Carbohydrate Mimotopes in the Rational Design of Cancer Vaccines

Author(s): Anastas Pashov, Marty Perry, Michael Dyar, Marie Chow, Thomas Kieber-Emmons

Journal Name: Current Topics in Medicinal Chemistry

Volume 5 , Issue 12 , 2005

Become EABM
Become Reviewer


The task of rationally designing vaccines that can effectively impact on the survival of cancer patients remains challenging. Monoclonal antibodies and T cell receptors have proven to be viable templates for the application of pharmacophore design principles to develop antigens and immunogens as these immune system molecules recognize a variety of sequentially and structurally unrelated ligands. This structural information combined with immunological assessment has contributed to the development of strategies to elicit effective humoral and cellular responses to cancer cells. Understanding the structural requirements for antibody and T cell recognition provides a basis for identifying potentially new sets of immunogens that may have both fundamental immunological and clinical value. Here we review the structural concepts and approaches used in vaccine design applications that illustrate the value and limitations of using chemical (peptide libraries) and immunological information to define novel peptide immunogens that function as mimotopes to generate immune responses targeting tumor associated carbohydrate antigens.

Keywords: peptide libraries, tumor associated carbohydrate antigens (taca), adenocarcinoma ley antigen, immunogenicity, antigenic peptide, carbohydrate binding proteins

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2005
Page: [1171 - 1185]
Pages: 15
DOI: 10.2174/156802605774370928
Price: $65

Article Metrics

PDF: 1