Delivery Strategies for siRNA-mediated Gene Silencing

Author(s): Ian R. Gilmore, Stephen P. Fox, Andrew J. Hollins, Saghir Akhtar

Journal Name: Current Drug Delivery

Volume 3 , Issue 2 , 2006

Become EABM
Become Reviewer
Call for Editor


RNA interference (RNAi) represents a promising new gene silencing technology for functional genomics and a potential therapeutic strategy for a variety of genetic diseases. RNAi involves the targeted post-transcriptional degradation of messenger RNA thereby inhibiting the synthesis of the desired protein. This effectively leads to silencing of gene expression. The effectors of this process are short interfering RNA (siRNA) duplexes (∼21-23nt) that are key intermediaries in the specific degradation of target mRNA following incorporation into the RNA-induced silencing complex (RISC) in the cytosol. However, due to the large molecular weight and negative charge of siRNA duplexes the effective cellular uptake and intracellular delivery appear to represent a major challenge for the widespread use of RNAi in vivo. This review summarises some of the main delivery strategies that have been attempted for the transfection of siRNA to cells in vitro and in vivo.

Keywords: Short interfering RNA, design, delivery, RNA interference, RNAi, antisense oligonucleotides, transfection, gene therapy

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2006
Page: [147 - 155]
Pages: 9
DOI: 10.2174/156720106776359159
Price: $65

Article Metrics

PDF: 14