Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

microRNAs in Cardiovascular Disease: Small Molecules but Big Roles

Author(s): Bingqian Yan, Huijing Wang, Yao Tan and Wei Fu*

Volume 19, Issue 21, 2019

Page: [1918 - 1947] Pages: 30

DOI: 10.2174/1568026619666190808160241

Price: $65

conference banner
Abstract

microRNAs (miRNAs) are an evolutionarily conserved class of small single-stranded noncoding RNAs. The aberrant expression of specific miRNAs has been implicated in the development and progression of diverse cardiovascular diseases. For many decades, miRNA therapeutics has flourished, taking advantage of the fact that miRNAs can modulate gene expression and control cellular phenotypes at the posttranscriptional level. Genetic replacement or knockdown of target miRNAs by chemical molecules, referred to as miRNA mimics or inhibitors, has been used to reverse their abnormal expression as well as their adverse biological effects in vitro and in vivo in an effort to fully implement the therapeutic potential of miRNA-targeting treatment. However, the limitations of the chemical structure and delivery systems are hindering progress towards clinical translation. Here, we focus on the regulatory mechanisms and therapeutic trials of several representative miRNAs in the context of specific cardiovascular diseases; from this basic perspective, we evaluate chemical modifications and delivery vectors of miRNA-based chemical molecules and consider the underlying challenges of miRNA therapeutics as well as the clinical perspectives on their applications.

Keywords: microRNAs, Cardiovascular disease, Antisense oligonucleotides, miRNA therapeutics, Drug discovery, Chemical modification, Drug delivery systems, Gene therapy.

« Previous
Graphical Abstract
[1]
Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; Delling, F.N.; Djousse, L.; Elkind, M.S.V.; Ferguson, J.F.; Fornage, M.; Jordan, L.C.; Khan, S.S.; Kissela, B.M.; Knutson, K.L.; Kwan, T.W.; Lackland, D.T.; Lewis, T.T.; Lichtman, J.H.; Longenecker, C.T.; Loop, M.S.; Lutsey, P.L.; Martin, S.S.; Matsushita, K.; Moran, A.E.; Mussolino, M.E.; O’Flaherty, M.; Pandey, A.; Perak, A.M.; Rosamond, W.D.; Roth, G.A.; Sampson, U.K.A.; Satou, G.M.; Schroeder, E.B.; Shah, S.H.; Spartano, N.L.; Stokes, A.; Tirschwell, D.L.; Tsao, C.W.; Turakhia, M.P.; VanWagner, L.B.; Wilkins, J.T.; Wong, S.S.; Virani, S.S. American Heart Association Council on epidemiology and prevention statistics and stroke statistics subcommitte heart disease and stroke statistics-2019 update: A report from the american heart association. Circulation, 2019, 139(10), e56-e528.
[http://dx.doi.org/10.1161/CIR.0000000000000659] [PMID: 30700139]
[2]
Palazzo, A.F.; Lee, E.S. Non-coding RNA: what is functional and what is junk? Front. Genet., 2015, 6, 2.
[http://dx.doi.org/10.3389/fgene.2015.00002] [PMID: 25674102]
[3]
Parmeciano Di Noto, G.; Molina, M.C.; Quiroga, C. Insights into non-coding RNAs as novel antimicrobial drugs. Front. Genet., 2019, 10, 57.
[http://dx.doi.org/10.3389/fgene.2019.00057] [PMID: 30853970]
[4]
Basak, J.; Nithin, C. Targeting non-coding RNAs in plants with the CRISPR-Cas technology is a challenge yet worth accepting. Front. Plant Sci., 2015, 6, 1001.
[http://dx.doi.org/10.3389/fpls.2015.01001] [PMID: 26635829]
[5]
Wahlestedt, C. Targeting long non-coding RNA to therapeutically upregulate gene expression. Nat. Rev. Drug Discov., 2013, 12(6), 433-446.
[http://dx.doi.org/10.1038/nrd4018] [PMID: 23722346]
[6]
Birney, E.; Stamatoyannopoulos, J.A.; Dutta, A.; Guigó, R.; Gingeras, T.R.; Margulies, E.H.; Weng, Z.; Snyder, M.; Dermitzakis, E.T.; Thurman, R.E.; Kuehn, M.S.; Taylor, C.M.; Neph, S.; Koch, C.M.; Asthana, S.; Malhotra, A.; Adzhubei, I.; Greenbaum, J.A.; Andrews, R.M.; Flicek, P.; Boyle, P.J.; Cao, H.; Carter, N.P.; Clelland, G.K.; Davis, S.; Day, N.; Dhami, P.; Dillon, S.C.; Dorschner, M.O.; Fiegler, H.; Giresi, P.G.; Goldy, J.; Hawrylycz, M.; Haydock, A.; Humbert, R.; James, K.D.; Johnson, B.E.; Johnson, E.M.; Frum, T.T.; Rosenzweig, E.R.; Karnani, N.; Lee, K.; Lefebvre, G.C.; Navas, P.A.; Neri, F.; Parker, S.C.; Sabo, P.J.; Sandstrom, R.; Shafer, A.; Vetrie, D.; Weaver, M.; Wilcox, S.; Yu, M.; Collins, F.S.; Dekker, J.; Lieb, J.D.; Tullius, T.D.; Crawford, G.E.; Sunyaev, S.; Noble, W.S.; Dunham, I.; Denoeud, F.; Reymond, A.; Kapranov, P.; Rozowsky, J.; Zheng, D.; Castelo, R.; Frankish, A.; Harrow, J.; Ghosh, S.; Sandelin, A.; Hofacker, I.L.; Baertsch, R.; Keefe, D.; Dike, S.; Cheng, J.; Hirsch, H.A.; Sekinger, E.A.; Lagarde, J.; Abril, J.F.; Shahab, A.; Flamm, C.; Fried, C.; Hackermüller, J.; Hertel, J.; Lindemeyer, M.; Missal, K.; Tanzer, A.; Washietl, S.; Korbel, J.; Emanuelsson, O.; Pedersen, J.S.; Holroyd, N.; Taylor, R.; Swarbreck, D.; Matthews, N.; Dickson, M.C.; Thomas, D.J.; Weirauch, M.T.; Gilbert, J.; Drenkow, J.; Bell, I.; Zhao, X.; Srinivasan, K.G.; Sung, W.K.; Ooi, H.S.; Chiu, K.P.; Foissac, S.; Alioto, T.; Brent, M.; Pachter, L.; Tress, M.L.; Valencia, A.; Choo, S.W.; Choo, C.Y.; Ucla, C.; Manzano, C.; Wyss, C.; Cheung, E.; Clark, T.G.; Brown, J.B.; Ganesh, M.; Patel, S.; Tammana, H.; Chrast, J.; Henrichsen, C.N.; Kai, C.; Kawai, J.; Nagalakshmi, U.; Wu, J.; Lian, Z.; Lian, J.; Newburger, P.; Zhang, X.; Bickel, P.; Mattick, J.S.; Carninci, P.; Hayashizaki, Y.; Weissman, S.; Hubbard, T.; Myers, R.M.; Rogers, J.; Stadler, P.F.; Lowe, T.M.; Wei, C.L.; Ruan, Y.; Struhl, K.; Gerstein, M.; Antonarakis, S.E.; Fu, Y.; Green, E.D.; Karaöz, U.; Siepel, A.; Taylor, J.; Liefer, L.A.; Wetterstrand, K.A.; Good, P.J.; Feingold, E.A.; Guyer, M.S.; Cooper, G.M.; Asimenos, G.; Dewey, C.N.; Hou, M.; Nikolaev, S.; Montoya-Burgos, J.I.; Löytynoja, A.; Whelan, S.; Pardi, F.; Massingham, T.; Huang, H.; Zhang, N.R.; Holmes, I.; Mullikin, J.C.; Ureta-Vidal, A.; Paten, B.; Seringhaus, M.; Church, D.; Rosenbloom, K.; Kent, W.J.; Stone, E.A.; Batzoglou, S.; Goldman, N.; Hardison, R.C.; Haussler, D.; Miller, W.; Sidow, A.; Trinklein, N.D.; Zhang, Z.D.; Barrera, L.; Stuart, R.; King, D.C.; Ameur, A.; Enroth, S.; Bieda, M.C.; Kim, J.; Bhinge, A.A.; Jiang, N.; Liu, J.; Yao, F.; Vega, V.B.; Lee, C.W.; Ng, P.; Shahab, A.; Yang, A.; Moqtaderi, Z.; Zhu, Z.; Xu, X.; Squazzo, S.; Oberley, M.J.; Inman, D.; Singer, M.A.; Richmond, T.A.; Munn, K.J.; Rada-Iglesias, A.; Wallerman, O.; Komorowski, J.; Fowler, J.C.; Couttet, P.; Bruce, A.W.; Dovey, O.M.; Ellis, P.D.; Langford, C.F.; Nix, D.A.; Euskirchen, G.; Hartman, S.; Urban, A.E.; Kraus, P.; Van Calcar, S.; Heintzman, N.; Kim, T.H.; Wang, K.; Qu, C.; Hon, G.; Luna, R.; Glass, C.K.; Rosenfeld, M.G.; Aldred, S.F.; Cooper, S.J.; Halees, A.; Lin, J.M.; Shulha, H.P.; Zhang, X.; Xu, M.; Haidar, J.N.; Yu, Y.; Ruan, Y.; Iyer, V.R.; Green, R.D.; Wadelius, C.; Farnham, P.J.; Ren, B.; Harte, R.A.; Hinrichs, A.S.; Trumbower, H.; Clawson, H.; Hillman-Jackson, J.; Zweig, A.S.; Smith, K.; Thakkapallayil, A.; Barber, G.; Kuhn, R.M.; Karolchik, D.; Armengol, L.; Bird, C.P.; de Bakker, P.I.; Kern, A.D.; Lopez-Bigas, N.; Martin, J.D.; Stranger, B.E.; Woodroffe, A.; Davydov, E.; Dimas, A.; Eyras, E.; Hallgrímsdóttir, I.B.; Huppert, J.; Zody, M.C.; Abecasis, G.R.; Estivill, X.; Bouffard, G.G.; Guan, X.; Hansen, N.F.; Idol, J.R.; Maduro, V.V.; Maskeri, B.; McDowell, J.C.; Park, M.; Thomas, P.J.; Young, A.C.; Blakesley, R.W.; Muzny, D.M.; Sodergren, E.; Wheeler, D.A.; Worley, K.C.; Jiang, H.; Weinstock, G.M.; Gibbs, R.A.; Graves, T.; Fulton, R.; Mardis, E.R.; Wilson, R.K.; Clamp, M.; Cuff, J.; Gnerre, S.; Jaffe, D.B.; Chang, J.L.; Lindblad-Toh, K.; Lander, E.S.; Koriabine, M.; Nefedov, M.; Osoegawa, K.; Yoshinaga, Y.; Zhu, B.; de Jong, P.J. ENCODE Project Consortium NISC Comparative Sequencing Program Baylor College of Medicine Human Genome Sequencing Center Washington University Genome Sequencing Center Broad Institute Children’s Hospital Oakland Research Institute. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 2007, 447(7146), 799-816.
[http://dx.doi.org/10.1038/nature05874] [PMID: 17571346]
[7]
International Human Genome Sequencing Consortium.Finishing the euchromatic sequence of the human genome. Nature, 2004, 431(7011), 931-945.
[http://dx.doi.org/10.1038/nature03001] [PMID: 15496913]
[8]
Jonas, S.; Izaurralde, E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet., 2015, 16(7), 421-433.
[http://dx.doi.org/10.1038/nrg3965] [PMID: 26077373]
[9]
Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov., 2017, 16(3), 203-222.
[http://dx.doi.org/10.1038/nrd.2016.246] [PMID: 28209991]
[10]
van Rooij, E.; Olson, E.N. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat. Rev. Drug Discov., 2012, 11(11), 860-872.
[http://dx.doi.org/10.1038/nrd3864] [PMID: 23080337]
[11]
Philippen, L.E.; Dirkx, E.; Wit, J.B.M.; Burggraaf, K.; de Windt, L.J.; da Costa Martins, P.A. Antisense MicroRNA therapeutics in cardiovascular disease: Quo Vadis? Mol. Ther., 2015, 23(12), 1810-1818.
[http://dx.doi.org/10.1038/mt.2015.133] [PMID: 26216517]
[12]
Schulte, C.; Zeller, T. microRNA-based diagnostics and therapy in cardiovascular disease-Summing up the facts. Cardiovasc. Diagn. Ther., 2015, 5(1), 17-36.
[http://dx.doi.org/ 10.3978/j.issn.2223-3652.2014.12.03] [PMID: 25774345]
[13]
van Rooij, E.; Sutherland, L.B.; Liu, N.; Williams, A.H.; McAnally, J.; Gerard, R.D.; Richardson, J.A.; Olson, E.N. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl. Acad. Sci. USA, 2006, 103(48), 18255-18260.
[http://dx.doi.org/10.1073/pnas.0608791103] [PMID: 17108080]
[14]
Janssen, H.L.A.; Reesink, H.W.; Lawitz, E.J.; Zeuzem, S.; Rodriguez-Torres, M.; Patel, K.; van der Meer, A.J.; Patick, A.K.; Chen, A.; Zhou, Y.; Persson, R.; King, B.D.; Kauppinen, S.; Levin, A.A.; Hodges, M.R. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med., 2013, 368(18), 1685-1694.
[http://dx.doi.org/10.1056/NEJMoa1209026] [PMID: 23534542]
[15]
Bernardo, B.C.; Ooi, J.Y.; Lin, R.C.; McMullen, J.R. miRNA therapeutics: a new class of drugs with potential therapeutic applications in the heart. Future Med. Chem., 2015, 7(13), 1771-1792.
[http://dx.doi.org/10.4155/fmc.15.107] [PMID: 26399457]
[16]
Catela Ivkovic, T.; Voss, G.; Cornella, H.; Ceder, Y. microRNAs as cancer therapeutics: A step closer to clinical application. Cancer Lett., 2017, 407, 113-122.
[http://dx.doi.org/10.1016/j.canlet.2017.04.007] [PMID: 28412239]
[17]
Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5), 843-854.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[18]
Reinhart, B.J.; Slack, F.J.; Basson, M.; Reinhart, B.J.; Slack, F.J.; Basson, M.; Pasquinelli, A.E.; Bettinger, J.C.; Rougvie, A.E.; Horvitz, H.R.; Ruvkun, G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000, 403(6772), 901-906.
[http://dx.doi.org/10.1038/35002607] [PMID: 10706289]
[19]
Berezikov, E.; Guryev, V.; van de Belt, J.; Wienholds, E.; Plasterk, R.H.A.; Cuppen, E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell, 2005, 120(1), 21-24.
[http://dx.doi.org/10.1016/j.cell.2004.12.031] [PMID: 15652478]
[20]
van Rooij, E.; Kauppinen, S. Development of microRNA therapeutics is coming of age. EMBO Mol. Med., 2014, 6(7), 851-864.
[http://dx.doi.org/10.15252/emmm.201100899] [PMID: 24935956]
[21]
Lee, Y.; Kim, M.; Han, J.; Yeom, K.H.; Lee, S.; Baek, S.H.; Kim, V.N. MicroRNA genes are transcribed by RNA polymerase II. EMBO J., 2004, 23(20), 4051-4060.
[http://dx.doi.org/10.1038/sj.emboj.7600385] [PMID: 15372072]
[22]
Borchert, G.M.; Lanier, W.; Davidson, B.L. RNA polymerase III transcribes human microRNAs. Nat. Struct. Mol. Biol., 2006, 13(12), 1097-1101.
[http://dx.doi.org/10.1038/nsmb1167] [PMID: 17099701]
[23]
Han, J.; Lee, Y.; Yeom, K.H.; Kim, Y.K.; Jin, H.; Kim, V.N. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev., 2004, 18(24), 3016-3027.
[http://dx.doi.org/10.1101/gad.1262504] [PMID: 15574589]
[24]
Han, J.; Lee, Y.; Yeom, K.H.; Nam, J.W.; Heo, I.; Rhee, J.K.; Sohn, S.Y.; Cho, Y.; Zhang, B.T.; Han, J.; Lee, Y.; Yeom, K.H.; Nam, J.W.; Heo, I.; Rhee, J.K.; Sohn, S.Y.; Cho, Y.; Zhang, B.T.; Kim, V.N. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell, 2006, 125(5), 887-901.
[http://dx.doi.org/10.1016/j.cell.2006.03.043] [PMID: 16751099]
[25]
Ruby, J.G.; Jan, C.H.; Bartel, D.P. Intronic microRNA precursors that bypass Drosha processing. Nature, 2007, 448(7149), 83-86.
[http://dx.doi.org/10.1038/nature05983] [PMID: 17589500]
[26]
Yi, R.; Qin, Y.; Macara, I.G.; Cullen, B.R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev., 2003, 17(24), 3011-3016.
[http://dx.doi.org/10.1101/gad.1158803] [PMID: 14681208]
[27]
Chendrimada, T.P.; Gregory, R.I.; Kumaraswamy, E.; Norman, J.; Cooch, N.; Nishikura, K.; Shiekhattar, R. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature, 2005, 436(7051), 740-744.
[http://dx.doi.org/10.1038/nature03868] [PMID: 15973356]
[28]
Gregory, R.I.; Chendrimada, T.P.; Cooch, N.; Shiekhattar, R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell, 2005, 123(4), 631-640.
[http://dx.doi.org/10.1016/j.cell.2005.10.022] [PMID: 16271387]
[29]
Diederichs, S.; Haber, D.A. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell, 2007, 131(6), 1097-1108.
[http://dx.doi.org/10.1016/j.cell.2007.10.032] [PMID: 18083100]
[30]
Winter, J.; Jung, S.; Keller, S.; Gregory, R.I.; Diederichs, S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat. Cell Biol., 2009, 11(3), 228-234.
[http://dx.doi.org/10.1038/ncb0309-228] [PMID: 19255566]
[31]
Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2), 215-233.
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[32]
Krol, J.; Loedige, I.; Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet., 2010, 11(9), 597-610.
[http://dx.doi.org/10.1038/nrg2843] [PMID: 20661255]
[33]
Huntzinger, E.; Izaurralde, E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet., 2011, 12(2), 99-110.
[http://dx.doi.org/10.1038/nrg2936] [PMID: 21245828]
[34]
Chong, Y. Park; Yun, S., Choi; Mcmanus, M.T. Analysis of microRNA knockouts in mice. Hum. Mol. Genet., 2010, 19(2), 169-175.
[http://dx.doi.org/10.1093/hmg/ddq367]
[35]
Williams, A.H.; Valdez, G.; Moresi, V.; Qi, X.; McAnally, J.; Elliott, J.L.; Bassel-Duby, R.; Sanes, J.R.; Olson, E.N. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science, 2009, 326(5959), 1549-1554.
[http://dx.doi.org/10.1126/science.1181046] [PMID: 20007902]
[36]
Lee, S.; Lim, S.; Ham, O.; Lee, S.Y.; Lee, C.Y.; Park, J.H.; Lee, J.; Seo, H.H.; Yun, I.; Han, S.M.; Cha, M.J.; Choi, E.; Hwang, K.C. ROS-mediated bidirectional regulation of miRNA results in distinct pathologic heart conditions. Biochem. Biophys. Res. Commun., 2015, 465(3), 349-355.
[http://dx.doi.org/10.1016/j.bbrc.2015.07.160] [PMID: 26253469]
[37]
Hinkel, R.; Penzkofer, D.; Zühlke, S.; Fischer, A.; Husada, W.; Xu, Q.F.; Baloch, E.; van Rooij, E.; Zeiher, A.M.; Kupatt, C.; Dimmeler, S. Inhibition of microRNA-92a protects against ischemia/reperfusion injury in a large-animal model. Circulation, 2013, 128(10), 1066-1075.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.001904] [PMID: 23897866]
[38]
Lanford, R.E.; Hildebrandt-Eriksen, E.S.; Petri, A.; Persson, R.; Lindow, M.; Munk, M.E.; Kauppinen, S.; Ørum, H. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science, 2010, 327(5962), 198-201.
[http://dx.doi.org/10.1126/science.1178178] [PMID: 19965718]
[39]
Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol., 2007, 9(6), 654-659.
[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]
[40]
Chen, X.; Ba, Y.; Ma, L.; Cai, X.; Yin, Y.; Wang, K.; Guo, J.; Zhang, Y.; Chen, J.; Guo, X.; Li, Q.; Li, X.; Wang, W.; Zhang, Y.; Wang, J.; Jiang, X.; Xiang, Y.; Xu, C.; Zheng, P.; Zhang, J.; Li, R.; Zhang, H.; Shang, X.; Gong, T.; Ning, G.; Wang, J.; Zen, K.; Zhang, J.; Zhang, C.Y. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res., 2008, 18(10), 997-1006.
[http://dx.doi.org/10.1038/cr.2008.282] [PMID: 18766170]
[41]
Vickers, K.C.; Palmisano, B.T.; Shoucri, B.M.; Shamburek, R.D.; Remaley, A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol., 2011, 13(4), 423-433.
[http://dx.doi.org/10.1038/ncb2210] [PMID: 21423178]
[42]
Arroyo, J.D.; Chevillet, J.R.; Kroh, E.M.; Ruf, I.K.; Pritchard, C.C.; Gibson, D.F.; Mitchell, P.S.; Bennett, C.F.; Pogosova-Agadjanyan, E.L.; Stirewalt, D.L.; Tait, J.F.; Tewari, M. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. USA, 2011, 108(12), 5003-5008.
[http://dx.doi.org/10.1073/pnas.1019055108] [PMID: 21383194]
[43]
Weber, J.A.; Baxter, D.H.; Zhang, S.; Huang, D.Y.; Huang, K.H.; Lee, M.J.; Galas, D.J.; Wang, K. The microRNA spectrum in 12 body fluids. Clin. Chem., 2010, 56(11), 1733-1741.
[http://dx.doi.org/10.1373/clinchem.2010.147405] [PMID: 20847327]
[44]
Corsten, M.F.; Heggermont, W.; Papageorgiou, A.P.; Deckx, S.; Tijsma, A.; Verhesen, W.; van Leeuwen, R.; Carai, P.; Thibaut, H.J.; Custers, K.; Summer, G.; Hazebroek, M.; Verheyen, F.; Neyts, J.; Schroen, B.; Heymans, S. The microRNA-221/-222 cluster balances the antiviral and inflammatory response in viral myocarditis. Eur. Heart J., 2015, 36(42), 2909-2919.
[http://dx.doi.org/10.1093/eurheartj/ehv321] [PMID: 26206211]
[45]
Shigoka, M.; Tsuchida, A.; Matsudo, T.; Nagakawa, Y.; Saito, H.; Suzuki, Y.; Aoki, T.; Murakami, Y.; Toyoda, H.; Kumada, T.; Bartenschlager, R.; Kato, N.; Ikeda, M.; Takashina, T.; Tanaka, M.; Suzuki, R.; Oikawa, K.; Takanashi, M.; Kuroda, M. Deregulation of miR-92a expression is implicated in hepatocellular carcinoma development. Pathol. Int., 2010, 60(5), 351-357.
[http://dx.doi.org/10.1111/j.1440-1827.2010.02526.x] [PMID: 20518884]
[46]
Loyer, X.; Potteaux, S.; Vion, A.C.; Guérin, C.L.; Boulkroun, S.; Rautou, P.E.; Ramkhelawon, B.; Esposito, B.; Dalloz, M.; Paul, J.L.; Julia, P.; Maccario, J.; Boulanger, C.M.; Mallat, Z.; Tedgui, A. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ. Res., 2014, 114(3), 434-443.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.302213] [PMID: 24255059]
[47]
Huang, R.S.; Hu, G.Q.; Lin, B.; Lin, Z.Y.; Sun, C.C. MicroRNA-155 silencing enhances inflammatory response and lipid uptake in oxidized low-density lipoprotein-stimulated human THP-1 macrophages. J. Investig. Med., 2010, 58(8), 961-967.
[http://dx.doi.org/10.2310/JIM.0b013e3181ff46d7] [PMID: 21030878]
[48]
Ye, J.; Guo, R.; Shi, Y.; Qi, F.; Guo, C.; Yang, L. miR-155 Regulated Inflammation Response by the SOCS1-STAT3-PDCD4 Axis in Atherogenesis. Mediators Inflamm., 2016.2016, 8060182..
[http://dx.doi.org/10.1155/2016/8060182] [PMID: 27843203]
[49]
Chistiakov, D.A.; Orekhov, A.N.; Bobryshev, Y.V. Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction). J. Mol. Cell. Cardiol., 2016, 94, 107-121.
[http://dx.doi.org/10.1016/j.yjmcc.2016.03.015] [PMID: 27056419]
[50]
Zhao, Y.; Samal, E.; Srivastava, D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature, 2005, 436(7048), 214-220.
[http://dx.doi.org/10.1038/nature03817] [PMID: 15951802]
[51]
Malizia, A.P.; Wang, D.Z. MicroRNAs in cardiomyocyte development. Wiley Interdiscip. Rev. Syst. Biol. Med., 2011, 3(2), 183-190.
[http://dx.doi.org/10.1002/wsbm.111] [PMID: 21305703]
[52]
Callis, T.E.; Pandya, K.; Seok, H.Y.; Tang, R.H.; Tatsuguchi, M.; Huang, Z.P.; Chen, J.F.; Deng, Z.; Gunn, B.; Shumate, J.; Willis, M.S.; Selzman, C.H.; Wang, D.Z. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J. Clin. Invest., 2009, 119(9), 2772-2786.
[http://dx.doi.org/10.1172/JCI36154] [PMID: 19726871]
[53]
Bonci, D.; Coppola, V.; Musumeci, M.; Addario, A.; D’Urso, L.; Collura, D.; Peschle, C.; Maria, R.D.; Muto, G. The miR-15a/miR-16-1 cluster controls prostate cancer progression by targenting multiple oncogenic activities. Nat. Med., 2008, 7(3), 271-271.
[54]
Porrello, E.R.; Mahmoud, A.I.; Simpson, E.; Johnson, B.A.; Grinsfelder, D.; Canseco, D.; Mammen, P.P.; Rothermel, B.A.; Olson, E.N.; Sadek, H.A. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc. Natl. Acad. Sci. USA, 2013, 110(1), 187-192.
[http://dx.doi.org/10.1073/pnas.1208863110] [PMID: 23248315]
[55]
Mei, Z.; Su, T.; Ye, J.; Yang, C.; Zhang, S.; Xie, C. The miR-15 family enhances the radiosensitivity of breast cancer cells by targeting G2 checkpoints. Radiat. Res., 2015, 183(2), 196-207.
[http://dx.doi.org/10.1667/RR13784.1] [PMID: 25594541]
[56]
Porrello, E.R.; Johnson, B.A.; Aurora, A.B.; Simpson, E.; Nam, Y.J.; Matkovich, S.J.; Dorn, G.W., II; van Rooij, E.; Olson, E.N. MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ. Res., 2011, 109(6), 670-679.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.248880] [PMID: 21778430]
[57]
Liu, Y.; Yang, L.; Yin, J.; Su, D.; Pan, Z.; Li, P.; Wang, X. MicroRNA-15b deteriorates hypoxia/reoxygenation-induced cardiomyocyte apoptosis by downregulating Bcl-2 and MAPK3. J. Investig. Med., 2018, 66(1), 39-45.
[http://dx.doi.org/10.1136/jim-2017-000485] [PMID: 28814571]
[58]
Pfeffer, S.R.; Yang, C.H.; Pfeffer, L.M. The Role of miR-21 in Cancer. Drug Dev. Res., 2015, 76(6), 270-277.
[http://dx.doi.org/10.1002/ddr.21257] [PMID: 26082192]
[59]
Frampton, A.E.; Krell, J.; Jamieson, N.B.; Gall, T.M.; Giovannetti, E.; Funel, N.; Mato Prado, M.; Krell, D.; Habib, N.A.; Castellano, L.; Jiao, L.R.; Stebbing, J. microRNAs with prognostic significance in pancreatic ductal adenocarcinoma: A meta-analysis. Eur. J. Cancer, 2015, 51(11), 1389-1404.
[http://dx.doi.org/10.1016/j.ejca.2015.04.006] [PMID: 26002251]
[60]
Cao, W.; Shi, P.; Ge, J.J. miR-21 enhances cardiac fibrotic remodeling and fibroblast proliferation via CADM1/STAT3 pathway. BMC Cardiovasc. Disord., 2017, 17(1), 88.
[http://dx.doi.org/10.1186/s12872-017-0520-7] [PMID: 28335740]
[61]
Yuan, J.; Chen, H.; Ge, D.; Xu, Y.; Xu, H.; Yang, Y.; Gu, M.; Zhou, Y.; Zhu, J.; Ge, T.; Chen, Q.; Gao, Y.; Wang, Y.; Li, X.; Zhao, Y. Mir-21 Promotes cardiac fibrosis after myocardial infarction via targeting smad7. Cell. Physiol. Biochem., 2017, 42(6), 2207-2219.
[http://dx.doi.org/10.1159/000479995] [PMID: 28817807]
[62]
Yan, M.; Chen, C.; Gong, W.; Yin, Z.; Zhou, L.; Chaugai, S.; Wang, D.W. miR-21-3p regulates cardiac hypertrophic response by targeting histone deacetylase-8. Cardiovasc. Res., 2015, 105(3), 340-352.
[http://dx.doi.org/10.1093/cvr/cvu254] [PMID: 25504627]
[63]
Patrick, D.M.; Montgomery, R.L.; Qi, X.; Obad, S.; Kauppinen, S.; Hill, J.A.; van Rooij, E.; Olson, E.N. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J. Clin. Invest., 2010, 120(11), 3912-3916.
[http://dx.doi.org/10.1172/JCI43604] [PMID: 20978354]
[64]
Li, M.; Guan, X.; Sun, Y.; Mi, J.; Shu, X.; Liu, F.; Li, C. miR-92a family and their target genes in tumorigenesis and metastasis. Exp. Cell Res., 2014, 323(1), 1-6.
[http://dx.doi.org/10.1016/j.yexcr.2013.12.025] [PMID: 24394541]
[65]
de Winther, M.P.; Lutgens, E. MiR-92a: at the heart of lipid-driven endothelial dysfunction. Circ. Res., 2014, 114(3), 399-401.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.303125] [PMID: 24481837]
[66]
Daniel, J.M.; Penzkofer, D.; Teske, R.; Dutzmann, J.; Koch, A.; Bielenberg, W.; Bonauer, A.; Boon, R.A.; Fischer, A.; Bauersachs, J.; van Rooij, E.; Dimmeler, S.; Sedding, D.G. Inhibition of miR-92a improves re-endothelialization and prevents neointima formation following vascular injury. Cardiovasc. Res., 2014, 103(4), 564-572.
[http://dx.doi.org/10.1093/cvr/cvu162] [PMID: 25020912]
[67]
Bellera, N.; Barba, I.; Rodriguez-Sinovas, A.; Ferret, E.; Asín, M.A.; Gonzalez-Alujas, M.T.; Pérez-Rodon, J.; Esteves, M.; Fonseca, C.; Toran, N.; Garcia Del Blanco, B.; Pérez, A.; Garcia-Dorado, D. Single intracoronary injection of encapsulated antagomir-92a promotes angiogenesis and prevents adverse infarct remodeling. J. Am. Heart Assoc., 2014, 3(5)e000946
[http://dx.doi.org/10.1161/JAHA.114.000946] [PMID: 25240056]
[68]
Ebrahimi, F.; Gopalan, V.; Smith, R.A.; Lam, A.K. miR-126 in human cancers: clinical roles and current perspectives. Exp. Mol. Pathol., 2014, 96(1), 98-107.
[http://dx.doi.org/10.1016/j.yexmp.2013.12.004] [PMID: 24368110]
[69]
Mattes, J.; Collison, A.; Plank, M.; Phipps, S.; Foster, P.S. Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc. Natl. Acad. Sci. USA, 2009, 106(44), 18704-18709.
[http://dx.doi.org/10.1073/pnas.0905063106] [PMID: 19843690]
[70]
Tang, F.; Yang, T.L. MicroRNA-126 alleviates endothelial cells injury in atherosclerosis by restoring autophagic flux via inhibiting of PI3K/Akt/mTOR pathway. Biochem. Biophys. Res. Commun., 2018, 495(1), 1482-1489.
[http://dx.doi.org/10.1016/j.bbrc.2017.12.001] [PMID: 29203244]
[71]
Fish, J.E.; Santoro, M.M.; Morton, S.U.; Yu, S.; Yeh, R.F.; Wythe, J.D.; Ivey, K.N.; Bruneau, B.G.; Stainier, D.Y.; Srivastava, D. miR-126 regulates angiogenic signaling and vascular integrity. Dev. Cell, 2008, 15(2), 272-284.
[http://dx.doi.org/10.1016/j.devcel.2008.07.008] [PMID: 18694566]
[72]
Montagner, S.; Orlandi, E.M.; Merante, S.; Monticelli, S. The role of miRNAs in mast cells and other innate immune cells. Immunol. Rev., 2013, 253(1), 12-24.
[http://dx.doi.org/10.1111/imr.12042] [PMID: 23550635]
[73]
Vigorito, E.; Kohlhaas, S.; Lu, D.; Leyland, R. miR-155: an ancient regulator of the immune system. Immunol. Rev., 2013, 253(1), 146-157.
[http://dx.doi.org/10.1111/imr.12057] [PMID: 23550644]
[74]
Zhang, Y.; Zhang, M.; Li, X.; Tang, Z.; Wang, X.; Zhong, M.; Suo, Q.; Zhang, Y.; Lv, K. Silencing MicroRNA-155 Attenuates cardiac injury and dysfunction in viral myocarditis via promotion of M2 phenotype polarization of macrophages. Sci. Rep., 2016, 6, 22613.
[http://dx.doi.org/10.1038/srep22613] [PMID: 26931072]
[75]
Wei, Y.; Zhu, M.; Corbalán-Campos, J.; Heyll, K.; Weber, C.; Schober, A. Regulation of Csf1r and Bcl6 in macrophages mediates the stage-specific effects of microRNA-155 on atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2015, 35(4), 796-803.
[http://dx.doi.org/10.1161/ATVBAHA.114.304723] [PMID: 25810298]
[76]
Seok, H.Y.; Chen, J.; Kataoka, M.; Huang, Z.P.; Ding, J.; Yan, J.; Hu, X.; Wang, D.Z. Loss of MicroRNA-155 protects the heart from pathological cardiac hypertrophy. Circ. Res., 2014, 114(10), 1585-1595.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.303784] [PMID: 24657879]
[77]
Di Martino, M.T.; Rossi, M.; Caracciolo, D.; Gullà, A.; Tagliaferri, P.; Tassone, P. Mir-221/222 are promising targets for innovative anticancer therapy. Expert Opin. Ther. Targets, 2016, 20(9), 1099-1108.
[http://dx.doi.org/10.1517/14728222.2016.1164693] [PMID: 26959615]
[78]
Shah, M.Y.; Calin, G.A. MicroRNAs miR-221 and miR-222: a new level of regulation in aggressive breast cancer. Genome Med., 2011, 3(8), 56-56.
[http://dx.doi.org/10.1186/gm272] [PMID: 21888691]
[79]
Wang, C.; Wang, S.; Zhao, P.; Wang, X.; Wang, J.; Wang, Y.; Song, L.; Zou, Y.; Hui, R. MiR-221 promotes cardiac hypertrophy in vitro through the modulation of p27 expression. J. Cell. Biochem., 2012, 113(6), 2040-2046.
[http://dx.doi.org/10.1002/jcb.24075] [PMID: 22275134]
[80]
Verjans, R.; Peters, T.; Beaumont, F.J.; van Leeuwen, R.; van Herwaarden, T.; Verhesen, W.; Munts, C.; Bijnen, M.; Henkens, M.; Diez, J.; de Windt, L.J.; van Nieuwenhoven, F.A.; van Bilsen, M.; Goumans, M.J.; Heymans, S.; González, A.; Schroen, B. MicroRNA-221/222 family counteracts myocardial fibrosis in pressure overload-induced heart failure. Hypertension, 2018, 71(2), 280-288.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.10094] [PMID: 29255073]
[81]
Su, M.; Chen, Z.; Wang, C.; Song, L.; Zou, Y.; Zhang, L.; Hui, R.; Wang, J. Cardiac-Specific Overexpression of miR-222 induces heart failure and inhibits autophagy in mice. Cell. Physiol. Biochem., 2016, 39(4), 1503-1511.
[http://dx.doi.org/10.1159/000447853] [PMID: 27614440]
[82]
Sayed, D.; Hong, C.; Chen, I.Y.; Lypowy, J.; Abdellatif, M. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ. Res., 2007, 100(3), 416-424.
[http://dx.doi.org/10.1161/01.RES.0000257913.42552.23] [PMID: 17234972]
[83]
Karakikes, I.; Chaanine, A.H.; Kang, S.; Mukete, B.N.; Jeong, D.; Zhang, S.; Hajjar, R.J.; Lebeche, D. Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload-induced cardiac hypertrophy and attenuates pathological remodeling. J. Am. Heart Assoc., 2013, 2(2)e000078
[http://dx.doi.org/10.1161/JAHA.113.000078] [PMID: 23612897]
[84]
Li, Q.; Song, X.W.; Zou, J.; Wang, G.K.; Kremneva, E.; Li, X.Q.; Zhu, N.; Sun, T.; Lappalainen, P.; Yuan, W.J.; Qin, Y.W.; Jing, Q. Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy. J. Cell Sci., 2010, 123(Pt 14), 2444-2452.
[http://dx.doi.org/10.1242/jcs.067165] [PMID: 20571053]
[85]
Ikeda, S.; He, A.; Kong, S.W.; Lu, J.; Bejar, R.; Bodyak, N.; Lee, K.H.; Ma, Q.; Kang, P.M.; Golub, T.R.; Pu, W.T. MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol. Cell. Biol., 2009, 29(8), 2193-2204.
[http://dx.doi.org/10.1128/MCB.01222-08] [PMID: 19188439]
[86]
Ai, J.; Zhang, R.; Gao, X.; Niu, H.F.; Wang, N.; Xu, Y.; Li, Y.; Ma, N.; Sun, L.H.; Pan, Z.W.; Li, W.M.; Yang, B.F. Overexpression of microRNA-1 impairs cardiac contractile function by damaging sarcomere assembly. Cardiovasc. Res., 2012, 95(3), 385-393.
[http://dx.doi.org/10.1093/cvr/cvs196] [PMID: 22719074]
[87]
Hua, Y.; Zhang, Y.; Ren, J. IGF-1 deficiency resists cardiac hypertrophy and myocardial contractile dysfunction: role of microRNA-1 and microRNA-133a. J. Cell. Mol. Med., 2012, 16(1), 83-95.
[http://dx.doi.org/10.1111/j.1582-4934.2011.01307.x] [PMID: 21418519]
[88]
Cheng, Y.; Ji, R.; Yue, J.; Yang, J.; Liu, X.; Chen, H.; Dean, D.B.; Zhang, C. MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? Am. J. Pathol., 2007, 170(6), 1831-1840.
[http://dx.doi.org/10.2353/ajpath.2007.061170] [PMID: 17525252]
[89]
Thum, T.; Gross, C.; Fiedler, J.; Fischer, T.; Kissler, S.; Bussen, M.; Galuppo, P.; Just, S.; Rottbauer, W.; Frantz, S.; Castoldi, M.; Soutschek, J.; Koteliansky, V.; Rosenwald, A.; Basson, M.A.; Licht, J.D.; Pena, J.T.; Rouhanifard, S.H.; Muckenthaler, M.U.; Tuschl, T.; Martin, G.R.; Bauersachs, J.; Engelhardt, S. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 2008, 456(7224), 980-984.
[http://dx.doi.org/10.1038/nature07511] [PMID: 19043405]
[90]
Bang, C.; Batkai, S.; Dangwal, S.; Gupta, S.K.; Foinquinos, A.; Holzmann, A.; Just, A.; Remke, J.; Zimmer, K.; Zeug, A.; Ponimaskin, E.; Schmiedl, A.; Yin, X.; Mayr, M.; Halder, R.; Fischer, A.; Engelhardt, S.; Wei, Y.; Schober, A.; Fiedler, J.; Thum, T. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J. Clin. Invest., 2014, 124(5), 2136-2146.
[http://dx.doi.org/10.1172/JCI70577] [PMID: 24743145]
[91]
Ramanujam, D.; Sassi, Y.; Laggerbauer, B.; Engelhardt, S. Viral vector-based targeting of miR-21 in cardiac nonmyocyte cells reduces pathologic remodeling of the heart. Mol. Ther., 2016, 24(11), 1939-1948.
[http://dx.doi.org/10.1038/mt.2016.166] [PMID: 27545313]
[92]
Carè, A.; Catalucci, D.; Felicetti, F.; Bonci, D.; Addario, A.; Gallo, P.; Bang, M.L.; Segnalini, P.; Gu, Y.; Dalton, N.D.; Elia, L.; Latronico, M.V.; Høydal, M.; Autore, C.; Russo, M.A.; Dorn, G.W., II; Ellingsen, O.; Ruiz-Lozano, P.; Peterson, K.L.; Croce, C.M.; Peschle, C.; Condorelli, G. MicroRNA-133 controls cardiac hypertrophy. Nat. Med., 2007, 13(5), 613-618.
[http://dx.doi.org/10.1038/nm1582] [PMID: 17468766]
[93]
Duisters, R.F.; Tijsen, A.J.; Schroen, B.; Leenders, J.J.; Lentink, V.; van der Made, I.; Herias, V.; van Leeuwen, R.E.; Schellings, M.W.; Barenbrug, P.; Maessen, J.G.; Heymans, S.; Pinto, Y.M.; Creemers, E.E. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ. Res., 2009, 104(2), 170-178.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.182535] [PMID: 19096030]
[94]
Montgomery, R.L.; Hullinger, T.G.; Semus, H.M.; Dickinson, B.A.; Seto, A.G.; Lynch, J.M.; Stack, C.; Latimer, P.A.; Olson, E.N.; van Rooij, E. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation, 2011, 124(14), 1537-1547.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.030932] [PMID: 21900086]
[95]
Paulin, R.; Sutendra, G.; Gurtu, V.; Dromparis, P.; Haromy, A.; Provencher, S.; Bonnet, S.; Michelakis, E.D. A miR-208-Mef2 axis drives the decompensation of right ventricular function in pulmonary hypertension. Circ. Res., 2015, 116(1), 56-69.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.303910] [PMID: 25287062]
[96]
You, X.Y.; Huang, J.H.; Liu, B.; Liu, S.J.; Zhong, Y.; Liu, S.M. HMGA1 is a new target of miR-195 involving isoprenaline-induced cardiomyocyte hypertrophy. Biochemistry (Mosc.), 2014, 79(6), 538-544.
[http://dx.doi.org/10.1134/S0006297914060078] [PMID: 25100012]
[97]
Chen, H.; Untiveros, G.M.; McKee, L.A.; Perez, J.; Li, J.; Antin, P.B.; Konhilas, J.P. Micro-RNA-195 and -451 regulate the LKB1/AMPK signaling axis by targeting MO25. PLoS One, 2012, 7(7)e41574
[http://dx.doi.org/10.1371/journal.pone.0041574] [PMID: 22844503]
[98]
Xiao, Y.; Zhang, X.; Fan, S.; Cui, G.; Shen, Z. MicroRNA-497 inhibits cardiac hypertrophy by targeting Sirt4. PLoS One, 2016, 11(12)e0168078
[http://dx.doi.org/10.1371/journal.pone.0168078] [PMID: 27992564]
[99]
Huang, S.; Zou, X.; Zhu, J.N.; Fu, Y.H.; Lin, Q.X.; Liang, Y.Y.; Deng, C.Y.; Kuang, S.J.; Zhang, M.Z.; Liao, Y.L.; Zheng, X.L.; Yu, X.Y.; Shan, Z.X. Attenuation of microRNA-16 derepresses the cyclins D1, D2 and E1 to provoke cardiomyocyte hypertrophy. J. Cell. Mol. Med., 2015, 19(3), 608-619.
[http://dx.doi.org/10.1111/jcmm.12445] [PMID: 25583328]
[100]
Tijsen, A.J.; van der Made, I.; van den Hoogenhof, M.M.; Wijnen, W.J.; van Deel, E.D.; de Groot, N.E.; Alekseev, S.; Fluiter, K.; Schroen, B.; Goumans, M.J.; van der Velden, J.; Duncker, D.J.; Pinto, Y.M.; Creemers, E.E. The microRNA-15 family inhibits the TGFβ-pathway in the heart. Cardiovasc. Res., 2014, 104(1), 61-71.
[http://dx.doi.org/10.1093/cvr/cvu184] [PMID: 25103110]
[101]
Heymans, S.; Corsten, M.F.; Verhesen, W.; Carai, P.; van Leeuwen, R.E.; Custers, K.; Peters, T.; Hazebroek, M.; Stöger, L.; Wijnands, E.; Janssen, B.J.; Creemers, E.E.; Pinto, Y.M.; Grimm, D.; Schürmann, N.; Vigorito, E.; Thum, T.; Stassen, F.; Yin, X.; Mayr, M.; de Windt, L.J.; Lutgens, E.; Wouters, K.; de Winther, M.P.; Zacchigna, S.; Giacca, M.; van Bilsen, M.; Papageorgiou, A.P.; Schroen, B. Macrophage microRNA-155 promotes cardiac hypertrophy and failure. Circulation, 2013, 128(13), 1420-1432.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.001357] [PMID: 23956210]
[102]
Wang, C.; Zhang, C.; Liu, L. A, X.; Chen, B.; Li, Y.; Du, J. Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury. Mol. Ther., 2017, 25(1), 192-204.
[http://dx.doi.org/10.1016/j.ymthe.2016.09.001] [PMID: 28129114]
[103]
He, W.; Huang, H.; Xie, Q.; Wang, Z.; Fan, Y.; Kong, B.; Huang, D.; Xiao, Y. MiR-155 Knockout in Fibroblasts Improves Cardiac Remodeling by Targeting Tumor Protein p53-Inducible Nuclear Protein 1. J. Cardiovasc. Pharmacol. Ther., 2016, 21(4), 423-435.
[http://dx.doi.org/10.1177/1074248415616188] [PMID: 26589288]
[104]
Kelly, M.; Bagnall, R.D.; Peverill, R.E.; Donelan, L.; Corben, L.; Delatycki, M.B.; Semsarian, C. A polymorphic miR-155 binding site in AGTR1 is associated with cardiac hypertrophy in Friedreich ataxia. J. Mol. Cell. Cardiol., 2011, 51(5), 848-854.
[http://dx.doi.org/10.1016/j.yjmcc.2011.07.001] [PMID: 21771600]
[105]
Liu, X.; Xiao, J.; Zhu, H.; Wei, X.; Platt, C.; Damilano, F.; Xiao, C.; Bezzerides, V.; Boström, P.; Che, L.; Zhang, C.; Spiegelman, B.M.; Rosenzweig, A. miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab., 2015, 21(4), 584-595.
[http://dx.doi.org/10.1016/j.cmet.2015.02.014] [PMID: 25863248]
[106]
Kakimoto, Y.; Tanaka, M.; Hayashi, H.; Yokoyama, K.; Osawa, M. Overexpression of miR-221 in sudden death with cardiac hypertrophy patients. Heliyon, 2018, 4(6)e00639
[http://dx.doi.org/10.1016/j.heliyon.2018.e00639] [PMID: 30009269]
[107]
Su, M.; Wang, J.; Wang, C.; Wang, X.; Dong, W.; Qiu, W.; Wang, Y.; Zhao, X.; Zou, Y.; Song, L.; Zhang, L.; Hui, R. MicroRNA-221 inhibits autophagy and promotes heart failure by modulating the p27/CDK2/mTOR axis. Cell Death Differ., 2015, 22(6), 986-999.
[http://dx.doi.org/10.1038/cdd.2014.187] [PMID: 25394488]
[108]
Kuwabara, Y.; Ono, K.; Horie, T.; Nishi, H.; Nagao, K.; Kinoshita, M.; Watanabe, S.; Baba, O.; Kojima, Y.; Shizuta, S.; Imai, M.; Tamura, T.; Kita, T.; Kimura, T. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet, 2011, 4(4), 446-454.
[http://dx.doi.org/10.1161/CIRCGENETICS.110.958975] [PMID: 21642241]
[109]
He, B.; Xiao, J.; Ren, A.J.; Zhang, Y.F.; Zhang, H.; Chen, M.; Xie, B.; Gao, X.G.; Wang, Y.W. Role of miR-1 and miR-133a in myocardial ischemic postconditioning. J. Biomed. Sci., 2011, 18, 22.
[http://dx.doi.org/10.1186/1423-0127-18-22] [PMID: 21406115]
[110]
Tang, Y.; Zheng, J.; Sun, Y.; Wu, Z.; Liu, Z.; Huang, G. MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int. Heart J., 2009, 50(3), 377-387.
[http://dx.doi.org/10.1536/ihj.50.377] [PMID: 19506341]
[111]
Liu, H.; Li, G.; Zhao, W.; Hu, Y. Inhibition of MiR-92a may protect endothelial cells after acute myocardial infarction in rats: Role of KLF2/4. Med. Sci. Monit., 2016, 22, 2451-2462.
[http://dx.doi.org/10.12659/MSM.897266] [PMID: 27411964]
[112]
Bonauer, A.; Carmona, G.; Iwasaki, M.; Mione, M.; Koyanagi, M.; Fischer, A.; Burchfield, J.; Fox, H.; Doebele, C.; Ohtani, K.; Chavakis, E.; Potente, M.; Tjwa, M.; Urbich, C.; Zeiher, A.M.; Dimmeler, S. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science, 2009, 324(5935), 1710-1713.
[http://dx.doi.org/10.1126/science.1174381] [PMID: 19460962]
[113]
Wang, S.; Aurora, A.B.; Johnson, B.A.; Qi, X.; McAnally, J.; Hill, J.A.; Richardson, J.A.; Bassel-Duby, R.; Olson, E.N. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell, 2008, 15(2), 261-271.
[http://dx.doi.org/10.1016/j.devcel.2008.07.002] [PMID: 18694565]
[114]
Qiang, L.; Hong, L.; Ningfu, W.; Huaihong, C.; Jing, W. Expression of miR-126 and miR-508-5p in endothelial progenitor cells is associated with the prognosis of chronic heart failure patients. Int. J. Cardiol., 2013, 168(3), 2082-2088.
[http://dx.doi.org/10.1016/j.ijcard.2013.01.160] [PMID: 23465244]
[115]
Wang, Y.; Wang, F.; Wu, Y.; Zuo, L.; Zhang, S.; Zhou, Q.; Wei, W.; Wang, Y.; Zhu, H. MicroRNA-126 attenuates palmitate-induced apoptosis by targeting TRAF7 in HUVECs. Mol. Cell. Biochem., 2015, 399(1-2), 123-130.
[http://dx.doi.org/10.1007/s11010-014-2239-4] [PMID: 25318608]
[116]
Wang, W.; Zheng, Y.; Wang, M.; Yan, M.; Jiang, J.; Li, Z. Exosomes derived miR-126 attenuates oxidative stress and apoptosis from ischemia and reperfusion injury by targeting ERRFI1. Gene, 2019, 690, 75-80.
[http://dx.doi.org/10.1016/j.gene.2018.12.044] [PMID: 30597234]
[117]
Huang, F.; Zhu, X.; Hu, X.Q.; Fang, Z.F.; Tang, L.; Lu, X.L.; Zhou, S.H. Mesenchymal stem cells modified with miR-126 release angiogenic factors and activate Notch ligand Delta-like-4, enhancing ischemic angiogenesis and cell survival. Int. J. Mol. Med., 2013, 31(2), 484-492.
[http://dx.doi.org/10.3892/ijmm.2012.1200] [PMID: 23229021]
[118]
Luo, Q.; Guo, D.; Liu, G.; Chen, G.; Hang, M.; Jin, M. Exosomes from MiR-126-overexpressing Adscs are therapeutic in relieving acute myocardial ischaemic injury. Cell. Physiol. Biochem., 2017, 44(6), 2105-2116.
[http://dx.doi.org/10.1159/000485949] [PMID: 29241208]
[119]
Wang, F.; Yuan, Y.; Yang, P.; Li, X. Extracellular vesicles-mediated transfer of miR-208a/b exaggerate hypoxia/reoxygenation injury in cardiomyocytes by reducing QKI expression. Mol. Cell. Biochem., 2017, 431(1-2), 187-195.
[http://dx.doi.org/10.1007/s11010-017-2990-4] [PMID: 28283792]
[120]
Yan, X.; Liu, J.; Wu, H.; Liu, Y.; Zheng, S.; Zhang, C.; Yang, C. Impact of miR-208 and its target gene nemo-like kinase on the protective effect of ginsenoside Rb1 in hypoxia/ischemia injuried cardiomyocytes. Cell. Physiol. Biochem., 2016, 39(3), 1187-1195.
[http://dx.doi.org/10.1159/000447825] [PMID: 27577116]
[121]
Zhou, Y.L.; Sun, Q.; Zhang, L.; Li, R. miR-208b targets Bax to protect H9c2 cells against hypoxia-induced apoptosis. Biomed. Pharmacother., 2018, 106, 1751-1759.
[http://dx.doi.org/10.1016/j.biopha.2018.07.141] [PMID: 30119250]
[122]
Zhang, S.; Zhang, R.; Wu, F.; Li, X. MicroRNA-208a regulates H9c2 cells simulated ischemia-reperfusion myocardial injury via targeting CHD9 through Notch/NF-kappa B signal pathways. Int. Heart J., 2018, 59(3), 580-588.
[http://dx.doi.org/10.1536/ihj.17-147] [PMID: 29681568]
[123]
Shyu, K.G.; Wang, B.W.; Wu, G.J.; Lin, C.M.; Chang, H. Mechanical stretch via transforming growth factor-β1 activates microRNA208a to regulate endoglin expression in cultured rat cardiac myoblasts. Eur. J. Heart Fail., 2013, 15(1), 36-45.
[http://dx.doi.org/10.1093/eurjhf/hfs143] [PMID: 22941949]
[124]
Zhang, Y.H.; He, K.; Shi, G. Effects of MicroRNA-499 On the inflammatory damage of endothelial cells during coronary artery disease via the targeting of PDCD4 through the NF-Kβ/TNF-α signaling pathway. Cell. Physiol. Biochem., 2017, 44(1), 110-124.
[http://dx.doi.org/10.1159/000484588] [PMID: 29131009]
[125]
Zhu, J.; Yao, K.; Wang, Q.; Guo, J.; Shi, H.; Ma, L.; Liu, H.; Gao, W.; Zou, Y.; Ge, J. Ischemic postconditioning-regulated miR-499 protects the rat heart against ischemia/reperfusion injury by inhibiting apoptosis through PDCD4. Cell. Physiol. Biochem., 2016, 39(6), 2364-2380.
[http://dx.doi.org/10.1159/000452506] [PMID: 27832626]
[126]
Wang, J.X.; Jiao, J.Q.; Li, Q.; Long, B.; Wang, K.; Liu, J.P.; Li, Y.R.; Li, P.F. miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat. Med., 2011, 17(1), 71-78.
[http://dx.doi.org/10.1038/nm.2282] [PMID: 21186368]
[127]
Wang, J.; Jia, Z.; Zhang, C.; Sun, M.; Wang, W.; Chen, P.; Ma, K.; Zhang, Y.; Li, X.; Zhou, C. miR-499 protects cardiomyocytes from H 2O 2-induced apoptosis via its effects on Pdcd4 and Pacs2. RNA Biol., 2014, 11(4), 339-350.
[http://dx.doi.org/10.4161/rna.28300] [PMID: 24646523]
[128]
Shieh, J.T.C.; Huang, Y.; Gilmore, J.; Srivastava, D. Elevated miR-499 levels blunt the cardiac stress response. PLoS One, 2011, 6(5)e19481
[http://dx.doi.org/10.1371/journal.pone.0019481] [PMID: 21573063]
[129]
Kishore, R.; Verma, S.K.; Mackie, A.R.; Vaughan, E.E.; Abramova, T.V.; Aiko, I.; Krishnamurthy, P. Bone marrow progenitor cell therapy-mediated paracrine regulation of cardiac miRNA-155 modulates fibrotic response in diabetic hearts. PLoS One, 2013, 8(4)e60161
[http://dx.doi.org/10.1371/journal.pone.0060161] [PMID: 23560074]
[130]
Jopling, C.; Sleep, E.; Raya, M.; Martí, M.; Raya, A.; Izpisúa Belmonte, J.C. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature, 2010, 464(7288), 606-609.
[http://dx.doi.org/10.1038/nature08899] [PMID: 20336145]
[131]
Haubner, B.J.; Adamowicz-Brice, M.; Khadayate, S.; Tiefenthaler, V.; Metzler, B.; Aitman, T.; Penninger, J.M. Complete cardiac regeneration in a mouse model of myocardial infarction. Aging (Albany NY), 2012, 4(12), 966-977.
[http://dx.doi.org/10.18632/aging.100526] [PMID: 23425860]
[132]
Hullinger, T.G.; Montgomery, R.L.; Seto, A.G.; Dickinson, B.A.; Semus, H.M.; Lynch, J.M.; Dalby, C.M.; Robinson, K.; Stack, C.; Latimer, P.A.; Hare, J.M.; Olson, E.N.; van Rooij, E. Inhibition of miR-15 protects against cardiac ischemic injury. Circ. Res., 2012, 110(1), 71-81.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.244442] [PMID: 22052914]
[133]
Hang, P.; Sun, C.; Guo, J.; Zhao, J.; Du, Z. BDNF-mediates down-regulation of MicroRNA-195 inhibits ischemic cardiac apoptosis in rats. Int. J. Biol. Sci., 2016, 12(8), 979-989.
[http://dx.doi.org/10.7150/ijbs.15071] [PMID: 27489501]
[134]
Zhu, H.; Yang, Y.; Wang, Y.; Li, J.; Schiller, P.W.; Peng, T. MicroRNA-195 promotes palmitate-induced apoptosis in cardiomyocytes by down-regulating Sirt1. Cardiovasc. Res., 2011, 92(1), 75-84.
[http://dx.doi.org/10.1093/cvr/cvr145] [PMID: 21622680]
[135]
Qin, L.; Yang, W.; Wang, Y.X.; Wang, Z.J.; Li, C.C.; Li, M.; Liu, J.Y. MicroRNA-497 promotes proliferation and inhibits apoptosis of cardiomyocytes through the downregulation of Mfn2 in a mouse model of myocardial ischemia-reperfusion injury. Biomed. Pharmacother., 2018, 105, 103-114.
[http://dx.doi.org/10.1016/j.biopha.2018.04.181] [PMID: 29852387]
[136]
Liu, J.; Sun, F.; Wang, Y.; Yang, W.; Xiao, H.; Zhang, Y.; Lu, R.; Zhu, H.; Zhuang, Y.; Pan, Z. Suppression of microRNA-16 protects against acute myocardial infarction by reversingbeta2-adrenergic receptor down-regulation in rats. Oncotarget, 2017, 8(12), 20122-20132.
[http://dx.doi.org/10.18632/oncotarget.15391]
[137]
Xu, X.; Kriegel, A.J.; Jiao, X.; Liu, H.; Bai, X.; Olson, J.; Liang, M.; Ding, X. miR-21 in ischemia/reperfusion injury: a double-edged sword? Physiol. Genomics, 2014, 46(21), 789-797.
[http://dx.doi.org/10.1152/physiolgenomics.00020.2014] [PMID: 25159851]
[138]
Liang, H.; Zhang, C.; Ban, T.; Liu, Y.; Mei, L.; Piao, X.; Zhao, D.; Lu, Y.; Chu, W.; Yang, B. A novel reciprocal loop between microRNA-21 and TGFβRIII is involved in cardiac fibrosis. Int. J. Biochem. Cell Biol., 2012, 44(12), 2152-2160.
[http://dx.doi.org/10.1016/j.biocel.2012.08.019] [PMID: 22960625]
[139]
Roy, S.; Khanna, S.; Hussain, S.R.; Biswas, S.; Azad, A.; Rink, C.; Gnyawali, S.; Shilo, S.; Nuovo, G.J.; Sen, C.K. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc. Res., 2009, 82(1), 21-29.
[http://dx.doi.org/10.1093/cvr/cvp015] [PMID: 19147652]
[140]
Gu, G.L.; Xu, X.L.; Sun, X.T.; Zhang, J.; Guo, C.F.; Wang, C.S.; Sun, B.; Guo, G.L.; Ma, K.; Huang, Y.Y.; Sun, L.Q.; Wang, Y.Q. Cardioprotective effect of MicroRNA-21 in murine myocardial infarction. Cardiovasc. Ther., 2015, 33(3), 109-117.
[http://dx.doi.org/10.1111/1755-5922.12118] [PMID: 25809568]
[141]
Yang, F.; Liu, W.; Yan, X.; Zhou, H.; Zhang, H.; Liu, J.; Yu, M.; Zhu, X.; Ma, K. Effects of mir-21 on cardiac microvascular endothelial cells after acute myocardial infarction in rats: role of phosphatase and tensin homolog (PTEN)/vascular endothelial growth factor (VEGF) Signal Pathway. Med. Sci. Monit., 2016, 22, 3562-3575.
[http://dx.doi.org/10.12659/MSM.897773] [PMID: 27708252]
[142]
Hartmann, D.; Fiedler, J.; Sonnenschein, K.; Just, A.; Pfanne, A.; Zimmer, K.; Remke, J.; Foinquinos, A.; Butzlaff, M.; Schimmel, K.; Maegdefessel, L.; Hilfiker-Kleiner, D.; Lachmann, N.; Schober, A.; Froese, N.; Heineke, J.; Bauersachs, J.; Batkai, S.; Thum, T. MicroRNA-based therapy of GATA2-deficient vascular disease. Circulation, 2016, 134(24), 1973-1990.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.022478] [PMID: 27780851]
[143]
Schober, A.; Nazari-Jahantigh, M.; Wei, Y.; Bidzhekov, K.; Gremse, F.; Grommes, J.; Megens, R.T.; Heyll, K.; Noels, H.; Hristov, M.; Wang, S.; Kiessling, F.; Olson, E.N.; Weber, C. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat. Med., 2014, 20(4), 368-376.
[http://dx.doi.org/10.1038/nm.3487] [PMID: 24584117]
[144]
Harris, T.A.; Yamakuchi, M.; Ferlito, M.; Mendell, J.T.; Lowenstein, C.J. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc. Natl. Acad. Sci. USA, 2008, 105(5), 1516-1521.
[http://dx.doi.org/10.1073/pnas.0707493105] [PMID: 18227515]
[145]
Wu, H.; Zhang, J. miR-126 in peripheral blood mononuclear cells negatively correlates with risk and severity and is associated with inflammatory cytokines as well as intercellular adhesion molecule-1 in patients with coronary artery disease. Cardiology, 2018, 139(2), 110-118.
[http://dx.doi.org/10.1159/000484236] [PMID: 29316562]
[146]
Zhu, J.; Chen, T.; Yang, L.; Li, Z.; Wong, M.M.; Zheng, X.; Pan, X.; Zhang, L.; Yan, H. Regulation of microRNA-155 in atherosclerotic inflammatory responses by targeting MAP3K10. PLoS One, 2012, 7(11)e46551
[http://dx.doi.org/10.1371/journal.pone.0046551] [PMID: 23189122]
[147]
Zhang, F.; Zhao, J.; Sun, D.; Wei, N. MiR-155 inhibits transformation of macrophages into foam cells via regulating CEH expression. Biomed. Pharmacother., 2018, 104, 645-651.
[http://dx.doi.org/10.1016/j.biopha.2018.05.068] [PMID: 29803178]
[148]
Tian, F.J.; An, L.N.; Wang, G.K.; Zhu, J.Q.; Li, Q.; Zhang, Y.Y.; Zeng, A.; Zou, J.; Zhu, R.F.; Han, X.S.; Shen, N.; Yang, H.T.; Zhao, X.X.; Huang, S.; Qin, Y.W.; Jing, Q. Elevated microRNA-155 promotes foam cell formation by targeting HBP1 in atherogenesis. Cardiovasc. Res., 2014, 103(1), 100-110.
[http://dx.doi.org/10.1093/cvr/cvu070] [PMID: 24675724]
[149]
Nazari-Jahantigh, M.; Wei, Y.; Noels, H.; Akhtar, S.; Zhou, Z.; Koenen, R.R.; Heyll, K.; Gremse, F.; Kiessling, F.; Grommes, J.; Weber, C.; Schober, A. MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J. Clin. Invest., 2012, 122(11), 4190-4202.
[http://dx.doi.org/10.1172/JCI61716] [PMID: 23041630]
[150]
Liu, X.; Cheng, Y.; Zhang, S.; Lin, Y.; Yang, J.; Zhang, C. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ. Res., 2009, 104(4), 476-487.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.185363] [PMID: 19150885]
[151]
Liu, X.; Cheng, Y.; Yang, J.; Xu, L.; Zhang, C. Cell-specific effects of miR-221/222 in vessels:molecular mechanism and therapeutic application. J. Mol. Cell. Cardiol., 2012, 52(1), 245-255.
[152]
Qin, B.; Cao, Y.; Yang, H.; Xiao, B.; Lu, Z. MicroRNA-221/222 regulate ox-LDL-induced endothelial apoptosis via Ets-1/p21 inhibition. Mol. Cell. Biochem., 2015, 405(1-2), 115-124.
[http://dx.doi.org/10.1007/s11010-014-2211-3] [PMID: 25893733]
[153]
Zhang, X.; Mao, H.; Chen, J.Y.; Wen, S.; Li, D.; Ye, M.; Lv, Z. Increased expression of microRNA-221 inhibits PAK1 in endothelial progenitor cells and impairs its function via c-Raf/MEK/ERK pathway. Biochem. Biophys. Res. Commun., 2013, 431(3), 404-408.
[http://dx.doi.org/10.1016/j.bbrc.2012.12.157] [PMID: 23333386]
[154]
Dentelli, P.; Rosso, A.; Orso, F.; Olgasi, C.; Taverna, D.; Brizzi, M.F. microRNA-222 controls neovascularization by regulating signal transducer and activator of transcription 5A expression. Arterioscler. Thromb. Vasc. Biol., 2010, 30(8), 1562-1568.
[http://dx.doi.org/10.1161/ATVBAHA.110.206201] [PMID: 20489169]
[155]
Chen, Y.; Banda, M.; Speyer, C.L.; Smith, J.S.; Rabson, A.B.; Gorski, D.H. Regulation of the expression and activity of the antiangiogenic homeobox gene GAX/MEOX2 by ZEB2 and microRNA-221. Mol. Cell. Biol., 2010, 30(15), 3902-3913.
[http://dx.doi.org/10.1128/MCB.01237-09] [PMID: 20516212]
[156]
Chen, C.F.; Huang, J.; Li, H.; Zhang, C.; Huang, X.; Tong, G.; Xu, Y.Z. MicroRNA-221 regulates endothelial nitric oxide production and inflammatory response by targeting adiponectin receptor 1. Gene, 2015, 565(2), 246-251.
[http://dx.doi.org/10.1016/j.gene.2015.04.014] [PMID: 25865302]
[157]
Zhu, N.; Zhang, D.; Chen, S.; Liu, X.; Lin, L.; Huang, X.; Guo, Z.; Liu, J.; Wang, Y.; Yuan, W.; Qin, Y. Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration. Atherosclerosis, 2011, 215(2), 286-293.
[http://dx.doi.org/10.1016/j.atherosclerosis.2010.12.024] [PMID: 21310411]
[158]
Xue, Y.; Wei, Z.; Ding, H.; Wang, Q.; Zhou, Z.; Zheng, S.; Zhang, Y.; Hou, D.; Liu, Y.; Zen, K.; Zhang, C.Y.; Li, J.; Wang, D.; Jiang, X. MicroRNA-19b/221/222 induces endothelial cell dysfunction via suppression of PGC-1α in the progression of atherosclerosis. Atherosclerosis, 2015, 241(2), 671-681.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.06.031] [PMID: 26117405]
[159]
Mackenzie, N.C.; Staines, K.A.; Zhu, D.; Genever, P.; Macrae, V.E. miRNA-221 and miRNA-222 synergistically function to promote vascular calcification. Cell Biochem. Funct., 2014, 32(2), 209-216.
[http://dx.doi.org/10.1002/cbf.3005] [PMID: 24604335]
[160]
Yang, B.; Lin, H.; Xiao, J.; Lu, Y.; Luo, X.; Li, B.; Zhang, Y.; Xu, C.; Bai, Y.; Wang, H.; Chen, G.; Wang, Z. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat. Med., 2007, 13(4), 486-491.
[http://dx.doi.org/10.1038/nm1569] [PMID: 17401374]
[161]
Jia, X.; Zheng, S.; Xie, X.; Zhang, Y.; Wang, W.; Wang, Z.; Zhang, Y.; Wang, J.; Gao, M.; Hou, Y. MicroRNA-1 accelerates the shortening of atrial effective refractory period by regulating KCNE1 and KCNB2 expression: an atrial tachypacing rabbit model. PLoS One, 2013, 8(12)e85639
[http://dx.doi.org/10.1371/journal.pone.0085639] [PMID: 24386485]
[162]
Myers, R.; Timofeyev, V.; Li, N.; Kim, C.; Ledford, H.A.; Sirish, P.; Lau, V.; Zhang, Y.; Fayyaz, K.; Singapuri, A.; Lopez, J.E.; Knowlton, A.A.; Zhang, X.D.; Chiamvimonvat, N. Feedback mechanisms for cardiac-specific microRNAs and cAMP signaling in electrical remodeling. Circ Arrhythm Electrophysiol, 2015, 8(4), 942-950.
[http://dx.doi.org/10.1161/CIRCEP.114.002162] [PMID: 25995211]
[163]
Terentyev, D.; Belevych, A.E.; Terentyeva, R.; Martin, M.M.; Malana, G.E.; Kuhn, D.E.; Abdellatif, M.; Feldman, D.S.; Elton, T.S.; Györke, S. miR-1 overexpression enhances Ca(2+) release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56alpha and causing CaMKII-dependent hyperphosphorylation of RyR2. Circ. Res., 2009, 104(4), 514-521.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.181651] [PMID: 19131648]
[164]
Kumarswamy, R.; Lyon, A.R.; Volkmann, I.; Mills, A.M.; Bretthauer, J.; Pahuja, A.; Geers-Knörr, C.; Kraft, T.; Hajjar, R.J.; Macleod, K.T.; Harding, S.E.; Thum, T. SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/FoxO3A-dependent pathway. Eur. Heart J., 2012, 33(9), 1067-1075.
[http://dx.doi.org/10.1093/eurheartj/ehs043] [PMID: 22362515]
[165]
Shan, H.; Zhang, Y.; Cai, B.; Chen, X.; Fan, Y.; Yang, L.; Chen, X.; Liang, H.; Zhang, Y.; Song, X.; Xu, C.; Lu, Y.; Yang, B.; Du, Z. Upregulation of microRNA-1 and microRNA-133 contributes to arsenic-induced cardiac electrical remodeling. Int. J. Cardiol., 2013, 167(6), 2798-2805.
[http://dx.doi.org/10.1016/j.ijcard.2012.07.009] [PMID: 22889704]
[166]
Belevych, A.E.; Sansom, S.E.; Terentyeva, R.; Ho, H.T.; Nishijima, Y.; Martin, M.M.; Jindal, H.K.; Rochira, J.A.; Kunitomo, Y.; Abdellatif, M.; Carnes, C.A.; Elton, T.S.; Györke, S.; Terentyev, D. MicroRNA-1 and -133 increase arrhythmogenesis in heart failure by dissociating phosphatase activity from RyR2 complex. PLoS One, 2011, 6(12)e28324
[http://dx.doi.org/10.1371/journal.pone.0028324] [PMID: 22163007]
[167]
Ling, T.Y.; Wang, X.L.; Chai, Q.; Lau, T.W.; Koestler, C.M.; Park, S.J.; Daly, R.C.; Greason, K.L.; Jen, J.; Wu, L.Q.; Shen, W.F.; Shen, W.K.; Cha, Y.M.; Lee, H.C. Regulation of the SK3 channel by microRNA-499--potential role in atrial fibrillation. Heart Rhythm, 2013, 10(7), 1001-1009.
[http://dx.doi.org/10.1016/j.hrthm.2013.03.005] [PMID: 23499625]
[168]
Ling, T.Y.; Wang, X.L.; Chai, Q.; Lu, T.; Stulak, J.M.; Joyce, L.D.; Daly, R.C.; Greason, K.L.; Wu, L.Q.; Shen, W.K.; Cha, Y.M.; Lee, H.C. Regulation of cardiac CACNB2 by microRNA-499: Potential role in atrial fibrillation. BBA Clin., 2017, 7, 78-84.
[http://dx.doi.org/10.1016/j.bbacli.2017.02.002] [PMID: 28239561]
[169]
Corsten, M.F.; Papageorgiou, A.; Verhesen, W.; Carai, P.; Lindow, M.; Obad, S.; Summer, G.; Coort, S.L.; Hazebroek, M.; van Leeuwen, R.; Gijbels, M.J.; Wijnands, E.; Biessen, E.A.; De Winther, M.P.; Stassen, F.R.; Carmeliet, P.; Kauppinen, S.; Schroen, B.; Heymans, S. MicroRNA profiling identifies microRNA-155 as an adverse mediator of cardiac injury and dysfunction during acute viral myocarditis. Circ. Res., 2012, 111(4), 415-425.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.267443] [PMID: 22715471]
[170]
Rinaldi, C.; Wood, M.J.A. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat. Rev. Neurol., 2018, 14(1), 9-21.
[http://dx.doi.org/10.1038/nrneurol.2017.148] [PMID: 29192260]
[171]
Deleavey, G.F.; Damha, M.J. Designing chemically modified oligonucleotides for targeted gene silencing. Chem. Biol., 2012, 19(8), 937-954.
[http://dx.doi.org/10.1016/j.chembiol.2012.07.011] [PMID: 22921062]
[172]
Lima, J.F.; Cerqueira, L.; Figueiredo, C.; Oliveira, C.; Azevedo, N.F. Anti-miRNA oligonucleotides: A comprehensive guide for design. RNA Biol., 2018, 15(3), 338-352.
[http://dx.doi.org/10.1080/15476286.2018.1445959] [PMID: 29570036]
[173]
Levin, A.A. A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. Biochim. Biophys. Acta, 1999, 1489(1), 69-84.
[http://dx.doi.org/10.1016/S0167-4781(99)00140-2] [PMID: 10806998]
[174]
Eckstein, F. Phosphorothioate oligodeoxynucleotides: what is their origin and what is unique about them? Antisense Nucleic Acid Drug Dev., 2000, 10(2), 117-121.
[http://dx.doi.org/10.1089/oli.1.2000.10.117] [PMID: 10805163]
[175]
Krützfeldt, J.; Rajewsky, N.; Braich, R.; Rajeev, K.G.; Tuschl, T.; Manoharan, M.; Stoffel, M. Silencing of microRNAs in vivo with ‘antagomirs’. Nature, 2005, 438(7068), 685-689.
[http://dx.doi.org/10.1038/nature04303] [PMID: 16258535]
[176]
Bennett, C.F.; Swayze, E.E. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu. Rev. Pharmacol. Toxicol., 2010, 50, 259-293.
[http://dx.doi.org/10.1146/annurev.pharmtox.010909.105654] [PMID: 20055705]
[177]
Lam, J.K.W.; Chow, M.Y.T.; Zhang, Y.; Leung, S.W.S. siRNA versus miRNA as therapeutics for gene silencing. Mol. Ther. Nucleic Acids, 2015, 4(9)e252
[http://dx.doi.org/10.1038/mtna.2015.23] [PMID: 26372022]
[178]
Chan, J.H.; Lim, S.; Wong, W.S. Antisense oligonucleotides: from design to therapeutic application. Clin. Exp. Pharmacol. Physiol., 2006, 33(5-6), 533-540.
[http://dx.doi.org/10.1111/j.1440-1681.2006.04403.x] [PMID: 16700890]
[179]
Hutvágner, G.; Simard, M.J.; Mello, C.C.; Zamore, P.D. Sequence-specific inhibition of small RNA function. PLoS Biol., 2004, 2(4)e98
[http://dx.doi.org/10.1371/journal.pbio.0020098] [PMID: 15024405]
[180]
Esau, C.; Davis, S.; Murray, S.F.; Yu, X.X.; Pandey, S.K.; Pear, M.; Watts, L.; Booten, S.L.; Graham, M.; McKay, R.; Subramaniam, A.; Propp, S.; Lollo, B.A.; Freier, S.; Bennett, C.F.; Bhanot, S.; Monia, B.P. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab., 2006, 3(2), 87-98.
[http://dx.doi.org/10.1016/j.cmet.2006.01.005] [PMID: 16459310]
[181]
Davis, S.; Propp, S.; Freier, S.M.; Jones, L.E.; Serra, M.J.; Kinberger, G.; Bhat, B.; Swayze, E.E.; Bennett, C.F.; Esau, C. Potent inhibition of microRNA in vivo without degradation. Nucleic Acids Res., 2009, 37(1), 70-77.
[http://dx.doi.org/10.1093/nar/gkn904] [PMID: 19015151]
[182]
Joacim, E.; Morten, L.; Sylvia, S.; Matthew, L.; Andreas, P.; Susanna, O.; Marie, L.; Maj, H.R.; Elmén, J.; Lindow, M.; Schütz, S.; Lawrence, M.; Petri, A.; Obad, S.; Lindholm, M.; Hedtjärn, M.; Hansen, H.F.; Berger, U.; Gullans, S.; Kearney, P.; Sarnow, P.; Straarup, E.M.; Kauppinen, S. LNA-mediated microRNA silencing in non-human primates. Nature, 2008, 452(7189), 896-899.
[http://dx.doi.org/10.1038/nature06783] [PMID: 18368051]
[183]
Nedaeinia, R.; Sharifi, M.; Avan, A.; Kazemi, M.; Rafiee, L.; Ghayour-Mobarhan, M.; Salehi, R. Locked nucleic acid anti-miR-21 inhibits cell growth and invasive behaviors of a colorectal adenocarcinoma cell line: LNA-anti-miR as a novel approach. Cancer Gene Ther., 2016, 23(8), 246-253.
[http://dx.doi.org/10.1038/cgt.2016.25] [PMID: 27364574]
[184]
Braasch, D.A.; Corey, D.R. Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. Chem. Biol., 2001, 8(1), 1-7.
[http://dx.doi.org/10.1016/S1074-5521(00)00058-2] [PMID: 11182314]
[185]
Obad, S.; dos Santos, C.O.; Petri, A.; Heidenblad, M.; Broom, O.; Ruse, C.; Fu, C.; Lindow, M.; Stenvang, J.; Straarup, E.M.; Hansen, H.F.; Koch, T.; Pappin, D.; Hannon, G.J.; Kauppinen, S. Silencing of microRNA families by seed-targeting tiny LNAs. Nat. Genet., 2011, 43(4), 371-378.
[http://dx.doi.org/10.1038/ng.786] [PMID: 21423181]
[186]
You, Y.; Moreira, B.G.; Behlke, M.A.; Owczarzy, R. Design of LNA probes that improve mismatch discrimination. Nucleic Acids Res., 2006, 34(8)e60
[http://dx.doi.org/10.1093/nar/gkl175] [PMID: 16670427]
[187]
Summerton, J.; Weller, D. Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev., 1997, 7(3), 187-195.
[http://dx.doi.org/10.1089/oli.1.1997.7.187] [PMID: 9212909]
[188]
Gryaznov, S.M.; Lloyd, D.H.; Chen, J.K.; Schultz, R.G.; Dedionisio, L.A.; Ratmeyer, L.; Wilson, W.D. Oligonucleotide n3′-->p5′ phosphoramidates and thio-phoshoramidates as potential therapeutic agents. Proc. Natl. Acad. Sci. USA, 1995, 92(13), 5798-5802.
[http://dx.doi.org/10.1073/pnas.92.13.5798]
[189]
Lennox, K.A.; Behlke, M.A. Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther., 2011, 18(12), 1111-1120.
[http://dx.doi.org/10.1038/gt.2011.100] [PMID: 21753793]
[190]
Shakeel, S.; Karim, S.; Ali, A. Peptide nucleic acid (PNA) - A review. J. Chem. Technol. Biotechnol., 2006, 81(6), 892-899.
[http://dx.doi.org/10.1002/jctb.1505]
[191]
Ramsey, J.D.; Flynn, N.H. Cell-penetrating peptides transport therapeutics into cells. Pharmacol. Ther., 2015, 154, 78-86.
[http://dx.doi.org/10.1016/j.pharmthera.2015.07.003] [PMID: 26210404]
[192]
Lennox, K.A.; Owczarzy, R.; Thomas, D.M.; Walder, J.A.; Behlke, M.A. Improved performance of anti-miRNA oligonucleotides using a novel non-nucleotide modifier. Mol. Ther. Nucleic Acids, 2013, 2(8)e117
[http://dx.doi.org/10.1038/mtna.2013.46] [PMID: 23982190]
[193]
Renneberg, D.; Bouliong, E.; Reber, U.; Schümperli, D.; Leumann, C.J. Antisense properties of tricyclo-DNA. Nucleic Acids Res., 2002, 30(13), 2751-2757.
[http://dx.doi.org/10.1093/nar/gkf412] [PMID: 12087157]
[194]
Ivanova, G.; Reigadas, S.; Ittig, D.; Arzumanov, A.; Andreola, M.L.; Leumann, C.; Toulmé, J.J.; Gait, M.J. Tricyclo-DNA containing oligonucleotides as steric block inhibitors of human immunodeficiency virus type 1 tat-dependent trans-activation and HIV-1 infectivity. Oligonucleotides, 2007, 17(1), 54-65.
[http://dx.doi.org/10.1089/oli.2006.0046] [PMID: 17461763]
[195]
Ittig, D.; Liu, S.; Renneberg, D.; Schümperli, D.; Leumann, C.J. Nuclear antisense effects in cyclophilin A pre-mRNA splicing by oligonucleotides: a comparison of tricyclo-DNA with LNA. Nucleic Acids Res., 2004, 32(1), 346-353.
[http://dx.doi.org/10.1093/nar/gkh187] [PMID: 14726483]
[196]
Aartsma-Rus, A.; Kaman, W.E.; Bremmer-Bout, M.; Janson, A.A.; den Dunnen, J.T.; van Ommen, G.J.; van Deutekom, J.C.; Bortoluzzi, S.; Lovisa, F.; Gaffo, E.; Mussolin, L. Comparative analysis of antisense oligonucleotide analogs for targeted DMD exon 46 skipping in muscle cells. Gene Ther., 2004, 11(18), 1391-1398.
[http://dx.doi.org/10.1038/sj.gt.3302313] [PMID: 15229633]
[197]
Esau, C.C.; Monia, B.P. Therapeutic potential for microRNAs. Adv. Drug Deliv. Rev., 2007, 59(2-3), 101-114.
[http://dx.doi.org/10.1016/j.addr.2007.03.007] [PMID: 17462786]
[198]
Chen, Y.; Gao, D.Y.; Huang, L. In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv. Drug Deliv. Rev., 2015, 81, 128-141.
[http://dx.doi.org/10.1016/j.addr.2014.05.009] [PMID: 24859533]
[199]
Bedbrook, C.N.; Deverman, B.E.; Gradinaru, V. Viral strategies for targeting the central and peripheral nervous systems. Annu. Rev. Neurosci., 2018, 41(1), 323-348.
[http://dx.doi.org/10.1146/annurev-neuro-080317-062048] [PMID: 29709207]
[200]
Miyazaki, Y.; Adachi, H.; Katsuno, M.; Minamiyama, M.; Jiang, Y.M.; Huang, Z.; Doi, H.; Matsumoto, S.; Kondo, N.; Iida, M.; Tohnai, G.; Tanaka, F.; Muramatsu, S.; Sobue, G. Viral delivery of miR-196a ameliorates the SBMA phenotype via the silencing of CELF2. Nat. Med., 2012, 18(7), 1136-1141.
[http://dx.doi.org/10.1038/nm.2791] [PMID: 22660636]
[201]
Capasso, C.; Hirvinen, M.; Cerullo, V. Beyond gene delivery: strategies to engineer the surfaces of viral vectors. Biomedicines, 2013, 1(1), 3-16.
[http://dx.doi.org/10.3390/biomedicines1010003] [PMID: 28548054]
[202]
Zincarelli, C.; Soltys, S.; Rengo, G.; Rabinowitz, J.E. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol. Ther., 2008, 16(6), 1073-1080.
[http://dx.doi.org/10.1038/mt.2008.76] [PMID: 18414476]
[203]
Hajjar, R.J.; Zsebo, K.; Deckelbaum, L.; Thompson, C.; Rudy, J.; Yaroshinsky, A.; Ly, H.; Kawase, Y.; Wagner, K.; Borow, K.; Jaski, B.; London, B.; Greenberg, B.; Pauly, D.F.; Patten, R.; Starling, R.; Mancini, D.; Jessup, M. Design of a phase 1/2 trial of intracoronary administration of AAV1/SERCA2a in patients with heart failure. J. Card. Fail., 2008, 14(5), 355-367.
[http://dx.doi.org/10.1016/j.cardfail.2008.02.005] [PMID: 18514926]
[204]
Seguin, J.; Brullé, L.; Boyer, R.; Lu, Y.M.; Ramos Romano, M.; Touil, Y.S.; Scherman, D.; Bessodes, M.; Mignet, N.; Chabot, G.G. Liposomal encapsulation of the natural flavonoid fisetin improves bioavailability and antitumor efficacy. Int. J. Pharm., 2013, 444(1-2), 146-154.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.050] [PMID: 23380621]
[205]
Bao, Y.; Jin, Y.; Chivukula, P.; Zhang, J.; Liu, Y.; Liu, J.; Clamme, J.P.; Mahato, R.I.; Ng, D.; Ying, W.; Wang, Y.; Yu, L. Effect of PEGylation on biodistribution and gene silencing of siRNA/lipid nanoparticle complexes. Pharm. Res., 2013, 30(2), 342-351.
[http://dx.doi.org/10.1007/s11095-012-0874-6] [PMID: 22983644]
[206]
Nishimura, M.; Jung, E.J.; Shah, M.Y.; Lu, C.; Spizzo, R.; Shimizu, M.; Han, H.D.; Ivan, C.; Rossi, S.; Zhang, X.; Nicoloso, M.S.; Wu, S.Y.; Almeida, M.I.; Bottsford-Miller, J.; Pecot, C.V.; Zand, B.; Matsuo, K.; Shahzad, M.M.; Jennings, N.B.; Rodriguez-Aguayo, C.; Lopez-Berestein, G.; Sood, A.K.; Calin, G.A. Therapeutic synergy between microRNA and siRNA in ovarian cancer treatment. Cancer Discov., 2013, 3(11), 1302-1315.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0159] [PMID: 24002999]
[207]
Kanada, M.; Bachmann, M.H.; Hardy, J.W.; Frimannson, D.O.; Bronsart, L.; Wang, A.; Sylvester, M.D.; Schmidt, T.L.; Kaspar, R.L.; Butte, M.J.; Matin, A.C.; Contag, C.H. Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc. Natl. Acad. Sci. USA, 2015, 112(12), E1433-E1442.
[http://dx.doi.org/10.1073/pnas.1418401112] [PMID: 25713383]
[208]
Bortoluzzi, S.; Lovisa, F.; Gaffo, E.; Mussolin, L. Small RNAs in Circulating Exosomes of Cancer Patients: A Minireview. High Throughput, 2017, 6(4), 13.
[http://dx.doi.org/10.3390/ht6040013] [PMID: 29485611]
[209]
Ghosh, R.; Singh, L.C.; Shohet, J.M.; Gunaratne, P.H. A gold nanoparticle platform for the delivery of functional microRNAs into cancer cells. Biomaterials, 2013, 34(3), 807-816.
[http://dx.doi.org/10.1016/j.biomaterials.2012.10.023] [PMID: 23111335]
[210]
Elbakry, A.; Zaky, A.; Liebl, R.; Rachel, R.; Goepferich, A.; Breunig, M. Layer-by-layer assembled gold nanoparticles for siRNA delivery. Nano Lett., 2009, 9(5), 2059-2064.
[http://dx.doi.org/10.1021/nl9003865] [PMID: 19331425]
[211]
Dam, D.H.; Lee, R.C.; Odom, T.W. Improved in vitro efficacy of gold nanoconstructs by increased loading of G-quadruplex aptamer. Nano Lett., 2014, 14(5), 2843-2848.
[http://dx.doi.org/10.1021/nl500844m] [PMID: 24689438]
[212]
Zhao, E.; Zhao, Z.; Wang, J.; Yang, C.; Chen, C.; Gao, L.; Feng, Q.; Hou, W.; Gao, M.; Zhang, Q. Surface engineering of gold nanoparticles for in vitro siRNA delivery. Nanoscale, 2012, 4(16), 5102-5109.
[http://dx.doi.org/10.1039/c2nr31290e] [PMID: 22782309]
[213]
Wolinsky, J.B.; Grinstaff, M.W. Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv. Drug Deliv. Rev., 2008, 60(9), 1037-1055.
[http://dx.doi.org/10.1016/j.addr.2008.02.012] [PMID: 18448187]
[214]
Manjila, S.B.; Baby, J.N.; Bijin, E.N.; Constantine, I.; Pramod, K.; Valsalakumari, J. Novel gene delivery systems. Int. J. Pharm. Investig., 2013, 3(1), 1-7.
[http://dx.doi.org/10.4103/2230-973X.108958] [PMID: 23799200]
[215]
Cheng, C.J.; Bahal, R.; Babar, I.A.; Pincus, Z.; Barrera, F.; Liu, C.; Svoronos, A.; Braddock, D.T.; Glazer, P.M.; Engelman, D.M.; Saltzman, W.M.; Slack, F.J. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature, 2015, 518(7537), 107-110.
[http://dx.doi.org/10.1038/nature13905] [PMID: 25409146]
[216]
Neuberg, P.; Kichler, A. Recent developments in nucleic acid delivery with polyethylenimines. Adv. Genet., 2014, 88, 263-288.
[http://dx.doi.org/10.1016/B978-0-12-800148-6.00009-2] [PMID: 25409609]
[217]
Alexis, F.; Pridgen, E.; Molnar, L.K.; Farokhzad, O.C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm., 2008, 5(4), 505-515.
[http://dx.doi.org/10.1021/mp800051m] [PMID: 18672949]
[218]
Ragelle, H.; Vandermeulen, G.; Préat, V. Chitosan-based siRNA delivery systems. J. Control. Release, 2013, 172(1), 207-218.
[http://dx.doi.org/10.1016/j.jconrel.2013.08.005] [PMID: 23965281]
[219]
Kim, T.H.; Jiang, H.L.; Jere, D.; Park, I.K.; Cho, M.H.; Nah, J.W.; Choi, Y.J.; Akaike, T.; Cho, C.S. Chemical modification of chitosan as a gene carrier in vitro and in vivo. Prog. Polym. Sci., 2007, 32(7), 726-753.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.001]
[220]
Nair, J.K.; Willoughby, J.L.S.; Chan, A.; Charisse, K.; Alam, M.R.; Wang, Q.; Hoekstra, M.; Kandasamy, P.; Kel’in, A.V.; Milstein, S.; Taneja, N.; O’Shea, J.; Shaikh, S.; Zhang, L.; van der Sluis, R.J.; Jung, M.E.; Akinc, A.; Hutabarat, R.; Kuchimanchi, S.; Fitzgerald, K.; Zimmermann, T.; van Berkel, T.J.; Maier, M.A.; Rajeev, K.G.; Manoharan, M. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc., 2014, 136(49), 16958-16961.
[http://dx.doi.org/10.1021/ja505986a] [PMID: 25434769]
[221]
Prakash, T.P.; Graham, M.J.; Yu, J.; Carty, R.; Low, A.; Chappell, A.; Schmidt, K.; Zhao, C.; Aghajan, M.; Murray, H.F.; Riney, S.; Booten, S.L.; Murray, S.F.; Gaus, H.; Crosby, J.; Lima, W.F.; Guo, S.; Monia, B.P.; Swayze, E.E.; Seth, P.P. Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice. Nucleic Acids Res., 2014, 42(13), 8796-8807.
[http://dx.doi.org/10.1093/nar/gku531] [PMID: 24992960]
[222]
Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol., 2014, 15(8), 509-524.
[http://dx.doi.org/10.1038/nrm3838] [PMID: 25027649]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy