-Vinay, S.; Bauer, T.M.; Blackwood, E.M.; Evangelista, M.; Mahrus, S.; Peale, F.V.; Lu, X.; Sahasranaman, S.; Zhu, R.; Chen, Y.; Ding, X.; Murray, E.R.; Schutzman, J.L.; Lauchle, J.O.; Soria, J.C.; LoRusso, P.M. Phase I study of GDC-0425, a checkpoint kinase 1 inhibitor, in combination with gemcitabine in patients with refractory solid tumors. Clin. Cancer Res., 2017, 23(10), 2423-2432.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1782] [PMID: 27815358]
[14]
Qiao, Z.; Ren, S.; Li, W.; Wang, X.; He, M.; Guo, Y.; Sun, L.; He, Y.; Ge, Y.; Yu, Q. Chidamide, a novel histone deacetylase inhibitor, synergistically enhances gemcitabine cytotoxicity in pancreatic cancer cells. Biochem. Biophys. Res. Commun., 2013, 434(1), 95-101.
[http://dx.doi.org/10.1016/j.bbrc.2013.03.059] [PMID: 23541946]
[15]
Cai, M.H.; Xu, X.G.; Yan, S.L.; Sun, Z.; Ying, Y.; Wang, B.K.; Tu, Y.X. Depletion of HDAC1, 7 and 8 by Histone deacetylase inhibition confers elimination of pancreatic cancer stem cells in combination with gemcitabine. Sci. Rep., 2018, 8(1), 1621.
[http://dx.doi.org/10.1038/s41598-018-20004-0] [PMID: 29374219]
[16]
Ueno, H.; Kiyosawa, K.; Kaniwa, N. Pharmacogenomics of gemcitabine: can genetic studies lead to tailor-made therapy? Br. J. Cancer, 2007, 97(2), 145-151.
[http://dx.doi.org/10.1038/sj.bjc.6603860] [PMID: 17595663]
[17]
Dubey, R.D.; Saneja, A.; Gupta, P.K.; Gupta, P.N. Recent advances in drug delivery strategies for improved therapeutic efficacy of gemcitabine. Eur. J. Pharm. Sci., 2016, 93, 147-162.
[http://dx.doi.org/10.1016/j.ejps.2016.08.021] [PMID: 27531553]
[18]
Huang, P.; Chubb, S.; Hertel, L.W.; Grindey, G.B.; Plunkett, W. Action of 2′,2′-difluorodeoxycytidine on DNA synthesis. Cancer Res., 1991, 51(22), 6110-6117.
[PMID: 1718594]
[19]
Ruiz van Haperen, V.W.; Veerman, G.; Vermorken, J.B.; Peters, G.J. 2′,2′-difluoro-deoxycytidine (gemcitabine) incorporation into RNA and DNA of tumour cell lines. Biochem. Pharmacol., 1993, 46(4), 762-766.
[http://dx.doi.org/10.1016/0006-2952(93)90566-F] [PMID: 8363650]
[20]
Baker, C.H.; Banzon, J.; Bollinger, J.M.; Stubbe, J.; Samano, V.; Robins, M.J.; Lippert, B.; Jarvi, E.; Resvick, R. 2′-Deoxy-2′-methylenecytidine and 2′-deoxy-2′,2′-difluorocytidine 5′-diphosphates: potent mechanism-based inhibitors of ribonucleotide reductase. J. Med. Chem., 1991, 34(6), 1879-1884.
[http://dx.doi.org/10.1021/jm00110a019] [PMID: 2061926]
[21]
Plunkett, W.; Huang, P.; Xu, Y.Z.; Heinemann, V.; Grunewald, R.; Gandhi, V. Gemcitabine: metabolism, mechanisms of action, and self-potentiation. Semin. Oncol., 1995, 22(4)(Suppl. 11), 3-10.
[PMID: 7481842]
[22]
Labroli, M.A.; Dwyer, M.P.; Shen, R.; Popovici-Muller, J.; Pu, Q.; Wyss, D.; McCoy, M.; Barrett, D.; Davis, N.; Seghezzi, W.; Shanahan, F.; Taricani, L.; Beaumont, M.; Malinao, M.C.; Parry, D.; Guzi, T.J. The identification of novel 5′-amino gemcitabine analogs as potent RRM1 inhibitors. Bioorg. Med. Chem., 2014, 22(7), 2303-2310.
[http://dx.doi.org/10.1016/j.bmc.2014.02.007] [PMID: 24588962]
[23]
Heinemann, V.; Hertel, L.W.; Grindey, G.B.; Plunkett, W. Comparison of the cellular pharmacokinetics and toxicity of 2′,2′-difluorodeoxycytidine and 1-beta-D-arabinofurano-sylcytosine. Cancer Res., 1988, 48(14), 4024-4031.
[PMID: 3383195]
[24]
Gandhi, V.; Plunkett, W. Modulatory activity of 2′,2′-difluorodeoxycytidine on the phosphorylation and cytotoxicity of arabinosyl nucleosides. Cancer Res., 1990, 50(12), 3675-3680.
[PMID: 2340517]
[25]
Mini, E.; Nobili, S.; Caciagli, B.; Landini, I.; Mazzei, T. Cellular pharmacology of gemcitabine. Ann. Oncol., 2006, 17(Suppl. 5), v7-v12.
[http://dx.doi.org/10.1093/annonc/mdj941] [PMID: 16807468]
[26]
Beumer, J.H.; Eiseman, J.L.; Parise, R.A.; Joseph, E.; Covey, J.M.; Egorin, M.J. Modulation of gemcitabine (2′,2′-difluoro-2′-deoxycytidine) pharmacokinetics, metabolism, and bioavailability in mice by 3,4,5,6-tetrahydrouridine. Clin. Cancer Res., 2008, 14(11), 3529-3535.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4885] [PMID: 18519786]
[27]
Hong, S.; Fang, Z.; Jung, H.Y.; Yoon, J.H.; Hong, S.S.; Maeng, H.J. Synthesis of gemcitabine-threonine amide prodrug effective on pancreatic cancer cells with improved pharmacokinetic properties. Molecules, 2018, 23(10)E2608
[http://dx.doi.org/10.3390/molecules23102608] [PMID: 30314360]
[28]
Moysan, E.; Bastiat, G.; Benoit, J.P. Gemcitabine versus modified gemcitabine: a review of several promising chemical modifications. Mol. Pharm., 2013, 10(2), 430-444.
[http://dx.doi.org/10.1021/mp300370t] [PMID: 22978251]
[29]
Bender, D.M.; Bao, J.; Dantzig, A.H.; Diseroad, W.D.; Law, K.L.; Magnus, N.A.; Peterson, J.A.; Perkins, E.J.; Pu, Y.J.; Reutzel-Edens, S.M.; Remick, D.M.; Starling, J.J.; Stephenson, G.A.; Vaid, R.K.; Zhang, D.; McCarthy, J.R. Synthesis, crystallization, and biological evaluation of an orally active prodrug of gemcitabine. J. Med. Chem., 2009, 52(22), 6958-6961.
[http://dx.doi.org/10.1021/jm901181h] [PMID: 19860433]
[30]
Pratt, S.E.; Durland-Busbice, S.; Shepard, R.L.; Heinz-Taheny, K.; Iversen, P.W.; Dantzig, A.H. Human carboxylesterase-2 hydrolyzes the prodrug of gemcitabine (LY2334737) and confers prodrug sensitivity to cancer cells. Clin. Cancer Res., 2013, 19(5), 1159-1168.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1184] [PMID: 23325581]
[31]
Salazar, R.; Morales, S.; Gil-Martín, M.; Aguirre, E.; Oaknin, A.; Garcia, M.; Callies, S.; Wickremsinhe, E.R.; Benhadji, K.A.; Llombart, A. Phase 1 dose escalation and pharmacokinetic evaluation of oral gemcitabine prodrug (LY2334737) in combination with docetaxel in patients with advanced solid tumors. Cancer Chemother. Pharmacol., 2014, 73(6), 1205-1215.
[http://dx.doi.org/10.1007/s00280-014-2457-1] [PMID: 24744161]
[32]
Infante, J.R.; Benhadji, K.A.; Dy, G.K.; Fetterly, G.; Ma, W.W.; Bendell, J.; Callies, S.; Adjei, A.A. Phase 1b study of the oral gemcitabine ‘Pro-drug’ LY2334737 in combination with capecitabine in patients with advanced solid tumors. Invest. New Drugs, 2015, 33(2), 432-439.
[http://dx.doi.org/10.1007/s10637-015-0207-9] [PMID: 25640850]
[33]
Faivre, S.J.; Olszanski, A.J.; Weigang-Köhler, K.; Riess, H.; Cohen, R.B.; Wang, X.; Myrand, S.P.; Wickremsinhe, E.R.; Horn, C.L.; Ouyang, H.; Callies, S.; Benhadji, K.A.; Raymond, E. Phase I dose escalation and pharmacokinetic evaluation of two different schedules of LY2334737, an oral gemcitabine prodrug, in patients with advanced solid tumors. Invest. New Drugs, 2015, 33(6), 1206-1216.
[http://dx.doi.org/10.1007/s10637-015-0286-7] [PMID: 26377590]
[34]
Phiel, C.J.; Zhang, F.; Huang, E.Y.; Guenther, M.G.; Lazar, M.A.; Klein, P.S. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem., 2001, 276(39), 36734-36741.
[http://dx.doi.org/10.1074/jbc.M101287200] [PMID: 11473107]
[35]
Su, J.M.; Li, X.N.; Thompson, P.; Ou, C.N.; Ingle, A.M.; Russell, H.; Lau, C.C.; Adamson, P.C.; Blaney, S.M. Phase 1 study of valproic acid in pediatric patients with refractory solid or CNS tumors: a children’s oncology group report. Clin. Cancer Res., 2011, 17(3), 589-597.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0738] [PMID: 21115653]
[36]
Dasari, M.; Acharya, A.P.; Kim, D.; Lee, S.; Lee, S.; Rhea, J.; Molinaro, R.; Murthy, N. H-gemcitabine: a new gemcitabine prodrug for treating cancer. Bioconjug. Chem., 2013, 24(1), 4-8.
[http://dx.doi.org/10.1021/bc300095m] [PMID: 23237198]
[37]
Bhaduri, S.; Ranjan, N.; Arya, D.P. An overview of recent advances in duplex DNA recognition by small molecules. Beilstein J. Org. Chem., 2018, 14, 1051-1086.
[http://dx.doi.org/10.3762/bjoc.14.93] [PMID: 29977379]
[38]
Loontiens, F.G.; Regenfuss, P.; Zechel, A.; Dumortier, L.; Clegg, R.M. Binding characteristics of Hoechst 33258 with calf thymus DNA, poly[d(A-T)], and d(CCGGAATT CCGG): multiple stoichiometries and determination of tight binding with a wide spectrum of site affinities. Biochemistry, 1990, 29(38), 9029-9039.
[http://dx.doi.org/10.1021/bi00490a021] [PMID: 1702995]
[39]
Parkinson, J.A.; Barber, J.; Douglas, K.T.; Rosamond, J.; Sharples, D. Minor-groove recognition of the self-complementary duplex d(CGCGAATTCGCG)2 by Hoechst 33258: a high-field NMR study. Biochemistry, 1990, 29(44), 10181-10190.
[http://dx.doi.org/10.1021/bi00496a005] [PMID: 1703003]
[40]
Cho, J.; Rando, R.R. Specific binding of Hoechst 33258 to site 1 thymidylate synthase mRNA. Nucleic Acids Res., 2000, 28(10), 2158-2163.
[http://dx.doi.org/10.1093/nar/28.10.2158] [PMID: 10773086]
[41]
Weiss, J.T.; Dawson, J.C.; Fraser, C.; Rybski, W.; Torres-Sánchez, C.; Bradley, M.; Patton, E.E.; Carragher, N.O.; Unciti-Broceta, A. Development and bioorthogonal activation of palladium-labile prodrugs of gemcitabine. J. Med. Chem., 2014, 57(12), 5395-5404.
[http://dx.doi.org/10.1021/jm500531z] [PMID: 24867590]
[42]
Jiang, Y.; Hou, J.; Li, X.; Huang, Y.; Wang, X.; Wu, J.; Zhang, J.; Xu, W.; Zhang, Y. Discovery of a novel chimeric ubenimex-gemcitabine with potent oral antitumor activity. Bioorg. Med. Chem., 2016, 24(22), 5787-5795.
[http://dx.doi.org/10.1016/j.bmc.2016.09.033] [PMID: 27670098]
[43]
Luan, Y.; Xu, W. The structure and main functions of aminopeptidase N. Curr. Med. Chem., 2007, 14(6), 639-647.
[http://dx.doi.org/10.2174/092986707780059571] [PMID: 17346152]
[44]
Christ, B.; Stock, P.; Dollinger, M.M. CD13: waving the flag for a novel cancer stem cell target. Hepatology, 2011, 53(4), 1388-1390.
[http://dx.doi.org/10.1002/hep.24222] [PMID: 21480341]
[45]
Pang, L.; Zhang, N.; Xia, Y.; Wang, D.; Wang, G.; Meng, X. Serum APN/CD13 as a novel diagnostic and prognostic biomarker of pancreatic cancer. Oncotarget, 2016, 7(47), 77854-77864.
[http://dx.doi.org/10.18632/oncotarget.12835] [PMID: 27788483]
[46]
Luan, Y.; Ma, C.; Wang, Y.; Fang, H.; Xu, W. The characteristics, functions and inhibitors of three aminopeptidases belonging to the m1 family. Curr. Protein Pept. Sci., 2012, 13(5), 490-500.
[http://dx.doi.org/10.2174/138920312802430554] [PMID: 22954453]
[47]
Sekine, K.; Fujii, H.; Abe, F. Induction of apoptosis by bestatin (ubenimex) in human leukemic cell lines. Leukemia, 1999, 13(5), 729-734.
[http://dx.doi.org/10.1038/sj.leu.2401388] [PMID: 10374877]
[48]
Tsukamoto, H.; Shibata, K.; Kajiyama, H.; Terauchi, M.; Nawa, A.; Kikkawa, F.; Aminopeptidase, N.; Aminopeptidase, N.; Aminopeptidase, N. APN)/CD13 inhibitor, ubenimex, enhances radiation sensitivity in human cervical cancer. BMC Cancer, 2008, 8, 74.
[http://dx.doi.org/10.1186/1471-2407-8-74] [PMID: 18366676]
[49]
Yamashita, M.; Wada, H.; Eguchi, H.; Ogawa, H.; Yamada, D.; Noda, T.; Asaoka, T.; Kawamoto, K.; Gotoh, K.; Umeshita, K.; Doki, Y.; Mori, M.A. CD13 inhibitor, ubenimex, synergistically enhances the effects of anticancer drugs in hepatocellular carcinoma. Int. J. Oncol., 2016, 49(1), 89-98.
[http://dx.doi.org/10.3892/ijo.2016.3496] [PMID: 27121124]
[50]
Amin, S.A.; Adhikari, N.; Jha, T. Design of aminopeptidase N inhibitors as anti-cancer agents. J. Med. Chem., 2018, 61(15), 6468-6490.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00782] [PMID: 29630364]
[51]
Diao, L.; Ekins, S.; Polli, J.E. Quantitative structure activity relationship for inhibition of human organic cation/carnitine transporter. Mol. Pharm., 2010, 7(6), 2120-2131.
[http://dx.doi.org/10.1021/mp100226q] [PMID: 20831193]
[52]
Pochini, L.; Scalise, M.; Galluccio, M.; Indiveri, C. OCTN cation transporters in health and disease: role as drug targets and assay development. J. Biomol. Screen., 2013, 18(8), 851-867.
[http://dx.doi.org/10.1177/1087057113493006] [PMID: 23771822]
[53]
Wang, G.; Chen, H.; Zhao, D.; Ding, D.; Sun, M.; Kou, L.; Luo, C.; Zhang, D.; Yi, X.; Dong, J.; Wang, J.; Liu, X.; He, Z.; Sun, J. Combination of l-carnitine with lipophilic linkage-donating gemcitabine derivatives as intestinal novel organic cation transporter 2-targeting oral prodrugs. J. Med. Chem., 2017, 60(6), 2552-2561.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00049] [PMID: 28234466]
[54]
Eiján, A.M.; Sandes, E.O.; Riveros, M.D.; Thompson, S.; Pasik, L.; Mallagrino, H.; Celeste, F.; Casabé, A.R. High expression of cathepsin B in transitional bladder carcinoma correlates with tumor invasion. Cancer, 2003, 98(2), 262-268.
[http://dx.doi.org/10.1002/cncr.11493] [PMID: 12872343]
[55]
Gong, F.; Peng, X.; Luo, C.; Shen, G.; Zhao, C.; Zou, L.; Li, L.; Sang, Y.; Zhao, Y.; Zhao, X. Cathepsin B as a potential prognostic and therapeutic marker for human lung squamous cell carcinoma. Mol. Cancer, 2013, 12(1), 125.
[http://dx.doi.org/10.1186/1476-4598-12-125] [PMID: 24139065]
[56]
Gu, M.; Wang, X.; Toh, T.B.; Chow, E.K. Applications of stimuli-responsive nanoscale drug delivery systems in translational research. Drug Discov. Today, 2018, 23(5), 1043-1052.
[http://dx.doi.org/10.1016/j.drudis.2017.11.009] [PMID: 29155366]
[57]
Zhang, H.; Sun, Z.; Wang, K.; Li, N.; Chen, H.; Tan, X.; Li, L.; He, Z.; Sun, J. Multifunctional tumor-targeting cathepsin B-sensitive gemcitabine prodrug covalently targets albumin in situ and improves cancer therapy. Bioconjug. Chem., 2018, 29(6), 1852-1858.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00223] [PMID: 29775284]
[58]
Song, X.; Lorenzi, P.L.; Landowski, C.P.; Vig, B.S.; Hilfinger, J.M.; Amidon, G.L. Amino acid ester prodrugs of the anticancer agent gemcitabine: synthesis, bioconversion, metabolic bioevasion, and hPEPT1-mediated transport. Mol. Pharm., 2005, 2(2), 157-167.
[http://dx.doi.org/10.1021/mp049888e] [PMID: 15804190]
[59]
Mackenzie, B.; Loo, D.D.; Fei, Y.; Liu, W.J.; Ganapathy, V.; Leibach, F.H.; Wright, E.M. Mechanisms of the human intestinal H+-coupled oligopeptide transporter hPEPT1. J. Biol. Chem., 1996, 271(10), 5430-5437.
[http://dx.doi.org/10.1074/jbc.271.10.5430] [PMID: 8621398]
[60]
Wu, W.; Sigmond, J.; Peters, G.J.; Borch, R.F. Synthesis and biological activity of a gemcitabine phosphoramidate prodrug. J. Med. Chem., 2007, 50(15), 3743-3746.
[http://dx.doi.org/10.1021/jm070269u] [PMID: 17602464]
[61]
Maiti, S.; Park, N.; Han, J.H.; Jeon, H.M.; Lee, J.H.; Bhuniya, S.; Kang, C.; Kim, J.S. Gemcitabine-coumarin-biotin conjugates: a target specific theranostic anticancer prodrug. J. Am. Chem. Soc., 2013, 135(11), 4567-4572.
[http://dx.doi.org/10.1021/ja401350x] [PMID: 23461361]
[62]
McGuigan, C.; Hassan-Abdallah, A.; Srinivasan, S.; Wang, Y.; Siddiqui, A.; Daluge, S.M.; Gudmundsson, K.S.; Zhou, H.; McLean, E.W.; Peckham, J.P.; Burnette, T.C.; Marr, H.; Hazen, R.; Condreay, L.D.; Johnson, L.; Balzarini, J. Application of phosphoramidate ProTide technology significantly improves antiviral potency of carbocyclic adenosine derivatives. J. Med. Chem., 2006, 49(24), 7215-7226.
[http://dx.doi.org/10.1021/jm060776w] [PMID: 17125274]
[63]
Slusarczyk, M.; Ferrari, V.; Serpi, M.; Gönczy, B.; Balzarini, J.; McGuigan, C. Symmetrical diamidates as a class of phosphate prodrugs to deliver the 5′-monophosphate forms of anticancer nucleoside analogues. ChemMedChem, 2018, 13(21), 2305-2316.
[http://dx.doi.org/10.1002/cmdc.201800504] [PMID: 30199147]
[64]
Simmons, B.; Liu, Z.; Klapars, A.; Bellomo, A.; Silverman, S.M. Mechanism-based solution to the ProTide synthesis problem: selective access to sofosbuvir, acelarin, and INX-08189. Org. Lett., 2017, 19(9), 2218-2221.
[http://dx.doi.org/10.1021/acs.orglett.7b00469] [PMID: 28418681]
[65]
Mehellou, Y.; Rattan, H.S.; Balzarini, J. The ProTide prodrug technology: from the concept to the clinic. J. Med. Chem., 2018, 61(6), 2211-2226.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00734] [PMID: 28792763]
[66]
Mehellou, Y.; Balzarini, J.; McGuigan, C. Aryloxy phosphoramidate triesters: a technology for delivering monophosphorylated nucleosides and sugars into cells. ChemMedChem, 2009, 4(11), 1779-1791.
[http://dx.doi.org/10.1002/cmdc.200900289] [PMID: 19760699]
[67]
Mehellou, Y. The Protides boom. ChemMedChem, 2016, 11(11), 1114-1116.
[http://dx.doi.org/10.1002/cmdc.201600156] [PMID: 27159529]
[68]
Slusarczyk, M.; Lopez, M.H.; Balzarini, J.; Mason, M.; Jiang, W.G.; Blagden, S.; Thompson, E.; Ghazaly, E.; McGuigan, C. Application of ProTide technology to gemcitabine: a successful approach to overcome the key cancer resistance mechanisms leads to a new agent (NUC-1031) in clinical development. J. Med. Chem., 2014, 57(4), 1531-1542.
[http://dx.doi.org/10.1021/jm401853a] [PMID: 24471998]
[69]
Ghazaly, E.A.; Simon, J.; Gribben, J.G.; Mohammad, T.; Oluwadunni, E.; Stavraka, C.; Hopkins, T.; Gabra, H.; Harpreet, W.; Habib, N.A.; Leonard, R.C.F.; McGuigan, C.; Slusarczyk, M.; Blagden, S.P. ProGem1: phase 1 first-in-human study of the novel nucleotide analogue NUC-1031 in adult patients with advanced solid tumors. J. Clin. Oncol., 2013, 31(Suppl. 15), 2576-2576.
[http://dx.doi.org/10.1200/jco.2013.31.15_suppl.2576.]
[70]
Blagden, S.P.; Rizzuto, I.; Suppiah, P.; O’Shea, D.; Patel, M.; Spiers, L.; Sukumaran, A.; Bharwani, N.; Rockall, A.; Gabra, H.; El-Bahrawy, M.; Wasan, H.; Leonard, R.; Habib, N.; Ghazaly, E. Anti-tumour activity of a first-in-class agent NUC-1031 in patients with advanced cancer: results of a phase I study. Br. J. Cancer, 2018, 119(7), 815-822.
[http://dx.doi.org/10.1038/s41416-018-0244-1] [PMID: 30206366]
[71]
Karampelas, T.; Argyros, O.; Sayyad, N.; Spyridaki, K.; Pappas, C.; Morgan, K.; Kolios, G.; Millar, R.P.; Liapakis, G.; Tzakos, A.G.; Fokas, D.; Tamvakopoulos, C. GnRH-Gemcitabine conjugates for the treatment of androgen-independent prostate cancer: pharmacokinetic enhancements combined with targeted drug delivery. Bioconjug. Chem., 2014, 25(4), 813-823.
[http://dx.doi.org/10.1021/bc500081g] [PMID: 24661240]
[72]
Mehtala, J.G.; Kulczar, C.; Lavan, M.; Knipp, G.; Wei, A. Cys34-PEGylated human serum albumin for drug binding and delivery. Bioconjug. Chem., 2015, 26(5), 941-949.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00143] [PMID: 25918947]
[73]
Green, M.R.; Manikhas, G.M.; Orlov, S.; Afanasyev, B.; Makhson, A.M.; Bhar, P.; Hawkins, M.J. Abraxane, a novel cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann. Oncol., 2006, 17(8), 1263-1268.
[http://dx.doi.org/10.1093/annonc/mdl104] [PMID: 16740598]
[74]
Stewart, A.J.; Blindauer, C.A.; Berezenko, S.; Sleep, D.; Tooth, D.; Sadler, P.J. Role of Tyr84 in controlling the reactivity of Cys34 of human albumin. FEBS J., 2005, 272(2), 353-362.
[http://dx.doi.org/10.1111/j.1742-4658.2004.04474.x] [PMID: 15654874]
[75]
Zhang, H.; Wang, K.; Na, K.; Li, D.; Li, Z.; Zhao, D.; Zhong, L.; Wang, M.; Kou, L.; Luo, C.; Zhang, H.; Kan, Q.; Ding, H.; He, Z.; Sun, J. Striking a balance between carbonate/carbamate linkage bond- and reduction-sensitive disulfide bond-bearing linker for tailored controlled release: in situ covalent-albumin-binding gemcitabine prodrugs promote bioavailability and tumor accumulation. J. Med. Chem., 2018, 61(11), 4904-4917.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00293] [PMID: 29768008]
[76]
Zhang, Y.; Yu, P.; Liu, L.; Wu, B.; Cui, C.; Wu, M.; Zhang, L.J.; Zhuo, R.X.; Huang, S.W. Lipid-polymer hybrid nanoparticles for the delivery of gemcitabine. J. Control. Release, 2015, 213, e128-e129.
[http://dx.doi.org/10.1016/j.jconrel.2015.05.217] [PMID: 27005076]
[77]
Liang, T.J.; Zhou, Z.M.; Cao, Y.Q.; Ma, M.Z.; Wang, X.J.; Jing, K. Gemcitabine-based polymer-drug conjugate for enhanced anticancer effect in colon cancer. Int. J. Pharm., 2016, 513(1-2), 564-571.
[http://dx.doi.org/10.1016/j.ijpharm.20F16.09.018] [PMID: 27613255]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy