Computational Studies of HIV-1 Integrase and its Inhibitors

Author(s): Nadtanet Nunthaboot, Somsak Pianwanit, Vudhichai Parasuk, Sirirat Kokpol, James M. Briggs

Journal Name: Current Computer-Aided Drug Design

Volume 3 , Issue 3 , 2007

Become EABM
Become Reviewer
Call for Editor


Integration of the genome of the human immunodeficiency virus (HIV) into that of the host genome is catalyzed by HIV integrase (IN) and is an essential step in HIV-1 life cycle. Therefore, drug discovery efforts have been undertaken to identify selective IN inhibitors with the goal of improving the outcome of AIDS therapy using Highly Active Anti Retroviral Therapy (HAART). As computational technology has grown rapidly and is increasingly being used worldwide to accelerate the drug discovery processes, the aim of this review is to summarize the applications of the computer-aided drug design (CADD) techniques to HIV-1 IN and its inhibitors. The following applications are emphasized, including two- and three-dimensional quantitative structure activity relationships (2D/3D-QSAR), pharmacophore modeling, database searching, molecular docking, molecular dynamics simulations, and de novo methodologies.

Keywords: HIV-1 integrase, CADD, QSAR docking, molecular dynamics simulations, de novo pharmacophore modeling

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2007
Page: [160 - 190]
Pages: 31
DOI: 10.2174/157340907781695459
Price: $65

Article Metrics

PDF: 5