Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

The Role of Cell-derived Microparticles in Cardiovascular Diseases: Current Concepts

Author(s): Panagiota K. Stampouloglou, Gerasimos Siasos, Evanthia Bletsa, Evangelos Oikonomou*, Georgia Vogiatzi, Konstantinos Kalogeras, Efstratios Katsianos, Michael-Andrew Vavuranakis, Nektarios Souvaliotis and Manolis Vavuranakis

Volume 28, Issue 21, 2022

Published on: 24 June, 2022

Page: [1745 - 1757] Pages: 13

DOI: 10.2174/1381612828666220429081555

Price: $65

Abstract

Cardiovascular disease remains the main cause of human morbidity and mortality in developed countries. Microparticles (MPs) are small vesicles originating from the cell membrane as a result of various stimuli and particularly of biological processes that constitute the pathophysiology of atherosclerosis, such as endothelial damage. They form vesicles that can transfer various molecules and signals to remote target cells without direct cell-to-cell interaction. Circulating microparticles have been associated with cardiovascular diseases. Therefore, many studies have been designed to further investigate the role of microparticles as biomarkers for diagnosis, prognosis, and disease monitoring. To this concept, the pro-thrombotic and atherogenic potential of platelets and endothelial-derived MPs have gained research interest, especially concerning accelerated atherosclerosis and triggering as well as prognosis of an acute coronary syndrome. MPs, especially those of endothelial origin, have been investigated in different clinical scenarios of heart failure and in association with left ventricular loading conditions. Finally, most cardiovascular risk factors present unique features in the circulating MPs population, highlighting their pathophysiologic link to cardiovascular disease progression. In this review article, we present a synopsis of the biogenesis and characteristics of microparticles, as well as the most recent data concerning their implication in cardiovascular settings.

Keywords: Atherosclerosis, biomarkers, cardiovascular disease, microparticles, molecular cardiology, biogenesis.

[1]
Corrado C, Raimondo S, Chiesi A, Ciccia F, De Leo G, Alessandro R. Exosomes as intercellular signaling organelles involved in health and disease: Basic science and clinical applications. Int J Mol Sci 2013; 14(3): 5338-66.
[http://dx.doi.org/10.3390/ijms14035338 ] [PMID: 23466882]
[2]
Loyer X, Vion AC, Tedgui A, Boulanger CM. Microvesicles as cell-cell messengers in cardiovascular diseases. Circ Res 2014; 114(2): 345-53.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.300858 ] [PMID: 24436430]
[3]
Barteneva NS, Fasler-Kan E, Bernimoulin M, et al. Circulating microparticles: Square the circle. BMC Cell Biol 2013; 14: 23.
[http://dx.doi.org/10.1186/1471-2121-14-23 ] [PMID: 23607880]
[4]
Witwer KW, Buzás EI, Bemis LT, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2013; 2: 2.
[http://dx.doi.org/10.3402/jev.v2i0.20360 ] [PMID: 24009894]
[5]
VanWijk MJ, VanBavel E, Sturk A, Nieuwland R. Microparticles in cardiovascular diseases. Cardiovasc Res 2003; 59(2): 277-87.
[http://dx.doi.org/10.1016/S0008-6363(03)00367-5 ] [PMID: 12909311]
[6]
Amabile N, Rautou PE, Tedgui A, Boulanger CM. Microparticles: Key protagonists in cardiovascular disorders. Semin Thromb Hemost 2010; 36(8): 907-16.
[http://dx.doi.org/10.1055/s-0030-1267044 ] [PMID: 21069633]
[7]
Tushuizen ME, Diamant M, Sturk A, Nieuwland R. Cell-derived microparticles in the pathogenesis of cardiovascular disease: Friend or foe? Arterioscler Thromb Vasc Biol 2011; 31(1): 4-9.
[http://dx.doi.org/10.1161/ATVBAHA.109.200998 ] [PMID: 21160062]
[8]
Larson MC, Woodliff JE, Hillery CA, Kearl TJ, Zhao M. Phosphatidylethanolamine is externalized at the surface of microparticles. Biochim Biophys Acta 2012; 1821(12): 1501-7.
[http://dx.doi.org/10.1016/j.bbalip.2012.08.017 ] [PMID: 22960380]
[9]
Hou S, Grillo D, Williams CL, Wasserstrom JA, Szleifer I, Zhao M. Membrane phospholipid redistribution in cancer micro-particles and implications in the recruitment of cationic protein factors. J Extracell Vesicles 2014; 3: 3.
[http://dx.doi.org/10.3402/jev.v3.22653 ] [PMID: 24959330]
[10]
Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 2009; 9(8): 581-93.
[http://dx.doi.org/10.1038/nri2567 ] [PMID: 19498381]
[11]
Lobb RJ, Becker M, Wen SW, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles 2015; 4: 27031.
[http://dx.doi.org/10.3402/jev.v4.27031 ] [PMID: 26194179]
[12]
van der Pol E, Hoekstra AG, Sturk A, Otto C, van Leeuwen TG, Nieuwland R. Optical and non-optical methods for detection and characterization of microparticles and exosomes. J Thromb Haemost 2010; 8(12): 2596-607.
[http://dx.doi.org/10.1111/j.1538-7836.2010.04074.x ] [PMID: 20880256]
[13]
Headland SE, Jones HR, D’Sa AS, Perretti M, Norling LV. Cutting-edge analysis of extracellular microparticles using ImageStream(X) imaging flow cytometry. Sci Rep 2014; 4: 5237.
[http://dx.doi.org/10.1038/srep05237 ] [PMID: 24913598]
[14]
Lacroix R, Dignat-George F. Microparticles as a circulating source of procoagulant and fibrinolytic activities in the circulation. Thromb Res 2012; 129(Suppl. 2): S27-9.
[http://dx.doi.org/10.1016/j.thromres.2012.02.025 ] [PMID: 22424856]
[15]
Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. In: Curr Protoc Cell Biol. 2006; p. Chapter 3:Unit 3.22.
[http://dx.doi.org/10.1002/0471143030.cb0322s30]
[16]
Comfurius P, Senden JM, Tilly RH, Schroit AJ, Bevers EM, Zwaal RF. Loss of membrane phospholipid asymmetry in platelets and red cells may be associated with calcium-induced shedding of plasma membrane and inhibition of aminophospholipid translocase. Biochim Biophys Acta 1990; 1026(2): 153-60.
[http://dx.doi.org/10.1016/0005-2736(90)90058-V ] [PMID: 2116169]
[17]
Bevers EM, Comfurius P, Zwaal RF. Changes in membrane phospholipid distribution during platelet activation. Biochim Biophys Acta 1983; 736(1): 57-66.
[http://dx.doi.org/10.1016/0005-2736(83)90169-4 ] [PMID: 6418205]
[18]
Aatonen M, Grönholm M, Siljander PR. Platelet-derived microvesicles: Multitalented participants in intercellular communication. Semin Thromb Hemost 2012; 38(1): 102-13.
[http://dx.doi.org/10.1055/s-0031-1300956 ] [PMID: 22314608]
[19]
Perez-Pujol S, Marker PH, Key NS. Platelet microparticles are heterogeneous and highly dependent on the activation mechanism: Studies using a new digital flow cytometer. Cytometry A 2007; 71(1): 38-45.
[http://dx.doi.org/10.1002/cyto.a.20354 ] [PMID: 17216623]
[20]
Flaumenhaft R, Dilks JR, Richardson J, et al. Megakaryocyte-derived microparticles: Direct visualization and distinction from platelet-derived microparticles. Blood 2009; 113(5): 1112-21.
[http://dx.doi.org/10.1182/blood-2008-06-163832 ] [PMID: 18802008]
[21]
Boilard E, Duchez AC, Brisson A. The diversity of platelet microparticles. Curr Opin Hematol 2015; 22(5): 437-44.
[http://dx.doi.org/10.1097/MOH.0000000000000166 ] [PMID: 26214207]
[22]
Shai E, Rosa I, Parguiña AF, Motahedeh S, Varon D, García Á. Comparative analysis of platelet-derived microparticles reveals differences in their amount and proteome depending on the platelet stimulus. J Proteomics 2012; 76(Spec No): 287-96.
[http://dx.doi.org/10.1016/j.jprot.2012.02.030 ] [PMID: 22415276]
[23]
Gianazza E, Brioschi M, Baetta R, Mallia A, Banfi C, Tremoli E. Platelets in healthy and disease states: From biomarkers discovery to drug targets identification by proteomics. Int J Mol Sci 2020; 21(12): 21.
[http://dx.doi.org/10.3390/ijms21124541 ] [PMID: 32630608]
[24]
Marcoux G, Duchez AC, Cloutier N, Provost P, Nigrovic PA, Boilard E. Revealing the diversity of extracellular vesicles using high-dimensional flow cytometry analyses. Sci Rep 2016; 6: 35928.
[http://dx.doi.org/10.1038/srep35928 ] [PMID: 27786276]
[25]
Mourouzis K, Oikonomou E, Siasos G, et al. Pro-inflammatory cytokines in acute coronary syndromes. Curr Pharm Des 2020; 26(36): 4624-47.
[http://dx.doi.org/10.2174/1381612826666200413082353 ] [PMID: 32282296]
[26]
Haraszti RA, Didiot MC, Sapp E, et al. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J Extracell Vesicles 2016; 5: 32570.
[http://dx.doi.org/10.3402/jev.v5.32570 ] [PMID: 27863537]
[27]
Melki I, Tessandier N, Zufferey A, Boilard E. Platelet microvesicles in health and disease. Platelets 2017; 28(3): 214-21.
[http://dx.doi.org/10.1080/09537104.2016.1265924 ] [PMID: 28102737]
[28]
Papapanagiotou A, Daskalakis G, Siasos G, Gargalionis A, Papavassiliou AG. The role of platelets in cardiovascular disease: Molecular mechanisms. Curr Pharm Des 2016; 22(29): 4493-505.
[http://dx.doi.org/10.2174/1381612822666160607064118 ] [PMID: 27281334]
[29]
Tan KT, Lip GY. The potential role of platelet microparticles in atherosclerosis. Thromb Haemost 2005; 94(3): 488-92.
[http://dx.doi.org/10.1160/TH05-03-0201 ] [PMID: 16268460]
[30]
Sinauridze EI, Kireev DA, Popenko NY, et al. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost 2007; 97(3): 425-34.
[http://dx.doi.org/10.1160/TH06-06-0313 ] [PMID: 17334510]
[31]
Osumi K, Ozeki Y, Saito S, et al. Development and assessment of enzyme immunoassay for platelet-derived microparticles. Thromb Haemost 2001; 85(2): 326-30.
[http://dx.doi.org/10.1055/s-0037-1615688 ] [PMID: 11246556]
[32]
Owens AP III, Mackman N. Microparticles in hemostasis and thrombosis. Circ Res 2011; 108(10): 1284-97.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.233056 ] [PMID: 21566224]
[33]
Qu M, Zou X, Fang F, et al. Platelet-derived microparticles enhance megakaryocyte differentiation and platelet generation via miR-1915-3p. Nat Commun 2020; 11(1): 4964.
[http://dx.doi.org/10.1038/s41467-020-18802-0 ] [PMID: 33009394]
[34]
Morel O, Morel N, Freyssinet JM, Toti F. Platelet microparticles and vascular cells interactions: A checkpoint between the haemostatic and thrombotic responses. Platelets 2008; 19(1): 9-23.
[http://dx.doi.org/10.1080/09537100701817232 ] [PMID: 18231934]
[35]
Rautou PE, Vion AC, Amabile N, et al. Microparticles, vascular function, and atherothrombosis. Circ Res 2011; 109(5): 593-606.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.233163 ] [PMID: 21852557]
[36]
Siasos G, Sara JD, Zaromytidou M, et al. Local low shear stress and endothelial dysfunction in patients with nonobstructive coronary atherosclerosis. J Am Coll Cardiol 2018; 71(19): 2092-102.
[http://dx.doi.org/10.1016/j.jacc.2018.02.073 ] [PMID: 29747829]
[37]
Projahn D, Koenen RR. Platelets: Key players in vascular inflammation. J Leukoc Biol 2012; 92(6): 1167-75.
[http://dx.doi.org/10.1189/jlb.0312151 ] [PMID: 22923486]
[38]
Wang ZT, Wang Z, Hu YW. Possible roles of platelet-derived microparticles in atherosclerosis. Atherosclerosis 2016; 248: 10-6.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.03.004 ] [PMID: 26978582]
[39]
Nomura S. Microparticle and atherothrombotic diseases. J Atheroscler Thromb 2016; 23: 1-9.
[http://dx.doi.org/10.5551/jat.32326 ] [PMID: 26412494]
[40]
Voukalis C, Shantsila E, Lip GYH. Microparticles and cardiovascular diseases. Ann Med 2019; 51(3-4): 193-223.
[http://dx.doi.org/10.1080/07853890.2019.1609076 ] [PMID: 31007084]
[41]
Shantsila E, Kamphuisen PW, Lip GY. Circulating microparticles in cardiovascular disease: Implications for atherogenesis and atherothrombosis. J Thromb Haemost 2010; 8(11): 2358-68.
[http://dx.doi.org/10.1111/j.1538-7836.2010.04007.x ] [PMID: 20695980]
[42]
Shustova ON, Antonova OA, Golubeva NV, et al. Differential procoagulant activity of microparticles derived from monocytes, granulocytes, platelets and endothelial cells: Impact of active tissue factor. Blood Coagul Fibrinolysis 2017; 28(5): 373-82.
[http://dx.doi.org/10.1097/MBC.0000000000000609 ] [PMID: 27926582]
[43]
Leroyer AS, Anfosso F, Lacroix R, et al. Endothelial-derived microparticles: Biological conveyors at the crossroad of inflammation, thrombosis and angiogenesis. Thromb Haemost 2010; 104(3): 456-63.
[http://dx.doi.org/10.1160/TH10-02-0111 ] [PMID: 20664896]
[44]
Deregibus MC, Cantaluppi V, Calogero R, et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 2007; 110(7): 2440-8.
[http://dx.doi.org/10.1182/blood-2007-03-078709 ] [PMID: 17536014]
[45]
Pérez-Casal M, Downey C, Cutillas-Moreno B, Zuzel M, Fukudome K, Toh CH. Microparticle-associated endothelial protein C receptor and the induction of cytoprotective and anti-inflammatory effects. Haematologica 2009; 94(3): 387-94.
[http://dx.doi.org/10.3324/haematol.13547 ] [PMID: 19211643]
[46]
Yong PJ, Koh CH, Shim WS. Endothelial microparticles: Missing link in endothelial dysfunction? Eur J Prev Cardiol 2013; 20(3): 496-512.
[http://dx.doi.org/10.1177/2047487312445001 ] [PMID: 22496273]
[47]
Curtis AM, Edelberg J, Jonas R, et al. Endothelial microparticles: Sophisticated vesicles modulating vascular function. Vasc Med 2013; 18(4): 204-14.
[http://dx.doi.org/10.1177/1358863X13499773 ] [PMID: 23892447]
[48]
Leroyer AS, Tedgui A, Boulanger CM. Role of microparticles in atherothrombosis. J Intern Med 2008; 263(5): 528-37.
[http://dx.doi.org/10.1111/j.1365-2796.2008.01957.x ] [PMID: 18410596]
[49]
Angelillo-Scherrer A. Leukocyte-derived microparticles in vascular homeostasis. Circ Res 2012; 110(2): 356-69.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.233403 ] [PMID: 22267840]
[50]
Chistiakov DA, Bobryshev YV, Orekhov AN. Neutrophil’s weapons in atherosclerosis. Exp Mol Pathol 2015; 99(3): 663-71.
[http://dx.doi.org/10.1016/j.yexmp.2015.11.011 ] [PMID: 26551083]
[51]
Rautou PE, Leroyer AS, Ramkhelawon B, et al. Microparticles from human atherosclerotic plaques promote endothelial ICAM-1-dependent monocyte adhesion and transendothelial migration. Circ Res 2011; 108(3): 335-43.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.237420 ] [PMID: 21164106]
[52]
Westerman M, Porter JB. Red blood cell-derived microparticles: An overview. Blood Cells Mol Dis 2016; 59: 134-9.
[http://dx.doi.org/10.1016/j.bcmd.2016.04.003 ] [PMID: 27282583]
[53]
Antonova OA, Shustova ON, Golubeva NV, et al. Coagulation properties of erythrocyte derived membrane microparticles. Biomed Khim 2019; 65(3): 214-21.
[http://dx.doi.org/10.18097/PBMC20196503214 ] [PMID: 31258144]
[54]
Gasa N, Meiring M. Microparticles: A link to increased thrombin generation. Blood Coagul Fibrinolysis 2021; 32(3): 204-8.
[http://dx.doi.org/10.1097/MBC.0000000000001018 ] [PMID: 33560006]
[55]
Li KY, Zheng L, Wang Q, Hu YW. Characteristics of erythrocyte-derived microvesicles and its relation with atherosclerosis. Atherosclerosis 2016; 255: 140-4.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.10.043 ] [PMID: 27871771]
[56]
Said AS, Rogers SC, Doctor A. Physiologic impact of circulating rbc microparticles upon blood-vascular interactions. Front Physiol 2018; 8: 1120.
[http://dx.doi.org/10.3389/fphys.2017.01120 ] [PMID: 29379445]
[57]
Bernal-Mizrachi L, Jy W, Jimenez JJ, et al. High levels of circulating endothelial microparticles in patients with acute coronary syndromes. Am Heart J 2003; 145(6): 962-70.
[http://dx.doi.org/10.1016/S0002-8703(03)00103-0 ] [PMID: 12796750]
[58]
Mallat Z, Benamer H, Hugel B, et al. Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation 2000; 101(8): 841-3.
[http://dx.doi.org/10.1161/01.CIR.101.8.841 ] [PMID: 10694520]
[59]
Radecke CE, Warrick AE, Singh GD, Rogers JH, Simon SI, Armstrong EJ. Coronary artery endothelial cells and microparticles increase expression of VCAM-1 in myocardial infarction. Thromb Haemost 2015; 113(3): 605-16.
[http://dx.doi.org/10.1160/TH14-02-0151 ] [PMID: 25413339]
[60]
Montoro-García S, Shantsila E, Tapp LD, et al. Small-size circulating microparticles in acute coronary syndromes: Relevance to fibrinolytic status, reparative markers and outcomes. Atherosclerosis 2013; 227(2): 313-22.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.01.028 ] [PMID: 23415055]
[61]
Zhou B, Li J, Chen S, et al. Time course of various cell origin circulating microparticles in ST-segment elevation myocardial infarction patients undergoing percutaneous transluminal coronary intervention. Exp Ther Med 2016; 11(4): 1481-6.
[http://dx.doi.org/10.3892/etm.2016.3060 ] [PMID: 27073469]
[62]
Min PK, Kim JY, Chung KH, et al. Local increase in microparticles from the aspirate of culprit coronary arteries in patients with ST-segment elevation myocardial infarction. Atherosclerosis 2013; 227(2): 323-8.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.01.032 ] [PMID: 23422831]
[63]
Suades R, Padró T, Crespo J, et al. Circulating microparticle signature in coronary and peripheral blood of ST elevation myocardial infarction patients in relation to pain-to-PCI elapsed time. Int J Cardiol 2016; 202: 378-87.
[http://dx.doi.org/10.1016/j.ijcard.2015.09.011 ] [PMID: 26432487]
[64]
Biasucci LM, Porto I, Di Vito L, et al. Differences in microparticle release in patients with acute coronary syndrome and stable angina. Circ J 2012; 76(9): 2174-82.
[http://dx.doi.org/10.1253/circj.CJ-12-0068 ] [PMID: 22664782]
[65]
Maly M, Hrachovinova I, Tomasov P, Salaj P, Hajek P, Veselka J. Patients with acute coronary syndromes have low tissue factor activity and microparticle count, but normal concentration of tissue factor antigen in platelet free plasma: A pilot study. Eur J Haematol 2009; 82(2): 148-53.
[http://dx.doi.org/10.1111/j.1600-0609.2008.01175.x ] [PMID: 19018869]
[66]
Liao HX, Meng LL, Yu X, et al. Increased circulating erythrocyte-derived microparticles in patients with acute coronary syndromes. Biomarkers Med 2021; 15(10): 741-51.
[http://dx.doi.org/10.2217/bmm-2021-0141 ] [PMID: 33834858]
[67]
Bulut D, Maier K, Bulut-Streich N, Börgel J, Hanefeld C, Mügge A. Circulating endothelial microparticles correlate inversely with endothelial function in patients with ischemic left ventricular dysfunction. J Card Fail 2008; 14(4): 336-40.
[http://dx.doi.org/10.1016/j.cardfail.2007.11.002 ] [PMID: 18474347]
[68]
Ivak P, Pitha J, Wohlfahrt P, et al. Endothelial dysfunction expressed as endothelial microparticles in patients with end-stage heart failure. Physiol Res 2014; 63(Suppl. 3): S369-73.
[http://dx.doi.org/10.33549/physiolres.932866 ] [PMID: 25428742]
[69]
Garcia S, Chirinos J, Jimenez J, et al. Phenotypic assessment of endothelial microparticles in patients with heart failure and after heart transplantation: Switch from cell activation to apoptosis. J Heart Lung Transplant 2005; 24(12): 2184-9.
[http://dx.doi.org/10.1016/j.healun.2005.07.006 ] [PMID: 16364869]
[70]
Berezin AE, Kremzer AA, Martovitskaya YV, Berezina TA, Gromenko EA. Pattern of endothelial progenitor cells and apoptotic endothelial cell-derived microparticles in chronic heart failure patients with preserved and reduced left ventricular ejection fraction. EBioMedicine 2016; 4: 86-94.
[http://dx.doi.org/10.1016/j.ebiom.2016.01.018 ] [PMID: 26981573]
[71]
Berezin AE, Kremzer AA, Berezina TA, Martovitskaya YV. Pattern of circulating microparticles in chronic heart failure patients with metabolic syndrome: Relevance to neurohumoral and inflammatory activation. BBA Clin 2015; 4: 69-75.
[http://dx.doi.org/10.1016/j.bbacli.2015.07.002 ] [PMID: 26674662]
[72]
Kalampogias A, Siasos G, Oikonomou E, et al. Basic mechanisms in atherosclerosis: The role of calcium. Med Chem 2016; 12(2): 103-13.
[http://dx.doi.org/10.2174/1573406411666150928111446 ] [PMID: 26411606]
[73]
Siasos G, Tsigkou V, Oikonomou E, et al. Circulating biomarkers determining inflammation in atherosclerosis progression. Curr Med Chem 2015; 22(22): 2619-35.
[http://dx.doi.org/10.2174/0929867322666150415125828 ] [PMID: 25876747]
[74]
Chironi GN, Boulanger CM, Simon A, Dignat-George F, Freyssinet JM, Tedgui A. Endothelial microparticles in diseases. Cell Tissue Res 2009; 335(1): 143-51.
[http://dx.doi.org/10.1007/s00441-008-0710-9 ] [PMID: 18989704]
[75]
Oikonomou E, Siasos G, Tsigkou V, et al. Coronary artery disease and endothelial dysfunction: Novel diagnostic and therapeutic approaches. Curr Med Chem 2020; 27(7): 1052-80.
[http://dx.doi.org/10.2174/0929867326666190830103219 ] [PMID: 31470773]
[76]
Schmidt DE, Manca M, Hoefer IE. Circulating endothelial cells in coronary artery disease and acute coronary syndrome. Trends Cardiovasc Med 2015; 25(7): 578-87.
[http://dx.doi.org/10.1016/j.tcm.2015.01.013 ] [PMID: 25753180]
[77]
Sluijter JPG, Davidson SM, Boulanger CM, et al. Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position paper from the working group on cellular biology of the heart of the european society of cardiology. Cardiovasc Res 2018; 114(1): 19-34.
[http://dx.doi.org/10.1093/cvr/cvx211 ] [PMID: 29106545]
[78]
Hafiane A, Daskalopoulou SS. Extracellular vesicles characteristics and emerging roles in atherosclerotic cardiovascular disease. Metabolism 2018; 85: 213-22.
[http://dx.doi.org/10.1016/j.metabol.2018.04.008 ] [PMID: 29727628]
[79]
Boulanger CM, Loyer X, Rautou PE, Amabile N. Extracellular vesicles in coronary artery disease. Nat Rev Cardiol 2017; 14(5): 259-72.
[http://dx.doi.org/10.1038/nrcardio.2017.7 ] [PMID: 28150804]
[80]
Gao XF, Wang ZM, Wang F, Gu Y, Zhang JJ, Chen SL. Exosomes in coronary artery disease. Int J Biol Sci 2019; 15(11): 2461-70.
[http://dx.doi.org/10.7150/ijbs.36427 ] [PMID: 31595163]
[81]
Alique M, Ramírez-Carracedo R, Bodega G, Carracedo J, Ramírez R. Senescent microvesicles: A novel advance in molecular mechanisms of atherosclerotic calcification. Int J Mol Sci 2018; 19(7): 19.
[http://dx.doi.org/10.3390/ijms19072003 ] [PMID: 29987251]
[82]
Koganti S, Eleftheriou D, Brogan PA, Kotecha T, Hong Y, Rakhit RD. Microparticles and their role in coronary artery disease. Int J Cardiol 2017; 230: 339-45.
[http://dx.doi.org/10.1016/j.ijcard.2016.12.108 ] [PMID: 28040277]
[83]
Kapustin AN, Chatrou ML, Drozdov I, et al. Vascular smooth muscle cell calcification is mediated by regulated exosome secretion. Circ Res 2015; 116(8): 1312-23.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.305012 ] [PMID: 25711438]
[84]
Goettsch C, Hutcheson JD, Aikawa E. MicroRNA in cardiovascular calcification: Focus on targets and extracellular vesicle delivery mechanisms. Circ Res 2013; 112(7): 1073-84.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.300937 ] [PMID: 23538277]
[85]
Otsuka F, Sakakura K, Yahagi K, Joner M, Virmani R. Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler Thromb Vasc Biol 2014; 34(4): 724-36.
[http://dx.doi.org/10.1161/ATVBAHA.113.302642 ] [PMID: 24558104]
[86]
Yahagi K, Kolodgie FD, Otsuka F, et al. Pathophysiology of native coronary, vein graft, and in-stent atherosclerosis. Nat Rev Cardiol 2016; 13(2): 79-98.
[http://dx.doi.org/10.1038/nrcardio.2015.164 ] [PMID: 26503410]
[87]
Sangiorgi G, Rumberger JA, Severson A, et al. Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: A histologic study of 723 coronary artery segments using nondecalcifying methodology. J Am Coll Cardiol 1998; 31(1): 126-33.
[http://dx.doi.org/10.1016/S0735-1097(97)00443-9 ] [PMID: 9426030]
[88]
O’Neill WC, Han KH, Schneider TM, Hennigar RA. Prevalence of nonatheromatous lesions in peripheral arterial disease. Arterioscler Thromb Vasc Biol 2015; 35(2): 439-47.
[http://dx.doi.org/10.1161/ATVBAHA.114.304764 ] [PMID: 25477344]
[89]
Kelly-Arnold A, Maldonado N, Laudier D, Aikawa E, Cardoso L, Weinbaum S. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc Natl Acad Sci USA 2013; 110(26): 10741-6.
[http://dx.doi.org/10.1073/pnas.1308814110 ] [PMID: 23733926]
[90]
McEvoy JW, Blaha MJ, Defilippis AP, et al. Coronary artery calcium progression: An important clinical measurement? A review of published reports. J Am Coll Cardiol 2010; 56(20): 1613-22.
[http://dx.doi.org/10.1016/j.jacc.2010.06.038 ] [PMID: 21050970]
[91]
Karlöf E, Seime T, Dias N, et al. Correlation of computed tomography with carotid plaque transcriptomes associates calcification with lesion-stabilization. Atherosclerosis 2019; 288: 175-85.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.05.005 ] [PMID: 31109707]
[92]
Burke AP, Weber DK, Kolodgie FD, Farb A, Taylor AJ, Virmani R. Pathophysiology of calcium deposition in coronary arteries. Herz 2001; 26(4): 239-44.
[http://dx.doi.org/10.1007/PL00002026 ] [PMID: 11479935]
[93]
Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 2001; 103(8): 1051-6.
[http://dx.doi.org/10.1161/01.CIR.103.8.1051 ] [PMID: 11222465]
[94]
Durham AL, Speer MY, Scatena M, Giachelli CM, Shanahan CM. Role of smooth muscle cells in vascular calcification: Implications in atherosclerosis and arterial stiffness. Cardiovasc Res 2018; 114(4): 590-600.
[http://dx.doi.org/10.1093/cvr/cvy010 ] [PMID: 29514202]
[95]
Petsophonsakul P, Furmanik M, Forsythe R, et al. Role of vascular smooth muscle cell phenotypic switching and calcification in aortic aneurysm formation. Arterioscler Thromb Vasc Biol 2019; 39(7): 1351-68.
[http://dx.doi.org/10.1161/ATVBAHA.119.312787 ] [PMID: 31144989]
[96]
Shanahan CM, Crouthamel MH, Kapustin A, Giachelli CM. Arterial calcification in chronic kidney disease: Key roles for calcium and phosphate. Circ Res 2011; 109(6): 697-711.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.234914 ] [PMID: 21885837]
[97]
Kapustin AN, Davies JD, Reynolds JL, et al. Calcium regulates key components of vascular smooth muscle cell-derived matrix vesicles to enhance mineralization. Circ Res 2011; 109(1): e1-e12.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.238808 ] [PMID: 21566214]
[98]
Buendía P, Montes de Oca A, Madueño JA, et al. Endothelial microparticles mediate inflammation-induced vascular calcification. FASEB J 2015; 29(1): 173-81.
[http://dx.doi.org/10.1096/fj.14-249706 ] [PMID: 25342130]
[99]
Reynolds JL, Joannides AJ, Skepper JN, et al. Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: A potential mechanism for accelerated vascular calcification in ESRD. J Am Soc Nephrol 2004; 15(11): 2857-67.
[http://dx.doi.org/10.1097/01.ASN.0000141960.01035.28 ] [PMID: 15504939]
[100]
Bakhshian Nik A, Hutcheson JD, Aikawa E. Extracellular vesicles as mediators of cardiovascular calcification. Front Cardiovasc Med 2017; 4: 78.
[http://dx.doi.org/10.3389/fcvm.2017.00078 ] [PMID: 29322046]
[101]
New SE, Goettsch C, Aikawa M, et al. Macrophage-derived matrix vesicles: An alternative novel mechanism for microcalcification in atherosclerotic plaques. Circ Res 2013; 113(1): 72-7.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301036 ] [PMID: 23616621]
[102]
Hutcheson JD, Goettsch C, Bertazzo S, et al. Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques. Nat Mater 2016; 15(3): 335-43.
[http://dx.doi.org/10.1038/nmat4519 ] [PMID: 26752654]
[103]
Chen NX, O’Neill KD, Chen X, Moe SM. Annexin-mediated matrix vesicle calcification in vascular smooth muscle cells. J Bone Miner Res 2008; 23(11): 1798-805.
[http://dx.doi.org/10.1359/jbmr.080604 ] [PMID: 18597635]
[104]
Mathieu P, Boulanger MC, Bouchareb R. Molecular biology of calcific aortic valve disease: Towards new pharmacological therapies. Expert Rev Cardiovasc Ther 2014; 12(7): 851-62.
[http://dx.doi.org/10.1586/14779072.2014.923756 ] [PMID: 24857537]
[105]
Ahmad PJ, Trcka D, Xue S, et al. Discoidin domain receptor-1 deficiency attenuates atherosclerotic calcification and smooth muscle cell-mediated mineralization. Am J Pathol 2009; 175(6): 2686-96.
[http://dx.doi.org/10.2353/ajpath.2009.080734 ] [PMID: 19893047]
[106]
Krohn JB, Hutcheson JD, Martínez-Martínez E, et al. Discoidin domain receptor-1 regulates calcific extracellular vesicle release in vascular smooth muscle cell fibrocalcific response via transforming growth factor-β signaling. Arterioscler Thromb Vasc Biol 2016; 36(3): 525-33.
[http://dx.doi.org/10.1161/ATVBAHA.115.307009 ] [PMID: 26800565]
[107]
Goettsch C, Kjolby M, Aikawa E. Sortilin and its multiple roles in cardiovascular and metabolic diseases. Arterioscler Thromb Vasc Biol 2018; 38(1): 19-25.
[http://dx.doi.org/10.1161/ATVBAHA.117.310292 ] [PMID: 29191923]
[108]
Goettsch C, Hutcheson JD, Aikawa M, et al. Sortilin mediates vascular calcification via its recruitment into extracellular vesicles. J Clin Invest 2016; 126(4): 1323-36.
[http://dx.doi.org/10.1172/JCI80851 ] [PMID: 26950419]
[109]
Rogers MA, Buffolo F, Schlotter F, et al. Annexin A1-dependent tethering promotes extracellular vesicle aggregation revealed with single-extracellular vesicle analysis. Sci Adv 2020; 6(38): 6.
[http://dx.doi.org/10.1126/sciadv.abb1244 ] [PMID: 32938681]
[110]
Furmanik M, Chatrou M, van Gorp R, et al. Reactive oxygen-forming Nox5 links vascular smooth muscle cell phenotypic switching and extracellular vesicle-mediated vascular calcification. Circ Res 2020; 127(7): 911-27.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.316159 ] [PMID: 32564697]
[111]
Nozaki T, Sugiyama S, Sugamura K, et al. Prognostic value of endothelial microparticles in patients with heart failure. Eur J Heart Fail 2010; 12(11): 1223-8.
[http://dx.doi.org/10.1093/eurjhf/hfq145 ] [PMID: 20817695]
[112]
Huang PH, Huang SS, Chen YH, et al. Increased circulating CD31+/annexin V+ apoptotic microparticles and decreased circulating endothelial progenitor cell levels in hypertensive patients with microalbuminuria. J Hypertens 2010; 28(8): 1655-65.
[http://dx.doi.org/10.1097/HJH.0b013e32833a4d0a ] [PMID: 20520578]
[113]
Cordazzo C, Neri T, Petrini S, et al. Angiotensin II induces the generation of procoagulant microparticles by human mononuclear cells via an angiotensin type 2 receptor-mediated pathway. Thromb Res 2013; 131(4): e168-74.
[http://dx.doi.org/10.1016/j.thromres.2013.01.019 ] [PMID: 23414567]
[114]
Preston RA, Jy W, Jimenez JJ, et al. Effects of severe hypertension on endothelial and platelet microparticles. Hypertension 2003; 41(2): 211-7.
[http://dx.doi.org/10.1161/01.HYP.0000049760.15764.2D ] [PMID: 12574084]
[115]
Li S, Wei J, Zhang C, et al. Cell-derived microparticles in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Cell Physiol Biochem 2016; 39(6): 2439-50.
[http://dx.doi.org/10.1159/000452512 ] [PMID: 27832642]
[116]
Burger D, Turner M, Xiao F, Munkonda MN, Akbari S, Burns KD. High glucose increases the formation and pro-oxidative activity of endothelial microparticles. Diabetologia 2017; 60(9): 1791-800.
[http://dx.doi.org/10.1007/s00125-017-4331-2 ] [PMID: 28601907]
[117]
Alkhatatbeh MJ, Enjeti AK, Acharya S, Thorne RF, Lincz LF. The origin of circulating CD36 in type 2 diabetes. Nutr Diabetes 2013; 3: e59.
[http://dx.doi.org/10.1038/nutd.2013.1 ] [PMID: 23381664]
[118]
Tripodi A, Branchi A, Chantarangkul V, et al. Hypercoagulability in patients with type 2 diabetes mellitus detected by a thrombin generation assay. J Thromb Thrombolysis 2011; 31(2): 165-72.
[http://dx.doi.org/10.1007/s11239-010-0506-0 ] [PMID: 20640482]
[119]
Domingueti CP, Dusse LM. Carvalho Md, de Sousa LP, Gomes KB, Fernandes AP. Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J Diabetes Complications 2016; 30(4): 738-45.
[http://dx.doi.org/10.1016/j.jdiacomp.2015.12.018 ] [PMID: 26781070]
[120]
Omoto S, Nomura S, Shouzu A, Nishikawa M, Fukuhara S, Iwasaka T. Detection of monocyte-derived microparticles in patients with Type II diabetes mellitus. Diabetologia 2002; 45(4): 550-5.
[http://dx.doi.org/10.1007/s00125-001-0772-7 ] [PMID: 12032632]
[121]
Nomura S, Shouzu A, Omoto S, Nishikawa M, Fukuhara S. Significance of chemokines and activated platelets in patients with diabetes. Clin Exp Immunol 2000; 121(3): 437-43.
[http://dx.doi.org/10.1046/j.1365-2249.2000.01324.x ] [PMID: 10971508]
[122]
Berezin AE, Kremzer AA, Berezina TA, Martovitskaya YV. The pattern of circulating microparticles in patients with diabetes mellitus with asymptomatic atherosclerosis. Acta Clin Belg 2016; 71(1): 38-45.
[http://dx.doi.org/10.1080/17843286.2015.1110894 ] [PMID: 27075791]
[123]
Tsimerman G, Roguin A, Bachar A, Melamed E, Brenner B, Aharon A. Involvement of microparticles in diabetic vascular complications. Thromb Haemost 2011; 106(2): 310-21.
[http://dx.doi.org/10.1160/TH10-11-0712 ] [PMID: 21713319]
[124]
Paschou SA, Siasos G, Katsiki N, Tentolouris N, Tousoulis D. The role of microRNAs in the development of type 2 diabetes complications. Curr Pharm Des 2020; 26(46): 5969-79.
[http://dx.doi.org/10.2174/1381612826666201102102233 ] [PMID: 33138753]
[125]
Ou ZJ, Chang FJ, Luo D, et al. Endothelium-derived microparticles inhibit angiogenesis in the heart and enhance the inhibitory effects of hypercholesterolemia on angiogenesis. Am J Physiol Endocrinol Metab 2011; 300(4): E661-8.
[http://dx.doi.org/10.1152/ajpendo.00611.2010 ] [PMID: 21245463]
[126]
Llorente-Cortés V, Otero-Viñas M, Camino-López S, Llampayas O, Badimon L. Aggregated low-density lipoprotein uptake induces membrane tissue factor procoagulant activity and microparticle release in human vascular smooth muscle cells. Circulation 2004; 110(4): 452-9.
[http://dx.doi.org/10.1161/01.CIR.0000136032.40666.3D ] [PMID: 15238452]
[127]
Sommeijer DW, Joop K, Leyte A, Reitsma PH, ten Cate H. Pravastatin reduces fibrinogen receptor gpIIIa on platelet-derived microparticles in patients with type 2 diabetes. J Thromb Haemost 2005; 3(6): 1168-71.
[http://dx.doi.org/10.1111/j.1538-7836.2005.01403.x ] [PMID: 15946206]
[128]
Ueba T, Haze T, Sugiyama M, et al. Level, distribution and correlates of platelet-derived microparticles in healthy individuals with special reference to the metabolic syndrome. Thromb Haemost 2008; 100(2): 280-5.
[PMID: 18690348]
[129]
Arteaga RB, Chirinos JA, Soriano AO, et al. Endothelial microparticles and platelet and leukocyte activation in patients with the metabolic syndrome. Am J Cardiol 2006; 98(1): 70-4.
[http://dx.doi.org/10.1016/j.amjcard.2006.01.054 ] [PMID: 16784924]
[130]
Agouni A, Ducluzeau PH, Benameur T, et al. Microparticles from patients with metabolic syndrome induce vascular hypo-reactivity via Fas/Fas-ligand pathway in mice. PLoS One 2011; 6(11): e27809.
[http://dx.doi.org/10.1371/journal.pone.0027809 ] [PMID: 22110764]
[131]
Sambola A, Osende J, Hathcock J, et al. Role of risk factors in the modulation of tissue factor activity and blood thrombogenicity. Circulation 2003; 107(7): 973-7.
[http://dx.doi.org/10.1161/01.CIR.0000050621.67499.7D ] [PMID: 12600909]
[132]
Li M, Yu D, Williams KJ, Liu ML. Tobacco smoke induces the generation of procoagulant microvesicles from human monocytes/macrophages. Arterioscler Thromb Vasc Biol 2010; 30(9): 1818-24.
[http://dx.doi.org/10.1161/ATVBAHA.110.209577 ] [PMID: 20558816]
[133]
Gordon C, Gudi K, Krause A, et al. Circulating endothelial microparticles as a measure of early lung destruction in cigarette smokers. Am J Respir Crit Care Med 2011; 184(2): 224-32.
[http://dx.doi.org/10.1164/rccm.201012-2061OC ] [PMID: 21471087]
[134]
Li CJ, Liu Y, Chen Y, Yu D, Williams KJ, Liu ML. Novel proteolytic microvesicles released from human macrophages after exposure to tobacco smoke. Am J Pathol 2013; 182(5): 1552-62.
[http://dx.doi.org/10.1016/j.ajpath.2013.01.035 ] [PMID: 23499464]
[135]
Heiss C, Amabile N, Lee AC, et al. Brief secondhand smoke exposure depresses endothelial progenitor cells activity and endothelial function: Sustained vascular injury and blunted nitric oxide production. J Am Coll Cardiol 2008; 51(18): 1760-71.
[http://dx.doi.org/10.1016/j.jacc.2008.01.040 ] [PMID: 18452782]
[136]
Russell JA. Management of sepsis. N Engl J Med 2006; 355(16): 1699-713.
[http://dx.doi.org/10.1056/NEJMra043632 ] [PMID: 17050894]
[137]
Meziani F, Delabranche X, Asfar P, Toti F. Bench-to-bedside review: Circulating microparticles--a new player in sepsis? Crit Care 2010; 14(5): 236.
[http://dx.doi.org/10.1186/cc9231 ] [PMID: 21067540]
[138]
Chen HP, Wang XY, Pan XY, et al. Circulating neutrophil-derived microparticles associated with the prognosis of patients with sepsis. J Inflamm Res 2020; 13: 1113-24.
[http://dx.doi.org/10.2147/JIR.S287256 ] [PMID: 33363395]
[139]
Meng S, Kang K, Fei D, et al. Preliminary study of microparticle coagulation properties in septic patients with disseminated intravascular coagulation. J Int Med Res 2021; 49(5): 3000605211014094.
[http://dx.doi.org/10.1177/03000605211014094 ] [PMID: 34034547]
[140]
Hoyer FF, Giesen MK, Nunes França C, Lütjohann D, Nickenig G, Werner N. Monocytic microparticles promote atherogenesis by modulating inflammatory cells in mice. J Cell Mol Med 2012; 16(11): 2777-88.
[http://dx.doi.org/10.1111/j.1582-4934.2012.01595.x ] [PMID: 22697268]
[141]
Mostefai HA, Meziani F, Mastronardi ML, et al. Circulating microparticles from patients with septic shock exert protective role in vascular function. Am J Respir Crit Care Med 2008; 178(11): 1148-55.
[http://dx.doi.org/10.1164/rccm.200712-1835OC ] [PMID: 18723433]
[142]
Walenta KL, Link A, Friedrich EB, Bohm M. Circulating microparticles in septic shock. Am J Respir Crit Care Med 2009; 180(1): 100.
[http://dx.doi.org/10.1164/ajrccm.180.1.100]
[143]
Fernández M, Calligaris SD. Circulating microparticles in cardiovascular disease: Going on stage. Biomarkers 2019; 24(5): 423-8.
[http://dx.doi.org/10.1080/1354750X.2019.1616822 ] [PMID: 31068021]
[144]
D’Agostino RB Sr, Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: The Framingham Heart Study. Circulation 2008; 117(6): 743-53.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.699579 ] [PMID: 18212285]
[145]
Dorresteijn JA, Visseren FL, Wassink AM, et al. SMART Study Group. Development and validation of a prediction rule for recurrent vascular events based on a cohort study of patients with arterial disease: The SMART risk score. Heart 2013; 99(12): 866-72.
[http://dx.doi.org/10.1136/heartjnl-2013-303640 ] [PMID: 23574971]
[146]
Morel O, Pereira B, Averous G, et al. Increased levels of procoagulant tissue factor-bearing microparticles within the occluded coronary artery of patients with ST-segment elevation myocardial infarction: Role of endothelial damage and leukocyte activation. Atherosclerosis 2009; 204(2): 636-41.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.10.039 ] [PMID: 19091315]
[147]
Mobarrez F, He S, Bröijersen A, et al. Atorvastatin reduces thrombin generation and expression of tissue factor, P-selectin and GPIIIa on platelet-derived microparticles in patients with peripheral arterial occlusive disease. Thromb Haemost 2011; 106(2): 344-52.
[http://dx.doi.org/10.1160/TH10-12-0810 ] [PMID: 21614411]
[148]
Chironi G, Simon A, Hugel B, et al. Circulating leukocyte-derived microparticles predict subclinical atherosclerosis burden in asymptomatic subjects. Arterioscler Thromb Vasc Biol 2006; 26(12): 2775-80.
[http://dx.doi.org/10.1161/01.ATV.0000249639.36915.04 ] [PMID: 17038634]
[149]
Zacharia E, Antonopoulos AS, Oikonomou E, et al. Plasma signature of apoptotic microvesicles is associated with endothelial dysfunction and plaque rupture in acute coronary syndromes. J Mol Cell Cardiol 2020; 138: 110-4.
[http://dx.doi.org/10.1016/j.yjmcc.2019.11.153 ] [PMID: 31783033]
[150]
Lee ST, Chu K, Jung KH, et al. Circulating CD62E+ microparticles and cardiovascular outcomes. PLoS One 2012; 7(4): e35713.
[http://dx.doi.org/10.1371/journal.pone.0035713 ] [PMID: 22563392]
[151]
Faille D, Frere C, Cuisset T, et al. CD11b+ leukocyte microparticles are associated with high-risk angiographic lesions and recurrent cardiovascular events in acute coronary syndromes. J Thromb Haemost 2011; 9(9): 1870-3.
[http://dx.doi.org/10.1111/j.1538-7836.2011.04418.x ] [PMID: 21707910]
[152]
Sinning JM, Losch J, Walenta K, Böhm M, Nickenig G, Werner N. Circulating CD31+/Annexin V+ microparticles correlate with cardiovascular outcomes. Eur Heart J 2011; 32(16): 2034-41.
[http://dx.doi.org/10.1093/eurheartj/ehq478 ] [PMID: 21186238]
[153]
Berezin AE, Kremzer AA, Samura TA, et al. Predictive value of apoptotic microparticles to mononuclear progenitor cells ratio in advanced chronic heart failure patients. J Cardiol 2015; 65(5): 403-11.
[http://dx.doi.org/10.1016/j.jjcc.2014.06.014 ] [PMID: 25123603]
[154]
Christersson C, Thulin Å, Siegbahn A. Microparticles during long-term follow-up after acute myocardial infarction. Association to atherosclerotic burden and risk of cardiovascular events. Thromb Haemost 2017; 117(8): 1571-81.
[http://dx.doi.org/10.1160/TH16-11-0837 ] [PMID: 28424820]
[155]
Chiva-Blanch G, Bratseth V, Ritschel V, et al. Monocyte-derived circulating microparticles (CD14+, CD14+/CD11b+ and CD14+/CD142+) are related to long-term prognosis for cardiovascular mortality in STEMI patients. Int J Cardiol 2017; 227: 876-81.
[http://dx.doi.org/10.1016/j.ijcard.2016.11.302 ] [PMID: 27915085]
[156]
Thulin Å, Christersson C, Alfredsson J, Siegbahn A. Circulating cell-derived microparticles as biomarkers in cardiovascular disease. Biomarkers Med 2016; 10(9): 1009-22.
[http://dx.doi.org/10.2217/bmm-2016-0035 ] [PMID: 27586235]
[157]
Nomura S, Shouzu A, Omoto S, Nishikawa M, Fukuhara S, Iwasaka T. Losartan and simvastatin inhibit platelet activation in hypertensive patients. J Thromb Thrombolysis 2004; 18(3): 177-85.
[http://dx.doi.org/10.1007/s11239-005-0343-8 ] [PMID: 15815879]
[158]
Rössig L, Hoffmann J, Hugel B, et al. Vitamin C inhibits endothelial cell apoptosis in congestive heart failure. Circulation 2001; 104(18): 2182-7.
[http://dx.doi.org/10.1161/hc4301.098284 ] [PMID: 11684628]
[159]
EL Andaloussi S. Mäger I, Breakefield XO, Wood MJ. Extracellular vesicles: Biology and emerging therapeutic opportunities. Nat Rev Drug Discov 2013; 12(5): 347-57.
[http://dx.doi.org/10.1038/nrd3978 ] [PMID: 23584393]
[160]
Hergenreider E, Heydt S, Tréguer K, et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol 2012; 14(3): 249-56.
[http://dx.doi.org/10.1038/ncb2441 ] [PMID: 22327366]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy