Inhibition of Dipeptidyl Peptidase-4 (DPP-4) - A Novel Approach to Treat Type 2 Diabetes

Author(s): Bo Ahren

Journal Name: Current Enzyme Inhibition

Volume 1 , Issue 1 , 2005

Become EABM
Become Reviewer
Call for Editor


A novel approach for treatment of type 2 diabetes is based on the gut hormone glucagon-like peptide-1 (GLP- 1), which is antidiabetic due to its combined action to stimulate insulin secretion, increase beta-cell mass, inhibit glucagon secretion, reduce the rate of gastric emptying and induce satiety. A problem is, however, that the peptide is rapidly inactivated by the enzyme dipeptidyl peptidase-4 (DPP-4), resulting in a half-life of active GLP-1 of only approximately 1-2 minutes. To overcome this inconvenient drawback for the treatment of diabetes, two strategies have been successful; one strategy uses DPP-4 resistant GLP-1 receptor agonists whereas the other strategy uses inhibition of DPP-4. Such inhibition will increase the levels of endogenous active GLP-1 and prolong its half-life. The rationale behind the strategy is evident from studies in animals with genetic deletion of DPP-4, which have improved glucose tolerance and increased insulin secretion in response to oral glucose. Furthermore, in experimental animals, different pharmacological DPP-4 inhibitors are antidiabetic. Recently also studies in subjects with type 2 diabetes have shown that prolonged DPP-4 inhibition for up to 1 year is antidiabetogenic because fasting and postprandial glucose as well as HbA1c levels are reduced. This is seen in association with good tolerability and weight neutrality. Hence, DPP-4 inhibition has the potential to be a novel, efficient and tolerable approach to treat type 2 diabetes.

Keywords: dpp-4, glp-1, insulin secretion, diabetes, treatment

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2005
Published on: 01 March, 2012
Page: [65 - 73]
Pages: 9
DOI: 10.2174/1573408052952667

Article Metrics

PDF: 14