Bioconjugation of Bacteriophage Pf1 and Extension to Pf1-Based Bionanomaterials

Taylor Urquhart1, Bradley Howie1, Lei Zhang1, Kam Tong Leung1 and John F. Honek1,*

1Department of Chemistry and Waterloo Institute for Nanotechnology, Faculty of Science, University of Waterloo, Waterloo, ON, Canada

Abstract: Background: Filamentous bacteriophages such as M13 are an important class of macromolecular assemblies, rich in chemical moieties that can be used to impart modifiable positions at the nanoscale.

Objective: To explore the structurally more complex Pf1 bacteriophage with respect to a diverse set of bioconjugation reactions and to prepare novel fluorescently-labelled Pf1-based composite biomembranes for future applications in areas such as nanoporous filtration biofilms and photoconducting nanocomposite materials.

Methods: Pf1 was characterized with respect to amine (N-terminal, Gly1 and Lys20), carboxylate (aspartate, glutamate), and aromatic (tyrosine) modification and its extension to the creation of functional biomaterials. Modification with an amine reactive fluorophore was carried out with Pf1.

Results: The reaction profiles between M13 and Pf1 differ, with M13 capable of modification at two primary amines on its major coat protein, while Pf1 is capable of a single reaction per coat protein. Subsequent to the production of dye-functionalized Pf1, a biocomposite of wild type and functionalized Pf1 could be fabricated into a bulk material by glutaraldehyde (amine-reactive) crosslinking. These biomaterials were characterized by scanning electron and confocal microscopy, showing a distribution of patches of functionalized Pf1 within the main Pf1 construct.

Conclusion: The current study provides a framework for future fabrication of advanced bionanomaterials based on the Pf1 bacteriophage.

Keywords: Bacteriophage, Pf1, TAMRA, crosslinking, bioconjugation, electron microscopy.

1. INTRODUCTION

Biomolecules present an important category of well-defined architectures from which order and features in the nanoscale can be derived. Viruses [1, 2], capsule proteins [3, 4], liposomes [5, 6], DNA [7] as well as other derived biological structures such as nanocellulose [8] well-represent the diversity of scaffolds employed to fabricate novel bionanomaterials. From a nanodimensional building block perspective, viruses are a host-dependent replicating entity which can be produced in high yields with excellent monodispersity and are rich in reactive moieties specific to the amino acid composition of their viral coat proteins. Hence viruses are currently of great interest as complex but highly controllable scaffolds for various applications [9-14].

M13 is a filamentous virus which has a considerable impact in areas such as medicine [15-19], nanomaterial synthesis [20-24], energy [25-29], biosensor fabrication [30-36] and functional materials [37-40]. Pf1, a more complex and larger filamentous virus, has not been explored in terms of application and bioconjugate capabilities; though it is used as a nuclear magnetic resonance (NMR) co-solvent to align DNA and proteins in a magnetic field [41, 42]. The fabrication of novel Pf1-based biomaterials, such as chromophore-labelled biofilms and porous membranes, as well as conductive Pf1 composites, would be important components in future advanced monitorable gas/water separation processes and conductive photoactivated materials. The greater length and complexity of Pf1 should allow for more intricate scaffold architectures in these advanced materials than previously available. In order to enable these strategies however, fundamental knowledge is required on the reactions and cross-linking properties of this bacteriophage.

Filamentous bacteriophages (viruses which infect bacteria) are classified based on their mode of infection as well as their capsid structures. The F-specific filamentous phages (Ff) infect their host bacterium by adhering to the pilus of F+ strains. The representative of the Ff phages are two separate structural classifications, class I and class II, of which M13 and Pf1 belong respectively [43]. M13 utilizes Escherichia coli as its host organism and Pf1 requires Pseudomonas ae-
ruginsosa. Both are composed of a single-stranded DNA (ssDNA) genome encapsulated by many copies of a small, and alpha-helical major coat protein, and several copies of minor coat proteins at their tips.

For M13, the major coat protein (p8M13) is present in 2700 copies and for Pf1, the major coat protein (p8Pf1) is present in 7400 copies. Additionally, M13 has approximate dimensions of 7 x 0.90 nm and Pf1 of 6 x 2.00 nm [44]. Well-characterized strategies to functionalize M13 including genetic, chemical modification of canonical amino acids and bioorthogonal reactions have enabled the extensive application of this phage [45-47]. Since the major coat proteins p8M13 (A1E2GDDPAK2AANFLSQAASAYIGYWAMVV VIVGATIGIKLFFKFTSKAS) and p8Pf1 (G1VIDTSAVESEAITDGGQGDMK20 AIGGYIVGALVILAVAGLIY SMLRKA) differ in amino acid composition, the bioconjugation toolbox available to the two is expected to differ.

Early work on Pf1 exploring the structure of the viral coat yielded data on the reactivity of several of the amino acid residues of p8Pf1 [48]. This study showed very preliminary chemical modification information in order to understand amino acid residues that were solvent exposed related to viral coat structure. It reported that Tyr25, N-terminal Gly1, Lys20, and Asp4 were exposed to the reaction. With respect to reactive amines that form stable conjugates, M13 is capable of modification at the N-terminus and Lys8 [49], while preliminary work with Pf1 utilizing succinic anhydride suggested that the N-terminus and Lys20 (though less reactive than Gly1) were exposed [48]. No other research has been reported on further exploring the reactivity of solvent-exposed p8Pf1 amine-containing residues.

If Pf1 is only capable of N-terminal modification, reaction with this phage may yield a larger but simpler and more uniform bioconjugate than M13 with a much greater number of subunits in the viral sheath, allowing for additional bioconjugation and crosslinking reactions to be possible. The work herein aims to further explore the capability of chemical modification of this bacteriophage as well as to provide a framework for future initiatives toward the fabrication of bionanomaterials based on the Pf1 macromolecular building block. Here, the reactive amines were labelled with an activated ester, the NHS ester of 5(6)-carboxytetramethylrhodamine (NHS-TAMRA), and the resulting conjugates analyzed by spectroscopy and mass spectrometry. In further characterizing the potential utility of this particular filamentous bacteriophage as a biomolecular building block, the reaction of Tyr and Asp/Glu residues were also explored in the context of further bioconjugation to small molecule probes (Fig. 1). Furthermore, the potential application of Pf1 to the fabrication of advanced materials was explored with glutaraldehyde as a protein crosslinking agent and the resulting constructs were analyzed by scanning electron microscopy (SEM) and fluorescence microscopy.

2. MATERIALS AND METHODS

2.1. Purification of M13 Phage

An overnight culture of ER2738 E. coli (New England Biolabs, Whitby, ON, Canada) was diluted 1:100 in lyso-geny broth (LB) and inoculated at a final concentration of 1x10⁶ pfu mL⁻¹ of purified M13KE. The culture was amplified for 5.5 h at 37°C with shaking to aerate. The bacterial cells were pelleted by centrifugation at 4500 x g for 10 min at 10°C. The supernatant was retained and 20 mL 2.5 M NaCl containing 20% polyethylene glycol-8000 (PEG) (PEG/NaCl solution) was added per 80 mL of collected supernatant to precipitate phage overnight at 4°C. The precipitated M13 solution was centrifuged at 12000 x g for 15 min at 10°C. The resulting pellet was resuspended in 5 mL of phosphate-buffered saline solution (PBS; 10 mM Na₂HPO₄, 1.8 mM KH₂PO₄, 137 mM NaCl, 2.7 mM KCl) at pH 7.4 per 100 mL of precipitated phage solution. PEG/NaCl solution (1 mL per 5 mL of resuspended M13 pellet) was added to the collected phages and left on ice for 1 h. The solution was centrifuged at 12000 x g for 15 min at 10°C. The entirety of the recovered M13 was resuspended in 10 mL PBS (per 1L of amplified M13). The resulting pellet was then centrifuged at 12000 x g for 5 min to remove insoluble particles. The supernatant was retained.

2.2. Pf1 Phage

Pf1 bacteriophage (protease-free) was purchased from ASLA Biotech (Riga, Latvia; supplier: Cedarlane, Burlington, Ontario, Canada) at a concentration of 50 mg mL⁻¹ (~10⁻⁶ mol Pf1 L⁻¹) as a suspension in 10 mM potassium phosphate buffer (pH 7.6) 2 mM MgCl₂ and 0.05% NaN₃. Pf1 was employed without any further purification; when necessary Pf1 was concentrated by PEG precipitation as described above for M13.

2.3. NHS-TAMRA Bioconjugation

Phage reactions were set up assuming 2700 p8 per M13 or 7400 p8 per Pf1. Reactions were set up with either 12.5 μM p8M13, or 25 μM p8Pf1 with 250 μM NHS-TAMRA (Click Chemistry Tools, Scottsdale, Arizona) in PBS pH 7.9 with 20% dimethyl sulfoxide (DMSO). Reactions were carried out at 23°C. At certain time points, the reactions were quenched by the addition of tris(hydroxymethyl)aminomethane (Tris) pH 7.9 to a final concentration of 30 mM. Reactions were cleaned up by three rounds of PEG precipitation. Briefly, PEG/NaCl solution was added (1 mL per 5 mL reaction) and precipitated on ice for 25 min before centrifugation at 12700 x g for 25 min at 23°C. The final product was resuspended in PBS pH 7.4 and quantified using an equation for phage concentration adapted to consider short-wavelength absorbance of TAMRA.

2.4. Quantifying Phage and TAMRA Conjugates

The amount of M13 present was quantified via UV-Vis absorbance spectroscopy using Eq. (1), an approach analogous to that used by other researchers in quantifying dye-labelled phages [50]. Nbases is the number of bases in the M13 ssDNA genome (for M13KE, this is 7222 bp). The 6 x 10¹⁶ coefficient can be derived from the literature extinction coefficient of 3.84 mg cm⁻¹ cm⁻¹ mL⁻¹ [51]. Pf1 was also quantified by its absorbance using Eq. (2). The supplier’s extinction coefficient of 2.25 mg cm⁻¹ cm⁻¹ mL⁻¹ (used as recommended for quantifying Pf1 phage solutions) [52] and the literature value for the mass of assembled Pf1 phage of 3.4 x 10⁷ g mol⁻¹ were used to determine the molar amount of Pf1 [44]. For
Eqs. (1 and 2), a correction factor (CF) of 0.32 (determined from the absorbance at 269/556 nm ratio of the free dye at 43 µM) is included to account for the absorbance of TAMRA when quantifying the TAMRA-conjugated phages. For the unmodified phages, this term was ignored. Furthermore, to account for the light-scattering of phages, the absorbance at 320 nm (A320) was subtracted to avoid overestimating the phage concentration. The dye was also absorbed at this wavelength, and therefore an additional correction factor (CF320) of 0.097 was also included (determined from the ratio of 320/556 nm absorbance of the free dye at 43 µM).

\[
[M13] = \frac{(A_{269} - A_{TAMRA,\text{max}} \times CF - (A_{320} - CF_{320} A_{TAMRA,\text{max}})) \times 6 \times 10^{16}}{\text{Nbases}}
\] \hspace{1cm} (1)

\[
[Pf1] = \frac{(A_{270} - A_{TAMRA,\text{max}} \times CF - (A_{320} - CF_{320} A_{TAMRA,\text{max}}))}{(2.25 \times \text{MW}_{Pf1})}
\] \hspace{1cm} (2)

To determine the extent of labelling, the number of p8 subunits per phage was estimated assuming 2700 p8 M13 for M13 and 7400 p8 Pf1 for Pf1. The percent labelling was measured using Eq. (3), where \(A_{TAMRA,\text{max}}\) measures the absorbance at 517 nm for M13 conjugates and 518 nm for Pf1 conjugates. The extinction coefficient of the dye, \(\varepsilon_{TAMRA}\), was 65000 M^{-1} cm^{-1} [53].

\[
\% \text{ eff.} = \frac{(A_{TAMRA,\text{max}} - A_{590})}{(\varepsilon_{TAMRA} \times [pVIII])} \times 100\%
\] \hspace{1cm} (3)

To further confirm that this treatment was appropriate for estimating the extent of labelling, the Lowry assay was done alongside a spectrophotometric estimate of Pf1-TAMRA and the resulting estimates were comparable (Suppl. Fig. 1).

2.5. Other Bioconjugation Reactions

A modification of the strategy reported for tyrosine labeling of the MS2 virus was employed [54]. Preparation of the 4-nitrobenzenediazonium p-toluene sulfonate salt was accomplished by the addition of 10 µL of a \(p\)-nitroaniline solution (20 mg mL^{-1} in CH3CN) to 5 µL of a \(p\)-toluenesulfonic acid monohydrate solution (160 mg mL^{-1} in doubly-distilled water (ddH2O)) at 4°C. A chilled aqueous solution of sodium nitrite (5 µL; 32 mg mL^{-1} in ddH2O) was then added, and the resulting mixture was left to react for 1 h at 4°C with occasional swirling. The diazonium reagent (6 µL) was then added to a 4°C solution of Pf1 phage (10 µL of a 50 mg mL^{-1} Pf1 solution dissolved in 1 mL of 150 mM potassium phosphate buffer (pH 9.0) providing a final Pf1 concentration of 0.5 mg mL^{-1}). This would correspond to 111 µM p8 Pf1 subunits with a 15-fold excess of diazonium to p8 Pf1 subunits. The mixture was then allowed to react at 4°C for 2 h with occasional swirling. The labeled Pf1 was purified by transferring to a 12400 molecular weight cut-off (MWCO) cut-off dialysis tubing and diluting 200-fold into PBS buffer (pH 7.4) for 12 h. The dialysis was conducted twice more to remove low molecular weight molecules.

The Asp/Glu modification was adapted from the carbodiimide bioconjugation method used by Li et al. for M13...
were briefly washed twice in MQH2O, and then stained for
2.8. Pf1 Biomaterial Fabrication
era.
advanced Microscopy Techniques image capturing CCD cam-
kV using a CM10 Philips microscope modified with an Ad-
uniformity of the staining. M13 phages were imaged at 60
particles mL−1 for analysis. Note, at higher concentrations,
100 mM Na2HPO4, 18 mM KH2PO4, 137 mM NaCl, 2.7 mM
KCl) pH 7.4 to further purify the Pf1 before the reaction. Pf1
was reacted at a final concentration corresponding to 222
µM p8 subunits with 43 mM N-hydroxysulfosuccinimide
(sulfo-NHS; 194 eq; Quanta BioDesign, Ltd., Plain City, USA), and 13 mM 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide hydrochloride (EDC; 59
eq; Millipore Sigma, Ettobicoke, Canada) in cPB pH 7.4 for
18 h at 23°C. The reaction was cleaned up as described for
the Tyr modification using dialysis.

2.6. Mass Spectrometry
Intact phage samples for mass spectrometry (MS) were exchanged into Milli-Q H2O (MQH2O) using an Amicon® 10
kilodalton (kDa) MWCO column (Millipore Sigma, Ettobi-
coke, Canada) and then further diluted in 1:1 MeOH:H2O
0.1% formic acid to a final concentration of 1 µM p8pf1 (8.16
× 1010 particles mL−1 for Pf1), or 0.5−1 µM p8m13 (2.23 × 1011
particles mL−1) for analysis. Note, at higher concentrations,
M13 were found to precipitate out of solution when diluted
into 1:1 MeOH:H2O 0.1% formic acid and was first diluted
to ~5 µM p8 subunits in water before subsequent dilution
to MS solvents. Mass spectra were collected on a Thermo
Scientific Q-Exactive Orbitrap equipped with an electrospray
ionization (ESI) source. The normalized collisional energy
(NCE) on the instrument was set to 30. MS-MS spectra were
fit to anticipated fragments from the known sequence of
p8pf1 using mMass open source software (version 5.5.0) [55].
Additional details can be found in the figure legends of the
relevant supplemental figures.

2.7. Transmission Electron Microscopy
Phage samples were deposited onto carbon/formvar coat-
ed 400 mesh copper grids (Ted Pella, Redding, California) at
a particle concentration of 3×1011 pfu mL−1 for 1 min. Grids
were briefly washed twice in MQH2O, and then stained for
20 sec with 1% phosphotungstic acid (neutral, in MQH2O). For
Pf1, after adhering to the phage, the grid was incubated with
0.1% bovine serum albumin (BSA) in Tris-buffered saline solution (TBS; 50 mM Tris, 150 mM NaCl, pH 7.5)
for 10 min. Excess BSA was blotted off and the grid was
washed three times with TBS, and then three times with
MQH2O before staining. The BSA was used to improve the
uniformity of the staining. M13 phages were imaged at 60
ekV using a CM10 Philips microscope modified with an Ad-
vanced Microscopy Techniques image capturing CCD cam-
era.

2.8. Pf1 Biomaterial Fabrication
Pf1 (2.5 mg; 50 mg mL−1) was further concentrated using
PEG/NaCl solution followed by centrifugation as above. The
pellet was resuspended to a final volume of 15 µL. After
pipetting un-crosslinked Pf1 onto glass slides (2.5 mg), 10
µL of 20% glutaraldehyde was added without mixing and
crosslinking carried out 1 day at 23°C. For composite Pf1
biomaterials, Pf1-TAMRA was included at 3.8% by mass.

2.9. Scanning Electron Microscopy
Pf1 biomaterial samples were fixed to standard SEM
stubs with carbon tape and sputter-coated with ~10 nm thick
gold film to improve sample conduction. The samples were
imaged on a Zeiss Ultra Plus field emission SEM with an
electron beam energy of 10 keV. Unmodified Pf1 at an ini-
tial solution concentration of 50 mg mL−1 was air-dried onto
clear silicon chip before the gold-sputtering coating and
imaging as described above.

2.10. Confocal Fluorescence Microscopy
Pf1 biomaterials were crosslinked directly onto glass
slides and imaged on a Zeiss LSM 510 Meta Confocal Micro-
scope. Briefly, 250 µg Pf1 with 3.7 µg Pf1-TAMRA was
mixed and air-dried on a slide for 1 h. For crosslinking, 10
µL of 20% glutaraldehyde was added for 1 h prior to wash-
ing the slide with MQH2O. Excitation of the sample was
done with a HeNe1 laser line (543 nm) with NFT 545 filter
to pass wavelengths of 545 nm and longer to the detector.
The sample was retained after microscopy and store in
MQH2O at 23°C.

2.11. Molecular Modeling
The biological unit of Pf1 from the Protein Data Bank
(PDB: 1QL1) [56] was downloaded (ww.rcsb.org) [57]. This
structure contained 35 p8 subunits providing 1610 residues
(46 residues/subunit). The protein preparation wizard proto-
col was employed in Maestro (Schrödinger Release 2019-1:
Maestro, Schrödinger, LLC, New York, NY, 2019) [58]. The
downloaded structure was preprocessed which included the
assignment of bond orders, the addition of hydrogen atoms,
missing side chains and loops were added using the program
Prime (which added the N-terminal Gly1 residue whose co-
ordinates are not provided in the PDB file), and residue
charges were generated using the program Epik (pH 7.0 +/-
2.0) [59, 60]. Following this preprocessing stage, the structure
was refined which included hydrogen bond assignments and
optimization, and a restrained minimization to converge
heavy atoms to a root mean square deviation (RMSD) of 0.3
Å employing the OPLS3e forcefield (OPLS3e, Schrödinger, Inc.,
New York, NY, 2013) [61]. The prepared phage structure
had no detected problems with any part of the mini-
mized structure such as steric clashes or high energy bond
lengths, bond angles, or dihedral angles.

NHS-TAMRA was modeled in its 5-carboxylate form. Its
structure was drawn in Maestro and geometry minimized using
the OPLS3e forcefield inMacroModel (Schrödinger Release
Subsequently, a conformational search conducted in water was performed using a mixed torsion-
al/Low-mode sampling protocol (default settings were util-
ized for other variables). Conformers less than 21 kJ/mol
above the lowest energy structure were kept. The lowest en-
ergy structure found in this way was then used as the structure represented in the main text.

3. RESULTS AND DISCUSSION

3.1. NHS-TAMRA Labelling

Several bioconjugation reactions were used to probe the susceptibility of various residues to chemical modification (Fig. 1). In order to further explore Pf1 coat protein modification with future bionanomaterial fabrication in mind, initial bioconjugation using a fluorescent probe was employed. Relative positions of the N-terminal Gly and Lys20 are shown in Fig. (2A). NHS-TAMRA (Fig. 2B), an amine-reactive dye which absorbs maximally at 554 nm was reacted in 10-fold excess with Pf1 bacteriophage at an amount equivalent to 25 µM p8Pf1 to determine labeling efficiencies. The absorbance spectrum of the Pf1-TAMRA conjugate was compared to the spectra of equivalent amounts of the individual components, Pf1 and NHS-TAMRA, showing good agreement (Fig. 2C).

The reaction of NHS-TAMRA to Pf1 blue-shifts the absorbance maximum from 554 to 518 nm consistent with the formation of parallel dye (H-dimer) aggregates, an observation previously noted for small, well-defined organic scaffolds containing adjacent fluorescent dyes [62-64]. The repetitive structure and close packing of p8 Pf1 subunits probably contribute to the very drastic shift, resulting in a very high 518/554 ratio of ~1.8, as the TAMRA moieties are expected to be in very similar chemical environments. This value is somewhat higher than covalent TAMRA dimers linked by a relatively short 1,2-diaminoethane linker (519/550=1.5) [63], though lower than a similar TAMRA dimer with a slightly longer linker allowing for more interaction (520/554=2.64) [62]. As the value here falls between these values, it is possible that there are at least two populations of TAMRA on the surface of Pf1: TAMRA without any neighbors to dimerize with and TAMRA where two neighboring p8Pf1 subunits are labelled. This is consistent with similar observations on the fluorescence of labelled M13 upon high fluorophore labeling [49]. In contrast, under lower percent labelling conditions where only a single TAMRA molecule per p8 occurs on M13, this blue-shift in the absorbance spectrum is absent, likely due to greater separation of dye constrained to the viral coat [47].
The Pf1-TAMRA conjugate was compared to M13-TAMRA conjugates by mass spectrometry for further comparison. As previously established, at high concentrations of NHS-TAMRA, M13 is capable of modification with two NHS-TAMRA per p8 subunit [49]. This is also observed in the present study for M13 at 64% labelling efficiency of TAMRA per p8 (Fig. 2D). Note that the M13 sample was oxidized as its mass was 16 Da higher than the expected mono-isotopic mass of 5234 Da but the relative delta masses of the mono- and duo-labelled p8 had the expected change of 412.15 Da. In contrast, under these same conditions for Pf1 (71% labelling efficiency of TAMRA per p8) there were protein masses observed only for the unmodified and the mono-labelled Pf1 p8pF1 (Fig. 2E). The expected monoisotopic mass of unmodified p8pF1 is 4606.5 Da, and the expected mass for TAMRA-labelled p8pF1 is 5018.6 Da. Given that both samples had approximately the same extent of TAMRA labelling the results are consistent with only one amine being accessible to react with NHS-TAMRA on p8pF1.

Furthermore, on-line fragmentation (MS-MS) on the Pf1-TAMRA peak indicated the presence of TAMRA reacted to N-terminal fragments of p8pF1 (Suppl. Figs. 2 and 3). A fragment containing Lys20 and not the N-terminus could not be positively identified, and therefore Lys20 modification cannot be absolutely discounted; however, it is clear that the N-terminus is labelled by this treatment. Labelling at the N-terminal Gly1 is more likely given its accessibility and lower expected pKa [65]. Additionally, in M13 the N-terminus is preferentially modified and labelled Lys8 occurs only in the presence of higher concentrations of NHS-TAMRA [49]. In previous work characterizing p8pF1 reactivity using succinic anhydride, labelling results lead to the conclusion that the N-terminus and, to a lesser extent, Lys20 were accessible [48]. Furthermore, the inspection of recent fiber diffraction data of Pf1 (PDB: 1QL1) indicated that the N-terminal Gly1 is in close proximity to Lys20 (Fig. 2A) [56]. Labelling at Gly1 might be expected to further hinder the acylation of a second NHS-TAMRA at the Lys20 of the adjacent subunit (Fig. 3). It is possible that given the relatively larger size of NHS-TAMRA compared to succinic anhydride that modification of Lys20 is more hindered with this particular activated ester.

The reaction rates of NHS-TAMRA with either M13 or Pf1 were qualitatively compared at 23°C. The extents of reaction for M13 and Pf1 were monitored by estimating phage-conjugated TAMRA produced as described in the methods (Fig. 2F). At 3 h, the reactions reached 27 and 29% labelling efficiency (dye/reactive amine) for Pf1 and M13, with final values of 33 and 32% showing very similar rates of product formation despite there being twice as many p8 subunits in the Pf1 reaction than the M13 reaction. Since the mass spectrometry analysis indicated that p8pF1 is labelled only once, this result is consistent as the reactions would therefore have had an equal number of reactive amines (Fig. 2E). In combination with the MS-MS results of NHS-TAMRA labelled Pf1, this would seem to indicate a single reactive amine on p8pF1 for activated esters such as the dye used here. Per subunit, M13 is expected to be more densely labelled than Pf1 which could contribute to the tendency of M13 labelled to a high degree with NHS-TAMRA to aggregate in solution. Overall, a difference in the reactivity profiles of M13 and Pf1 with activated esters is observed.

3.2. Pf1 Tyr and Glu/Asp Reactions

To further characterize the reactivity of Pf1 to bioconjugation reactions, modification of Tyr and Glu/Asp residues was explored (Fig. 1). The Tyr labelling protocol, employing 4-nitrodiazonium p-toluene sulfonate, was based on that of Hooker et al. [54, 66]. In their work, the resulting azo-labeled Tyr residue was further converted into an o-amino Tyr derivative which could be further reacted with a diene via a hetero Diels-Alder reaction to afford more complex bioconjugates. To test the feasibility of this type of modification with Pf1, the filamentous phage was reacted to form the Tyr azo intermediate which was detected by mass spectrometry (Fig. 4A). The mass at 4755.5 Da corresponds to the mass of the p8pF1 major coat protein with the expected azo adduct. Given the hinderance expected at Tyr40 the only possible location of the modification is at Tyr25 which is expected to be more exposed to solvent.

The Glu/Asp modification was carried out via carbodiimide coupling, similar to that described on M13 by Li et al. [49], but employing a biotin-PEG-amino to react with the activated carboxyl groups. The success of adduct formation was determined by MS initially and then further confirmed by detection and estimation of the extent of biotinyla
tion by a fluorescence assay using the fluorescent biotin analogue, biotin-4-fluorescein (B4F). The expected adduct mass was detected by MS at 5034.73 Da (Fig. 4B). Given the difficulty with quantitating the extent of modification by MS, the biotin analogue biotin-4-fluorescein (B4F), was used to create a fluorescence standard curve to which modified Pf1-biotin was assayed in a competitive binding assay with streptavidin (SA). Using this method, the extent of biotinylation was estimated to be ~10.7 ± 1.1 % biotin/p8, or approximately 792 ± 81 biotin/Pf1 (Suppl. Fig. 4). In Pf1 there are four potential carboxyl groups at which modification might occur: Asp4, Asp14, Asp18, and Glu9. The exact location of the modification was not determined due to the low ionization of the modified p8 subunit. However, where lower levels of modification are required, this is a viable strategy. It is therefore conceivable that these additional modifications, which have been used in other phage bioconjugation

![Fig. (3).](url)
strategies, might also be used with Pf1 for applications where modification with different components are required.

3.3. Pf1/Pf1-TAMRA Crosslinking

M13 has been a critical component in the development of various advanced materials [37-40]. The capability of crosslinking Pf1 for the possibility of preparing functional materials was explored in the current investigation. Preparing crosslinked biomaterials from a filamentous phage with potentially 7400 points of attachment permits the possibility to prepare additional functionalization that might not be possible with crosslinking of smaller, globular proteins. Transmission electron microscopy (TEM) images of the starting materials, un-modified Pf1 and Pf1-TAMRA, were captured (Fig. 5A and 5B). These images show the expected filamentous structure to remain after TAMRA bioconjugation and the imaged phages are consistent with the expected diameter of 5.3-6.3 nm [44]. Pf1-TAMRA tended to aggregate on the TEM grid surface, though the filamentous structure was preserved. The black spots in the micrograph are likely artifacts from uneven staining with heavy metal stain.

Initially, dimethyl adipimate (DMA) and glutaraldehyde were used separately as crosslinkers with concentrated Pf1. Biomembranes formed using up to 0.5 M DMA formed a soft hydrogel which fragmented when attempting to manipulate (not shown). Glutaraldehyde instead produced crosslinked materials sturdy enough to be handled with tweezers (Fig. 6A). Pf1-TAMRA was mixed with Pf1 and crosslinked with glutaraldehyde employing an identical strategy (Fig. 6B). The material produced utilized Pf1 as the bulk component with 3.8% Pf1-TAMRA by mass. The resulting biomembrane was pink in color and physically handled similarly to the Pf1-only crosslinked material.

The glutaraldehyde crosslinked biomaterials were examined by SEM to determine whether there were notable surface features (Fig. 6D and 6E). At a magnification of 30000x little porosity or distinguishing surface features were evident for either the Pf1 or the Pf1/Pf1-TAMRA crosslinked bio-

![Fig. (4). Mass spectra of additional bioconjugation reactions. A) Deconvoluted ESI-MS showing diazotization of Tyr on p8p1 major coat protein. B) Deconvoluted ESI-MS showing carbodiimide coupling of carboxyl groups on p8p1. (A higher resolution / colour version of this figure is available in the electronic copy of the article).](image-url)
Fig. (5). TEM analysis of starting materials for producing Pf1 biomaterial. A) TEM micrograph of Pf1. B) TEM micrograph of Pf1 labelled with NHS-TAMRA. (A higher resolution / colour version of this figure is available in the electronic copy of the article).

Fig. (6). Pf1-based biomaterials formed by crosslinking with 50% glutaraldehyde. A) Glutaraldehyde crosslinked Pf1. B) Glutaraldehyde crosslinked Pf1/Pf1-TAMRA. C) Confocal microscopy image with 543 nm excitation and NFT 545 emission filters of crosslinked Pf1/Pf1-TAMRA in b). D) SEM image of crosslinked Pf1 crosslinked in a). E) SEM of crosslinked Pf1/Pf1-TAMRA in b). F) SEM micrograph of concentrated Pf1 (50 mg mL$^{-1}$; un-crosslinked) dried on silicon overnight followed by SEM. The portion imaged shows a crack in an otherwise featureless surface. (A higher resolution / colour version of this figure is available in the electronic copy of the article).
functionality within the biomaterial. Given the resolution and magnification limits for the confocal microscopy images, one cannot comment on the integrity of the individual Pf1 phages, as their length (2 µm) [44] is too small to determine this. However, filamentous phages have been applied to crosslinking applications to produce materials where the phage was shown to be intact and it is presumed the phage is also intact here [68-73]. Additional fluorescence characterization was carried out on Pf1/Pf1-TAMRA crosslinked directly on a glass slide alongside the same blend of Pf1/Pf1-TAMRA without crosslinker. At low magnification, functionalized Pf1-TAMRA was observed to be distributed throughout the material (Fig. 7A). At higher magnification, it becomes apparent that functionalized Pf1-TAMRA is distributed throughout the bulk biomaterial in patches or clusters (Fig. 7B).

The appearance of these clusters was different between the crosslinked and non-crosslinked blend. When crosslinked by glutaraldehyde the construct appeared more like a network of functionalization, while the Pf1-TAMRA gathered in loosely connected “islands” in the absence of crosslinker (Fig. 7D and 7E). Lastly, the crosslinked material was collected from the slide after microscopic observation and could be manipulated with tweezers (though quite delicate due to the thinness of the membrane), while the Pf1/Pf1-TAMRA without crosslinker was smeared upon removing the coverslip (Fig. 7C and 7F). Indeed, the total time that this biomaterial was crosslinked was only 1 hour before excess glutaraldehyde was washed off, unlike the initial construct which was crosslinked for over 24 hours. The crosslinked material could be immersed in water for at least 70 days while remaining intact and without any apparent leeching of Pf1-TAMRA. This indicates that Pf1-TAMRA is able to form part of the crosslinked network having several amines already reacted to TAMRA or is otherwise trapped in the material. The fluorescence characterization indicates aggregation of Pf1-TAMRA within the biomaterial. It is likely that reacting different functional groups to the coat protein, in particular, more water-soluble moieties than the TAMRA fluorophore, could result in the fabrication of more homogeneous material with functional components.

A very recent appreciation that there are substantially more phages than previously believed to exist underscores the critical need to explore the bioconjugation chemistry of phage in order to exploit this vast reservoir of macromolecular biopolymers for future bionanomaterial fabrication [74]. The present study provides a critical evaluation of the Pf1 bacteriophage’s capability for bioconjugation and the modified Pf1’s ability for subsequent crosslinking to fabricate solid bionanomaterials. Future work will focus on more elaborate modifications followed by con-
trolled crosslinking strategies or “grafting from” polymerization [75] studies, enabling synthesis of more advanced nanodimensional architectures. Due to a large number of modifiable functional groups on each Pf1 building block, applications of Pf1-based membranes can be extended to sophisticated conducting nanocomposites by incorporation of conductive additives such as carbon nanotubes and polyaniline [68], into tissue engineering scaffolds and smart bandages [17-19], and employed in the fabrication of nanoporous filtration biofilms [40].

CONCLUSION

Based on the current investigation, Pf1 can be readily and uniquely modified by NHS-TAMRA at the N-terminal Gly1 of its major sheath protein, p8. In addition, Glu/Asp as well as Tyr residues on the p8 protein can be bioconjugated employing carbodiimide or diazotization chemistries, respectively. A bicomposite of wild type and TAMRA-functionalized Pf1 phage can be fabricated into a bulk material by glutaraldehyde crosslinking.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Not applicable.

HUMAN AND ANIMAL RIGHTS

No Animals/Humans were used for studies that are the basis of this research.

CONSENT FOR PUBLICATION

Not applicable.

AVAILABILITY OF DATA AND MATERIALS

The authors confirm that the data supporting the findings of this study are available within the article.

FUNDING

The authors would like to thank NSERC (Canada) for Discovery grants (JH, KTL), NSERC (Canada) for a PGS-D (TU), and NSERC USRA (BH).

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

The authors wish to thank Mishi Groh for their expertise in confocal microscopy imaging.

SUPPLEMENTARY MATERIAL

Supplemental Material includes additional details on TAMRA/biotin labelling, MS-MS data of Pf1-TAMRA and SDS-PAGE of Pf1-TAMRA.

REFERENCES

http://dx.doi.org/10.1012/jb.1980.004357 PMID: 6774098

http://dx.doi.org/10.1021/acsnano.6b07942 PMID: 28355060

http://dx.doi.org/10.1021/acsami.7b17871 PMID: 29345898

http://dx.doi.org/10.1126/science.1092740 PMID: 14716009

http://dx.doi.org/10.1088/0957-4484/27/32/325502 PMID: 27354441

http://dx.doi.org/10.1021/acsnano.6b07942 PMID: 28355060

http://dx.doi.org/10.1021/acsami.7b17871 PMID: 29345898

http://dx.doi.org/10.1126/science.1092740 PMID: 14716009

http://dx.doi.org/10.1088/0957-4484/27/32/325502 PMID: 27354441

http://dx.doi.org/10.1021/acsnano.6b07942 PMID: 28355060

http://dx.doi.org/10.1021/acsami.7b17871 PMID: 29345898

http://dx.doi.org/10.1126/science.1092740 PMID: 14716009

http://dx.doi.org/10.1088/0957-4484/27/32/325502 PMID: 27354441

http://dx.doi.org/10.1021/acsnano.6b07942 PMID: 28355060

http://dx.doi.org/10.1021/acsami.7b17871 PMID: 29345898

http://dx.doi.org/10.1126/science.1092740 PMID: 14716009

http://dx.doi.org/10.1088/0957-4484/27/32/325502 PMID: 27354441

http://dx.doi.org/10.1021/acsnano.6b07942 PMID: 28355060

http://dx.doi.org/10.1021/acsami.7b17871 PMID: 29345898

http://dx.doi.org/10.1126/science.1092740 PMID: 14716009

http://dx.doi.org/10.1088/0957-4484/27/32/325502 PMID: 27354441

http://dx.doi.org/10.1021/acsnano.6b07942 PMID: 28355060

http://dx.doi.org/10.1021/acsami.7b17871 PMID: 29345898

http://dx.doi.org/10.1126/science.1092740 PMID: 14716009

http://dx.doi.org/10.1088/0957-4484/27/32/325502 PMID: 27354441

http://dx.doi.org/10.1021/acsnano.6b07942 PMID: 28355060

http://dx.doi.org/10.1021/acsami.7b17871 PMID: 29345898

http://dx.doi.org/10.1126/science.1092740 PMID: 14716009

http://dx.doi.org/10.1088/0957-4484/27/32/325502 PMID: 27354441

http://dx.doi.org/10.1021/acsnano.6b07942 PMID: 28355060

