Experience with Indium-111 and Yttrium-90-Labeled Somatostatin Analogs

Author(s): I. Virgolini, T. Traub, C. Novotny, M. Leimer, B. Fuger, S. R. Li, P. Patri, T. Pangerl, P. Angelberger, M. Raderer, G. Burggasser, F. Andreae, A. Kurtaran, R. Dudczak

Journal Name: Current Pharmaceutical Design

Volume 8 , Issue 20 , 2002

Become EABM
Become Reviewer
Call for Editor


The high level expression of somatostatin receptors (SSTR) on various tumor cells has provided the molecular basis for successful use of radiolabeled octreotide / lanreotide analogs as tumor tracers in nuclear medicine. Other (nontumoral) potential indications for SSTR scintigraphy are based on an increased lymphocyte binding at sites of inflammatory or immunologic diseases such as thyroidassociated ophtalmology. The vast majority of human tumors seem to over-express the one or the other of five distinct hSSTR subtype receptors. Whereas neuroendocrine tumors frequently overexpress hSSTR2, intestinal adenocarcinomas seem to overexpress more often hSSTR3 or hSSTR4, or both of these hSSTR. In contrast to 111In-DTPA-DPhe1-octreotide (OctreoScan) which binds to hSSTR2 and 5 with high affinity (Kd 0.1-5 nM), to hSSTR3 with moderate affinity (Kd 10-100 nM) and does not bind to hSSTR1 and hSSTR4, 111In / 90Y-DOTA-lanreotide was found to bind to hSSTR2, 3, 4, and 5 with high affinity, and to hSSTR1 with lower affinity (Kd 200 nM). Based on its unique hSSTR binding profile, 111In-DOTA-lanreotide was suggested to be a potential radioligand for tumor diagnosis, and 90 Y-DOTA-lanreotide suitable for receptor-mediated radionuclide therapy. As opposed to 111In-DTPADPhe1- octreotide and 111In-DOTA-DPhe1-Tyr3-octreotide, discrepancies in the scintigraphic results were seen in about one third of (neuroendocrine) tumor patients concerning both the tumor uptake as well as detection of tumor lesions. On a molecular level, these discrepancies seem to be based on a “higher” high-affinity binding of 111In-DOTA-DPhe1-Tyr3-octreotide to hSSTR2 (Kd 0.1-1 nM). Other somatostatin analogs with divergent affinity to the five known hSSTR subtype receptors have also found their way into the clinics, such as 99mTc-depreotide (NeoSpect, NeoTect). Most of the imaging results are reported for neuroendocrine tumors (octreotide analogs) or nonsmall cell lung cancer (99mTc-depreotide), indicating high diagnostic cabability of this type of receptor tracers. Consequently to their use as receptor imaging agents, hSSTR recognizing radioligands have also been implemented for experimental receptor-targeted radionuclide therapy. Beneficial results were reported for highdose treatment with 111In-DTPA-DPhe1-octreotide, based on the emission of Auger electrons. The Phase IIa study “MAURITIUS” (Multicenter Analysis of a Universal Receptor Imaging and Treatment Initiative, a eUropean Study) showed in progressive cancer patients (therapy entry criteria) with a calculated tumor dose > 10 Gy / GBq 90 Y-DOTA-lanreotide, the proof-of-principle for treating tumor patients with peptide receptor imaging agents. In the “MAURITIUS” study, cummulative treatment doses up to 200 mCi 90 Y-DOTA-lanreotide were given as short-term infusion. Overall treatment results in 70 patients indicated stable tumor disease in 35% of patients and regressive tumor disease in 10% of tumor patients with different tumor entities expressing hSSTR. No acute or chronic severe hematological toxicity, change in renal or liver function parameters due to 90 Y-DOTA-lanreotide treatment, were reported. 90Y-DOTA-DPhe1-Tyr3-octreotide may show a higher tumor uptake in neuroendocrine tumor lesions and may therefore be superior for treatment in patients with neuroendocrine tumors. However, there is only limited excess to long-term and survival data at present. Potential indications for 90 Y-DOTA-lanreotide are radioiodine-negative thyroid cancer, hepatocellular cancer and lung cancer. Besides newer approaches and recent developments of 188Re-labeled radioligands, no clinical results on the treatment response are yet available. In conclusion, several radioligands have been implemented on the basis of peptide receptor recognition throughout the last decade. A plentitude of preclinical data and clinical studies confirm their potential use in diagnosis as well as “proof-ofprinciple” for therapy of cancer patients. However, an optimal radiopeptide formulation does not yet exist for receptor-targeted radionuclide therapy. Ongoing developments may result in peptides more suitable for this kind of receptor-targeted radionuclide therapy.

Keywords: somatostatin analogs, radiolabeled octreotide, sstr scintigraphy, receptor-targeted radiotherapy, n-hydroxysuccinimide, dota-octreotide, human tumor cells, internalisation of radioligands, radionuclide scintigraphy, pancreatic adenocarcinoma cell line

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2002
Page: [1781 - 1807]
Pages: 27
DOI: 10.2174/1381612023393756
Price: $65

Article Metrics

PDF: 7