Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Recent Advancements in Green Synthesis of Nanoparticles for Improvement of Bioactivities: A Review

Author(s): Vinay Deep Punetha, Sunil Dhali, Anita Rana, Neha Karki, Himani Tiwari, Pushpa Negi, Souvik Basak* and Nanda Gopal Sahoo*

Volume 23, Issue 7, 2022

Published on: 12 August, 2021

Page: [904 - 919] Pages: 16

DOI: 10.2174/1389201022666210812115233

Price: $65

Abstract

Natural products have widely been used in applications ranging from antibacterial, antiviral, antifungal, and various other medicinal applications. The use of these natural products was recognized way before the establishment of basic chemistry behind the disease and the chemistry of plant metabo-lites. After the establishment of plant chemistry, various new horizons evolved, and the application of natural products breached the orthodox limitations. In one such interdisciplinary area, the use of plant materials in the synthesis of nanoparticles (NPs) has exponentially emerged. This advancement has offered various environment-friendly methods where hazardous chemicals are completely replaced by natural products in the sophisticated and hectic synthesis processes. This review is an attempt to under-stand the mechanism of metal nanoparticles synthesis using plant materials. It includes details on the role of the plant’s secondary metabolites in the synthesis of nanoparticles including the mechanism of action. In addition, the use of these nanomaterials has widely been discussed along with the possible mechanism behind their antimicrobial and catalytic action.

Keywords: NPs, green synthesis, natural products, secondary metabolites, antimicrobial, catalyst.

Graphical Abstract
[1]
Xianghua, G.; Liqiao, W.; Hong, Y.; Bingshe, Xu. Green synthesis and characteristic of core-shell structure silver/starch nanoparticles. Mater. Lett., 2011, 65(19-20), 2963-2965.
[http://dx.doi.org/10.1016/j.matlet.2011.06.020]
[2]
Gupta, N.; Singh, H.P.; Sharma, R.K. Metal nanoparticleswith high catalytic activity in degradation of methyl orange:an electron relay effect. J. Mol. Catal. Chem., 2011, 335(1-2), 248-252.
[http://dx.doi.org/10.1016/j.molcata.2010.12.001]
[3]
Chung, K.T.; Cerniglia, C.E. Mutagenicity of azo dyes: structure-activity relationships. Mutat. Res., 1992, 277(3), 201-220.
[http://dx.doi.org/10.1016/0165-1110(92)90044-A] [PMID: 1381050]
[4]
Nakkala, J.R.; Mata, R.; Sadras, S.R. The antioxidant and catalytic activities of greensynthesized gold nanoparticles from Piper longumfruit extract. Process Safe. Environ., 2016, 100, 288-294.
[5]
Swamy, M.K.; Akhtar, M.S.; Mohanty, S.K.; Sinniah, U.R. Synthesis and characterization of silver nanoparticles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 151, 939-944.
[http://dx.doi.org/10.1016/j.saa.2015.07.009] [PMID: 26186612]
[6]
Sironmani, A.; Daniel, K. Silver nanoparticles$universal multifunctional nanoparticles for bio-sensing, imaging for diagnostics and targeted drug delivery for therapeutic applications. In: Drug discovery and development $ present and future; Dr. Izet, Kapetanovic, Ed.; In. Tech. Open,, 2011, pp. 477-478.
[http://dx.doi.org/10.5772/27047]
[7]
Singh, K.; Panghal, M.; Kadyan, S.; Yadav, J.P. Evaluation of antimicrobial activity of synthesized silver nanoparticles using Phyllanthus amarus and Tinospora cordifolia medicinal plants. J. Nanomed. Nanotechnol., 2014, 5(6), 1-5.
[http://dx.doi.org/10.4172/2157-7439.1000250]
[8]
Banerjee, P.; Satapathy, M.; Mukhopahayay, A.; Das, P. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour. Bioprocess., 2014, 1(3), 1-10.
[http://dx.doi.org/10.1186/s40643-014-0003-y]
[9]
Sahayaraj, K. Novel biosilver nanoparticles and their biological utility and overview. Int. J. Pharm., 2014, 4(1), 26-39.
[10]
Prasad, T.N.V.K.V.; Elumalai, E.K.; Khateeja, S. Evaluation of the antimicrobial efficacy ofphytogenic silver nanoparticles. Asian Pac. J. Trop. Biomed., 2011, 1(1), 82-85.
[http://dx.doi.org/10.1016/S2221-1691(11)60130-5]
[11]
Geetha, B.S.; Nair, M.S.; Latha, P.G.; Remani, P. Sesquiterpene lactones isolated from Elephantopus scaber L. inhibits human lymphocyte proliferation and the growth of tumour cell lines and induces apoptosis in vitro. J. Biomed. Biotechnol., 2012, 2012721285
[http://dx.doi.org/10.1155/2012/721285] [PMID: 22500104]
[12]
Elfeky, A.S.; Salem, S.S.; Elzaref, A.S.; Owda, M.E.; Eladawy, H.A.; Saeed, A.M.; Awad, M.A.; Abou-Zeid, R.E.; Fouda, A. Multifunctional cellulose nanocrystal/metal oxide hybrid, photo-degradation, antibacterial and larvicidal activities. Carbohydr. Polym., 2020, 230115711
[http://dx.doi.org/10.1016/j.carbpol.2019.115711] [PMID: 31887890]
[13]
Dulinska-Molak, I.; Chlanda, A.; Li, J.; Wang, X.; Bystrzejewski, M.; Kawazoe, N.; Chen, G.; Swieszkowski, W. The influence of carbon-encapsulated iron nanoparticles on elastic modulus of living human mesenchymal stem cells examined by atomic force microscopy. Micron, 2018, 108, 41-48.
[http://dx.doi.org/10.1016/j.micron.2018.02.006] [PMID: 29574392]
[14]
Sharaf, O.M.; Al-Gamal, M.S.; Ibrahim, G.A.; Dabiza, N.M.; Salem, S.S.; El-Ssayad, M.F.; Youssef, A.M. Evaluation and characterization of some protective culture metabolites in free and nano-chitosan-loaded forms against common contaminants of Egyptian cheese. Carbohydr. Polym., 2019, 223115094
[http://dx.doi.org/10.1016/j.carbpol.2019.115094] [PMID: 31426998]
[15]
Samberg, M.E.; Oldenburg, S.J.; Monteiro-Riviere, N.A. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ. Health Perspect., 2010, 118(3), 407-413.
[http://dx.doi.org/10.1289/ehp.0901398] [PMID: 20064793]
[16]
Ganaie, S.U.; Abbasi, T.; Abbasi, S.A. Rapid and green synthesis of bimetallic Au-Ag nanoparticles using an otherwise worthless weed Antigononleptopus. J. Exp. Nanosci., 2016, 11(6), 395-417.
[http://dx.doi.org/10.1080/17458080.2015.1070311]
[17]
Kumarasamyraja, D.; Jeganathan, N.S. Green synthesis of silver nanoparticles using aqueous extract of Acalyphaindica and its antimicrobial activity. Int. J. Pharma Bio Sci., 2013, 4(3), 469-476.
[18]
Mandal, D.; Bolander, M.E.; Mukhopadhyay, D.; Sarkar, G.; Mukherjee, P. The use of microorganisms for the formation of metal nanoparticles and their application. Appl. Microbiol. Biotechnol., 2006, 69(5), 485-492.
[http://dx.doi.org/10.1007/s00253-005-0179-3] [PMID: 16317546]
[19]
Salem, S.S.; Fouda, A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol. Trace Elem. Res., 2021, 199(1), 344-370.
[http://dx.doi.org/10.1007/s12011-020-02138-3] [PMID: 32377944]
[20]
Fouda, A.; Hassan, S.E-D.; Abdo, A.M.; El-Gamal, M.S. Antimicrobial, antioxidant and larvicidal activities of spherical silver nanoparticles synthesized by endophytic Streptomyces, spp. Biol. Trace Elem. Res., 2019, 195(2), 707-724.
[http://dx.doi.org/10.1007/s12011-019-01883-4.] [PMID: 31486967]
[21]
Keijok, W.J.; Pereira, R.H.A.; Alvarez, L.A.C.; Prado, A.R.; da Silva, A.R.; Ribeiro, J.; de Oliveira, J.P.; Guimarães, M.C.C. Controlled biosynthesis of gold nanoparticles with Coffea arabica using factorial design. Sci. Rep., 2019, 9(1), 16019.
[http://dx.doi.org/10.1038/s41598-019-52496-9] [PMID: 31690887]
[22]
Muthukumar, H.; Mohammed, S.N.; Chandrasekaran, N.; Sekar, A.D.; Pugazhendhi, A.; Matheswaran, M. Effect of iron doped zinc oxide nanoparticles coating in the anode on current generation in microbial electrochemical cells. Int. J. Hydrogen Energy, 2019, 44(4), 2407-2416.
[http://dx.doi.org/10.1016/j.ijhydene.2018.06.046]
[23]
Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites, 2012, 2(2), 303-336.
[http://dx.doi.org/10.3390/metabo2020303] [PMID: 24957513]
[24]
Raveendran, P.; Fu, J.; Wallen, S.L. Completely “green” synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc., 2003, 125(46), 13940-13941.
[http://dx.doi.org/10.1021/ja029267j] [PMID: 14611213]
[25]
El-Rafie, M.H.; Ahmed, H.B.; Zahran, M.K. Facile precursor for synthesis of silver nanoparticles using alkali treated maize starch; Int. Scholar. Res. Notices, 2014, pp. 1-12.
[26]
Narwade, V.T.; Waghmare, A. A.; Vaidya, A. L. Detection of Flavonoids from Acalyphaindica L. J Ecobiotechnol, 2011, 3(11), 5-7.
[27]
Singh, A.; Gautam, P.K.; Verma, A.; Singh, V.; Shivapriya, P.M.; Shivalkar, S.; Sahoo, A.K.; Samanta, S.K. Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotechnol. Rep. (Amst.), 2020, 25e00427
[http://dx.doi.org/10.1016/j.btre.2020.e00427] [PMID: 32055457]
[28]
Al-Haddad, J.; Alzaabi, F.; Pal, P.; Rambabu, K.; Banat, F. Green synthesis of bimetallic copper-silver nanoparticles and their application in catalytic and antibacterial activities. Clean Technol. Environ. Policy, 2020, 22(1), 269-277.
[http://dx.doi.org/10.1007/s10098-019-01765-2]
[29]
Rambabu, K.; Bharath, G.; Banat, F.; Show, P.L. Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment. J. Hazard. Mater., 2021, 402123560
[http://dx.doi.org/10.1016/j.jhazmat.2020.123560] [PMID: 32759001]
[30]
Vigneshwaran, N.; Nachane, R.P.; Balasubramanya, R.H.; Varadarajan, P.V. A novel one-pot ‘green’ synthesis of stable silver nanoparticles using soluble starch. Carbohydr. Res., 2006, 341(12), 2012-2018.
[http://dx.doi.org/10.1016/j.carres.2006.04.042] [PMID: 16716274]
[31]
Ebrahimzadeh, M.A.; Naghizadeh, A.; Amiri, O.; Shirzadi-Ahodashti, M.; Mortazavi-Derazkola, S. Green and facile synthesis of Ag nanoparticles using Crataegus pentagyna fruit extract (CP-AgNPs) for organic pollution dyes degradation and antibacterial application. Bioorg. Chem., 2020, 94103425
[http://dx.doi.org/10.1016/j.bioorg.2019.103425] [PMID: 31740048]
[32]
Pambudi, A.; Syaefudin, S.; Noriko, N.; Azhari, R.; Azura, P.R. Identifikasi bioaktif golongan flavonoid tanaman anting-anting (Acalypha indica L.). J. Al-Azhar Indon. Ser. Sci. Tech., 2014, 2(3), 178-187.
[33]
Oluwafemi, O.S.; Vuyelwa, N.; Scriba, M.; Songca, S.P. Green controlled synthesis of monodispersed, stable and smaller sized starch-capped silver nanoparticles. Mater. Lett., 2013, 106, 332-336.
[http://dx.doi.org/10.1016/j.matlet.2013.05.001]
[34]
Kahrilas, G.A.; Haggren, W.; Read, R.L.; Wally, L.M.; Fredrick, S.J.; Hiskey, M.; Prieto, A.L.; Owens, J.E. Investigation of antibacterial activity by silver nanoparticles prepared by microwave-assisted green syntheses with soluble starch, dextrose, and arabinose. ACS Sustain. Chem.& Eng., 2014, 2(4), 590-598.
[http://dx.doi.org/10.1021/sc400487x]
[35]
Pauwels, E.K.J.; Erba, P.A.; Kostkiewicz, M. Antioxidants: a tale of two stories. Drug News Perspect., 2007, 20(9), 579-585.
[http://dx.doi.org/10.1358/dnp.2007.20.9.1162242] [PMID: 18176663]
[36]
Dreher, D.; Junod, A.F. Role of oxygen free radicals in cancer development. Eur. J. Cancer, 1996, 32A(1), 30-38.
[http://dx.doi.org/10.1016/0959-8049(95)00531-5] [PMID: 8695238]
[37]
Han, R-M.; Zhang, J-P.; Skibsted, L.H. Reaction dynamics of flavonoids and carotenoids as antioxidants. Molecules, 2012, 17(2), 2140-2160.
[http://dx.doi.org/10.3390/molecules17022140] [PMID: 22354191]
[38]
Jovanovic, S.V.; Steenken, S.; Tosic, M.; Marjanovic, B.; Simic, M.G. Flavonoids as antioxidants. J. Am. Chem. Soc., 1994, 116(11), 4846-4851.
[http://dx.doi.org/10.1021/ja00090a032]
[39]
Jovanovic, S.V.; Steenken, S.; Hara, Y.; Simic, M.G. Reduction potentials of flavonoid and model phenoxyl radicals. Which ring in flavonoids is responsible for antioxidant activity? J. Chem. Soc. Perkin Trans., 1996, 2(11), 2497-2504.
[http://dx.doi.org/10.1039/p29960002497]
[40]
Essawy, A.A.; Alsohaimi, I.H.; Alhumaimess, M.S.; Hassan, H.M.A.; Kamel, M.M. Green synthesis of spongy Nano-ZnO productive of hydroxyl radicals for unconventional solar-driven photocatalytic remediation of antibiotic enriched wastewater. J. Environ. Manage., 2020, 271110961
[http://dx.doi.org/10.1016/j.jenvman.2020.110961] [PMID: 32778271]
[41]
Gardea-Torresdey, J.L.; Gomez, E.; Peralta-Videa, J.R.; Parsons, J.G.; Troiani, H.; Jose-Yacaman, M. Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir, 2003, 19(4), 1357-1361.
[http://dx.doi.org/10.1021/la020835i]
[42]
Kim, H-S.; Seo, Y.S.; Kim, K.; Han, J.W.; Park, Y.; Cho, S. Concentration effect of reducing agents on green synthesis of gold nanoparticles: Size, morphology, and growth mechanism. Nanoscale Res. Lett., 2016, 11(1), 230.
[http://dx.doi.org/10.1186/s11671-016-1393-x] [PMID: 27119158]
[43]
Kshirsagar, A.; Khanna, T.; Dhanwe, V.; Kate, K.H.; Khanna, P.K. Green synthesis of silver nano-particles by use of edible oils. J. Nanosci. Nanotechnol., 2018, 18(1), 386-393.
[http://dx.doi.org/10.1166/jnn.2018.14592] [PMID: 29768858]
[44]
Peng, Y.P.; Liu, C.C.; Chen, K.F.; Huang, C.P.; Chen, C.H. Green synthesis of nano-silver-titanium nanotube array (Ag/TNA) composite for concurrent ibuprofen degradation and hydrogen generation. Chemosphere, 2021, 264(Pt 1)128407
[http://dx.doi.org/10.1016/j.chemosphere.2020.128407] [PMID: 33022502]
[45]
Shaikh, R.R.; Mirza, S.S.; Sawant, M.R.; Dare, S.B. Biosynthesis of copper nanoparticles using Vitisvinifera leaf extract and its antimicrobial activity. Pharm. Lett., 2016, 8(4), 265-272. [Article]
[46]
Chatterjee, A.; Archana, L.; Niroshinee, V.; Abraham, J. Biosynthesis of lanthanum nanoparticles using green gram seeds and their effect on microorganisms. Res. J. Pharm. Biol. Chem. Sci., 2016, 7(2), 1462-1470.
[47]
Afshar, P.; Sedaghat, S. Bio-synthesis of silver nanoparticles using water extract of Saturejahortensis L. and evaluation of the antibacterial properties. Curr. Nanosci., 2016, 12(1), 90-93.
[http://dx.doi.org/10.2174/1573413711666150529202238]
[48]
Rao, M.D.; Gautam, P. Synthesis and characterization of ZnO nanoflowers using Chlamydomonas reinhardtii: A green approach. Environ. Prog. Sustain. Energy, 2016, 35(4), 1020-1026.
[http://dx.doi.org/10.1002/ep.12315]
[49]
Krishnaraj, C.; Ji, B-J.; Harper, S.L.; Yun, S-I. Plant extract-mediated biogenic synthesis of silver, manganese dioxide, silver-doped manganese dioxide nanoparticles and their antibacterial activity against food- and water-borne pathogens. Bioprocess Biosyst. Eng., 2016, 39(5), 759-772.
[http://dx.doi.org/10.1007/s00449-016-1556-2] [PMID: 26857369]
[50]
Sushma, N.J.; Mahitha, B.; Mallikarjuna, K.; Raju, B.D.P. Bio-inspired ZnO nanoparticles from Ocimum tenuiflorum and their in vitro antioxidant activity. Appl. Phys., A Mater. Sci. Process., 2016, 122(5), 544.
[http://dx.doi.org/10.1007/s00339-016-0069-9]
[51]
Gul, S.; Ismail, M.; Khan, M.I.; Khan, S.B.; Asiri, A.M.; Rahman, I.U.; Khan, M.A.; Kamboh, M.A. Novel synthesis of silver nanoparticles using melon aqueous extract and evaluation of their feeding deterrent activity against housefly Muscadomestica. Asian Pac. J. Trop. Dis., 2016, 6(4), 311-316.
[http://dx.doi.org/10.1016/S2222-1808(15)61036-2]
[52]
Abdallah, Y.; Ogunyemi, S.O.; Abdelazez, A.; Zhang, M.; Hong, X.; Ibrahim, E.; Hossain, A.; Fouad, H.; Li, B.; Chen, J. The green synthesis of MgO nano-flowers using Rosmarinus officinalis L. (Rosemary) and the antibacterial activities against Xanthomonas oryzae pv. oryzae. BioMed Res. Int., 2019, 20195620989
[http://dx.doi.org/10.1155/2019/5620989] [PMID: 30906776]
[53]
Eteraf-Oskouei, T.; Najafi, M. Traditional and modern uses of natural honey in human diseases: a review. Iran. J. Basic Med. Sci., 2013, 16(6), 731-742.
[PMID: 23997898]
[54]
Najafi, M.; Shaseb, E.; Ghaffary, S.; Fakhrju, A.; Eteraf, O.T. Effects of chronic oral administration of natural honey on ischemia/reperfusion-induced arrhythmias in isolated rat heart. Iran. J. Basic Med. Sci., 2011, 14(1), 75-81.
[55]
González-Miret, M.L.; Terrab, A.; Hernanz, D.; Fernández-Recamales, M.A.; Heredia, F.J. Multivariate correlation between color and mineral composition of honeys and by their botanical origin. J. Agric. Food Chem., 2005, 53(7), 2574-2580.
[http://dx.doi.org/10.1021/jf048207p] [PMID: 15796597]
[56]
Tewari, J.; Irudayaraj, J. Quantification of saccharides in multiple floral honeys using fourier transform infrared microattenuated total reflectance spectroscopy. J. Agric. Food Chem., 2004, 52(11), 3237-3243.
[http://dx.doi.org/10.1021/jf035176+] [PMID: 15161176]
[57]
Leon-Ruiz, V.; Vera, S.; Gonzalez-Porto, A.V.; San Andres, M.P. Analysis of water-soluble vitamins in honey by isocratic RP-HPLC. Food Anal. Methods, 2013, 6(2), 488-496.
[http://dx.doi.org/10.1007/s12161-012-9477-4]
[58]
Al-Mamary, M.; Al-Meeri, A.; Al-Habori, M. Antioxidant activities and total phenolics of different types of honey. Nutr. Res., 2002, 22(9), 1041-1047.
[http://dx.doi.org/10.1016/S0271-5317(02)00406-2]
[59]
Nanda, V.; Sarkar, B.C.; Sharma, H.K.; Bawa, A.S. Physicochemical properties and estimation of mineral content in honey produced from different plants in Northern India. J. Food Compos. Anal., 2003, 16(5), 613-619.
[http://dx.doi.org/10.1016/S0889-1575(03)00062-0]
[60]
Philip, D. Honey mediated green synthesis of gold nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2009, 73(4), 650-653.
[http://dx.doi.org/10.1016/j.saa.2009.03.007] [PMID: 19376740]
[61]
Olaitan, P.B.; Adeleke, O.E.; Ola, I.O. Honey: a reservoir for microorganisms and an inhibitory agent for microbes. Afr. Health Sci., 2007, 7(3), 159-165.
[PMID: 18052870]
[62]
Medina-Ramirez, I.; Bashir, S.; Luo, Z.; Liu, J.L. Green synthesis and characterization of polymer-stabilized silver nanoparticles. Colloids Surf. B Biointerfaces, 2009, 73(2), 185-191.
[http://dx.doi.org/10.1016/j.colsurfb.2009.05.015] [PMID: 19539451]
[63]
Philip, D. Honey mediated green synthesis of silver nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2010, 75(3), 1078-1081.
[http://dx.doi.org/10.1016/j.saa.2009.12.058] [PMID: 20060777]
[64]
Sreelakshmi, C.; Datta, K.K.R.; Yadav, J.S.; Reddy, B.V. Honey derivatized Au and Ag nanoparticles and evaluation of its antimicrobial activity. J. Nanosci. Nanotechnol., 2011, 11(8), 6995-7000.
[http://dx.doi.org/10.1166/jnn.2011.4240] [PMID: 22103111]
[65]
Wu, L.; Cai, X.; Nelson, K.; Xing, W.; Xia, J.; Zhang, R.; Stacy, A.J.; Luderer, M.; Lanza, G.M.; Wang, L.V.; Shen, B.; Pan, D. A green synthesis of carbon nanoparticles from honey and their use in real-time photoacoustic imaging. Nano Res., 2013, 6(5), 312-325.
[http://dx.doi.org/10.1007/s12274-013-0308-8] [PMID: 23824757]
[66]
Luke, G.P.; Bashyam, A.; Homan, K.A.; Makhija, S.; Chen, Y-S.; Emelianov, S.Y. Silica-coated gold nanoplates as stable photoacoustic contrast agents for sentinel lymph node imaging. Nanotechnology, 2013, 24(45)455101
[http://dx.doi.org/10.1088/0957-4484/24/45/455101] [PMID: 24121616]
[67]
Yang, X.; Zhuo, Y.; Zhu, S.; Luo, Y.; Feng, Y.; Dou, Y. Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging. Biosens. Bioelectron., 2014, 60, 292-298.
[http://dx.doi.org/10.1016/j.bios.2014.04.046] [PMID: 24832204]
[68]
Hassan, S.E-D.; Fouda, A.; Radwan, A.A.; Salem, S.S.; Barghoth, M.G.; Awad, M.A.; Abdo, A.M.; El-Gamal, M.S. Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. Eur. J. Biochem., 2019, 24(3), 377-393.
[http://dx.doi.org/10.1007/s00775-019-01654-5] [PMID: 30915551]
[69]
Mohamed, A.A.; Fouda, A.; Abdel-Rahman, M.A.; Hassan, S.E-D.; Salem, S.S. El- Gamal, M.S.; Shaheen, T.I. Fungal strain impacts the shape, bioactivity and multifunctional properties of green synthesized zinc oxide nanoparticles. Biocatal. Agric. Biotechnol., 2019, 19.
[70]
Fouda, A.; Abdel-Maksoud, G.; Abdel-Rahman, M.A.; Salem, S.S.; Hassan, S.E-D.; El-Sadany, M.A.H. Eco-friendly approach utilizing green synthesized nanoparticles for paper conservation against microbes involved in biodeterioration of archaeological manuscript. Int. Biodeterior. Biodegradation, 2019, 142, 160-169.
[http://dx.doi.org/10.1016/j.ibiod.2019.05.012]
[71]
Shaheen, T.I.; Fouda, A. Green approach for one-pot synthesis of silver nanorod using cellulose nanocrystal and their cytotoxicity and antibacterial assessment. Int. J. Biol. Macromol., 2018, 106, 784-792.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.070] [PMID: 28818719]
[72]
Fouda, A.; El-Din Hassan, S.; Salem, S.S.; Shaheen, T.I. In-vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications. Microb. Pathog., 2018, 125, 252-261.
[http://dx.doi.org/10.1016/j.micpath.2018.09.030] [PMID: 30240818]
[73]
Sharma, A.; Kumar, S.; Tripathi, P. A facile and rapid method for green synthesis of Achyranthes aspera stem extract-mediated silver nano-composites with cidal potential against Aedes aegypti L. Saudi J. Biol. Sci., 2019, 26(4), 698-708.
[http://dx.doi.org/10.1016/j.sjbs.2017.11.001] [PMID: 31048994]
[74]
Borodina, V.G.; Mirgorod, Y.A. Kinetics and mechanism of the interaction between HAuCl4 and rutin. Kinet. Catal., 2014, 55(6), 683-687.
[http://dx.doi.org/10.1134/S0023158414060044]
[75]
Mirgorod, Y.A.; Borodina, V.G.; Borsch, N.A. Investigation of interaction between silver ions and rutin in water by physical methods. Biophysics (Oxf.), 2013, 58(6), 743-747.
[http://dx.doi.org/10.1134/S0006350913060146]
[76]
Chaudhary, V.; Bhowmick, A.K. Green synthesis of fluorescent carbon nanoparticles from Lychee (Litchi chinensis) plant. Korean J. Chem. Eng., 2015, 32(8), 1707-1711.
[http://dx.doi.org/10.1007/s11814-014-0381-z]
[77]
Shaik, M.R.; Ali, Z.J.; Khan, M.; Kuniyil, M.; Assal, M.E.; Alkhathlan, H.Z.; Al-Warthan, A.; Siddiqui, M.R.; Khan, M.; Adil, S.F. Green synthesis and characterization of palladium nanoparticles using origanum vulgare L. Molecules, 2017, 22(1), 165.
[http://dx.doi.org/10.3390/molecules22010165] [PMID: 28106856]
[78]
Seyedi, N.; Saidi, K.; Sheibani, H. Green synthesis of Pd nanoparticles supported on magnetic graphene oxide by Origanum vulgare leaf plant extract: Catalytic activity in the reduction of organic dyes and Suzuki-Miyaura cross-coupling reaction. Catal. Lett., 2017, 148, 277-288.
[http://dx.doi.org/10.1007/s10562-017-2220-4]
[79]
Matinisea, N.; Fukua, X.G.; Kaviyarasua, K.; Mayedwaa, N.; Maazaa, M. ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation. Appl. Surf. Sci., 2017, 406, 339-347.
[http://dx.doi.org/10.1016/j.apsusc.2017.01.219]
[80]
Baek, Y.W.; An, Y.J. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci. Total Environ., 2011, 409(8), 1603-1608.
[http://dx.doi.org/10.1016/j.scitotenv.2011.01.014] [PMID: 21310463]
[81]
Fotou, G.P.; Pratsinis, S.E. Photocatalytic destruction of phenol and salicylic acid with aerosol and commercial titania powders. Chem. Eng. Commun., 1996, 151(1), 251-269.
[http://dx.doi.org/10.1080/00986449608936551]
[82]
Freitas, F.M.C.; Cerqueira, M.A.; Gonçalves, C.; Azinheiro, S.; Garrido-Maestu, A.; Vicente, A.A.; Pastrana, L.M.; Teixeira, J.A.; Michelin, M. Green synthesis of lignin nano- and micro-particles: Physicochemical characterization, bioactive properties and cytotoxicity assessment. Int. J. Biol. Macromol., 2020, 163, 1798-1809.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.110] [PMID: 32961194]
[83]
Mathew, T.V.; Kuriakose, S. Studies on the antimicrobial properties of colloidal silver nanoparticles stabilized by bovine serum albumin. Colloids Surf. B Biointerfaces, 2013, 101, 14-18.
[http://dx.doi.org/10.1016/j.colsurfb.2012.05.017] [PMID: 22796767]
[84]
Verma, D.K.; Hasan, S.H.; Banik, R.M. Photo-catalyzed and phyto-mediated rapid green synthesis of silver nanoparticles using herbal extract of Salvinia molesta and its antimicrobial efficacy. J. Photochem. Photobiol. B, 2016, 155, 51-59.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.12.008] [PMID: 26735000]
[85]
Xie, Y.; He, Y.; Irwin, P.L.; Jin, T.; Shi, X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol., 2011, 77(7), 2325-2331.
[http://dx.doi.org/10.1128/AEM.02149-10] [PMID: 21296935]
[86]
Alishah, H.; Seyedi, S.P.; Ebrahimipour, S.Y.; Esmaeili-Mahani, S. A green approach for the synthesis of silver nanoparticles using root extract of Chelidoniummajus: Characterization and antibacterial evaluation. J. Cluster Sci., 2016, 27(2), 421-429.
[http://dx.doi.org/10.1007/s10876-016-0968-0]
[87]
Raghupathi, K.R.; Koodali, R.T.; Manna, A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 2011, 27(7), 4020-4028.
[http://dx.doi.org/10.1021/la104825u] [PMID: 21401066]
[88]
Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol., 2016, 7, 1831.
[http://dx.doi.org/10.3389/fmicb.2016.01831] [PMID: 27899918]
[89]
Pramanik, A.; Laha, D.; Bhattacharya, D.; Pramanik, P.; Karmakar, P. A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage. Colloids Surf. B Biointerfaces, 2012, 96, 50-55.
[http://dx.doi.org/10.1016/j.colsurfb.2012.03.021] [PMID: 22521682]
[90]
Dai, R.; Chen, J.; Lin, J.; Xiao, S.; Chen, S.; Deng, Y. Reduction of nitro phenols using nitroreductase from E. coli in the presence of NADH. J. Hazard. Mater., 2009, 170(1), 141-143.
[http://dx.doi.org/10.1016/j.jhazmat.2009.04.122] [PMID: 19481342]
[91]
Sharma, P.; Pant, S.; Dave, V.; Tak, K.; Sadhu, V.; Reddy, K.R. Green synthesis and characterization of copper nanoparticles by Tinospora cardifolia to produce nature-friendly copper nano-coated fabric and their antimicrobial evaluation. J. Microbiol. Methods, 2019, 160, 107-116.
[http://dx.doi.org/10.1016/j.mimet.2019.03.007] [PMID: 30871999]
[92]
Hettiaratchy, S.; Dziewulski, P. ABC of burns: pathophysiology and types of burns. BMJ, 2004, 328(7453), 1427-1429.
[http://dx.doi.org/10.1136/bmj.328.7453.1427] [PMID: 15191982]
[93]
Branski, L.K.; Al-Mousawi, A.; Rivero, H.; Jeschke, M.G.; Sanford, A.P.; Herndon, D.N. Emerging infections in burns. Surg. Infect. (Larchmt.), 2009, 10(5), 389-397.
[http://dx.doi.org/10.1089/sur.2009.024] [PMID: 19810827]
[94]
Jadhav, K.; Dhamecha, D.; Bhattacharya, D.; Patil, M. Green and ecofriendly synthesis of silver nanoparticles: Characterization, biocompatibility studies and gel formulation for treatment of infections in burns. J. Photochem. Photobiol. B, 2016, 155, 109-115.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.01.002] [PMID: 26774382]
[95]
Garcia-Ruiz, A.; Crespo, J.; Lopez-de-Luzuriaga, J.M.; Olmos, M.E.; Monge, M.; Rodriguez-Alfaro, M.P.; Martin-Alvarez, P.J.; Bartolome, B.; Moreno-Arribas, M.V. Novel biocompatible silver nanoparticles for controlling the growth of lactic acid bacteria and acetic acid bacteria in wine.Food control, 2015, 50 ,613e619
[http://dx.doi.org/10.1016/j.foodcont.2014.09.035]
[96]
Spain, J.C. Biodegradation of nitroaromatic compounds. Annu. Rev. Microbiol., 1995, 49, 523-555.
[http://dx.doi.org/10.1146/annurev.mi.49.100195.002515] [PMID: 8561470]
[97]
Kumar, B.; Smita, K.; Cumbal, L.; Debut, A. Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi J. Biol. Sci., 2017, 24(1), 45-50.
[http://dx.doi.org/10.1016/j.sjbs.2015.09.006] [PMID: 28053570]
[98]
Wang, K.; Zhao, C.; Min, S.; Qian, X. Facile synthesis of Cu2O/RGO/Ni (OH)2 nanocomposite and its double synergistic effect on supercapacitor performance. Electrochim. Acta, 2015, 65, 314-322.
[http://dx.doi.org/10.1016/j.electacta.2015.03.029]
[99]
Chakrabarti, S.; Dutta, B.K. Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Hazard. Mater., 2004, 112(3), 269-278.
[http://dx.doi.org/10.1016/j.jhazmat.2004.05.013] [PMID: 15302448]
[100]
Curri, M.L.; Comparelli, R.; Cozzoli, P.D.; Mascolo, G.; Agostiano, A. Colloidal oxide nanoparticles for the photocatalytic degradation of organic dye. Mater. Sci. Eng. C, 2003, 23(1), 285-289.
[http://dx.doi.org/10.1016/S0928-4931(02)00250-3]
[101]
Jang, Y.J.; Simer, C.; Ohm, T. Comparison of zinc oxide nanoparticles and its nanocrystalline particles on the photocatalytic degradation of methylene blue. Mater. Res. Bull., 2006, 41(1), 67-77.
[http://dx.doi.org/10.1016/j.materresbull.2005.07.038]
[102]
Kumar, B.; Smita, K.; Angulo, Y.; Cumbal, L. Green Synthesis of silver nanoparticles using natural dyes of cochineal. J. Cluster Sci., 2016, 27(2), 703-713.
[http://dx.doi.org/10.1007/s10876-016-0973-3]
[103]
Kumar, V.A.; Uchida, T.; Mizuki, T.; Nakajima, Y.; Katsube, Y.; Hanajiri, T.; Maekawa, T. Synthesis of nanoparticles composed of silver and silver chloride for a plasmonic photocatalyst using an extract from a weed Solidago altissima (goldenrod). Adv. Nat. Sci: Nanosci Nanotechnol., 2016, 7(1)Article Id. 015002.
[104]
Mahadevan, S.; Vijayakumar, S.; Arulmozhi, P. Green synthesis of silver nano particles from Atalantia monophylla (L) Correa leaf extract, their antimicrobial activity and sensing capability of H2O2. Microb. Pathog., 2017, 113, 445-450.
[http://dx.doi.org/10.1016/j.micpath.2017.11.029] [PMID: 29170043]
[105]
Suresh, D.; Nethravathi, P.C.; Udayabhanu, H.; Nagabhushana, R.H.; Sharma, S.C. Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mater. Sci. Semicond. Process., 2015, 31, 446-454.
[http://dx.doi.org/10.1016/j.mssp.2014.12.023]
[106]
Khan, M.M.; Lee, J.; Cho, M.H. Au@TiO2 nanocomposites for the catalytic degradation of methyl orange and methylene blue: An electron relay effect. J. Ind. Eng. Chem., 2014, 20(4), 1584-1590.
[http://dx.doi.org/10.1016/j.jiec.2013.08.002]
[107]
Xie, J.; Lee, J.Y.; Wang, D.I.; Ting, Y.P. Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. Small, 2007, 3(4), 672-682.
[http://dx.doi.org/10.1002/smll.200600612] [PMID: 17299827]
[108]
Edison, T.N.J.I.; Lee, Y.R.; Sethuraman, M.G. Green synthesis of silver nanoparticles using Terminalia cuneata and its catalytic action in reduction of direct yellow-12 dye. Spectro Chim. Acta Part A: Mol. Biomol. Spec., 2016, 161, 122-129.
[http://dx.doi.org/10.1016/j.saa.2016.02.044] [PMID: 26967513]
[109]
Kumar, V.; Singh, D.K.; Mohan, S.; Hasan, S.H. Photo-induced biosynthesis of silver nanoparticles using aqueous extract of Erigeron bonariensis and its catalytic activity against Acridine Orange. J. Photochem. Photobiol. B, 2016, 155, 39-50.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.12.011] [PMID: 26734999]
[110]
Iyer, R.I.; Selvaraju, C.; Santhiya, S.T. Biosynthesis of silver nanoparticles by callus cultures of Vignara diata. Indian J. Sci. Technol., 2016, 9, 1-5.
[111]
Azadi, F.; Karimi-Jashni, A.; Zerafat, M.M. Green synthesis and optimization of nano-magnetite using Persicaria bistorta root extract and its application for rosewater distillation wastewater treatment. Ecotoxicol. Environ. Saf., 2018, 165, 467-475.
[http://dx.doi.org/10.1016/j.ecoenv.2018.09.032] [PMID: 30218970]
[112]
Pérez-Díaz, M.; Alvarado-Gomez, E.; Magaña-Aquino, M.; Sánchez-Sánchez, R.; Velasquillo, C.; Gonzalez, C.; Ganem-Rondero, A.; Martínez-Castañon, G.; Zavala-Alonso, N.; Martinez-Gutierrez, F. Anti-biofilm activity of chitosan gels formulated with silver nanoparticles and their cytotoxic effect on human fibroblasts. Mater. Sci. Eng. C, 2016, 60, 317-323.
[http://dx.doi.org/10.1016/j.msec.2015.11.036] [PMID: 26706536]
[113]
Chung, I-M.; Park, I.; Seung-Hyun, K.; Thiruvengadam, M.; Rajakumar, G. Plant-mediated synthesis of silver nanoparticles: Their characteristic properties and therapeutic applications. Nanoscale Res. Lett., 2016, 11(1), 40.
[http://dx.doi.org/10.1186/s11671-016-1257-4] [PMID: 26821160]
[114]
Cai, W.; Weng, X.; Chen, Z. Highly efficient removal of antibiotic rifampicin from aqueous solution using green synthesis of recyclable nano-Fe3O4. Environ. Pollut., 2019, 247, 839-846.
[http://dx.doi.org/10.1016/j.envpol.2019.01.108] [PMID: 30731309]
[115]
Sharath Kumara, J.; Janaa, M.; Khanra, P.; Samantaa, P.; Kood, H.; Murmua, N.C.; Kuilaa, T. One pot synthesis of Cu2O/RGO composite using mango bark extract and exploration of its electrochemical properties. Electrochim. Acta, 2016, 193, 104-115.
[http://dx.doi.org/10.1016/j.electacta.2016.02.069]
[116]
Leili, M.; Fazlzadeh, M.; Bhatnagar, A. Green synthesis of nano-zero-valent iron from Nettle and Thyme leaf extracts and their application for the removal of cephalexin antibiotic from aqueous solutions. Environ. Technol., 2018, 39(9), 1158-1172.
[http://dx.doi.org/10.1080/09593330.2017.1323956] [PMID: 28443364]
[117]
Paul, B.; Bhuyan, B.; Purkayastha, D.D.; Dhar, S.S. Photocatalytic and antibacterial activities of gold and silver nanoparticles synthesized using biomass of Parkia roxburghii leaf. J. Photochem. Photobiol. B, 2016, 154, 1-7.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.11.004] [PMID: 26590801]
[118]
Muller, A.; Behsnilian, D.; Walz, E.; Gräf, V.; Hogekamp, L.; Greiner, R. Effect of culture medium on the extracellular synthesis of silver nanoparticles using Klebsiella pneumoniae, Escherichia coli and Pseudomonas jessinii. Biocat. Agric. Biol., 2016, 6(01), 107-115.
[http://dx.doi.org/10.1016/j.bcab.2016.02.012]
[119]
Kumar, B.; Smita, K.; Cumbal, L.; Debut, A. Ficus carica (Fig) fruit mediated green synthesis of silver nanoparticles and its antioxidant activity: a comparison of thermal and ultrasonication approach. Bionanoscience, 2016, 6(1), 15-21.
[http://dx.doi.org/10.1007/s12668-016-0193-1]
[120]
Govindarajan, M.; Rajeswary, M.; Veerakumar, K.; Muthukumaran, U.; Hoti, S.L.; Mehlhorn, H.; Barnard, D.R.; Benelli, G. Novel synthesis of silver nanoparticles using Bauhinia variegata: a recent eco-friendly approach for mosquito control. Parasitol. Res., 2016, 115(2), 723-733.
[http://dx.doi.org/10.1007/s00436-015-4794-3] [PMID: 26490683]
[121]
Nayak, P.S.; Arakha, M.; Kumar, A.; Asthana, S.; Mallick, B.C.; Jha, S. An approach towards continuous production of silver nanoparticles using Bacillus thuringiensis. RSC Advances, 2016, 6(10), 8232-8242.
[http://dx.doi.org/10.1039/C5RA21281B]
[122]
Pugazhendhi, S.; Sathya, P.; Palanisamy, P.K.; Gopalakrishnan, R. Synthesis of silver nanoparticles through green approach using Dioscorea alata and their characterization on antibacterial activities and optical limiting behavior. J. Photochem. Photobiol. B, 2016, 159, 155-160.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.03.043] [PMID: 27064188]
[123]
Dhamecha, D.; Jalalpure, S.; Jadhav, K. Nepenthes khasiana mediated synthesis of stabilized gold nanoparticles: Characterization and biocompatibility studies. J. Photochem. Photobiol. B, 2016, 154, 108-117.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.12.002] [PMID: 26716586]
[124]
Becker, R.O. Silver ions in the treatment of local infections. Met. Based Drugs, 1999, 6(4-5), 311-314.
[http://dx.doi.org/10.1155/MBD.1999.311] [PMID: 18475906]
[125]
Ahmed, S. Saifullah; Ahmad, M.; Swami, B.; Ikram, S. Green synthesis of silver NPs using Azadirachta indica aqueous leaf extract. J. Rad. Res. Appl. Sci., 2016, 9, 1-7.
[126]
Thirumurugan, A.; Aswitha, P.; Kiruthika, C.; Nagarajan, S.; Christy, A.N. Green synthesis of platinum nano particles using Azadirachta indica - An eco-friendly approach. Mater. Lett., 2016, 170, 175-178.
[http://dx.doi.org/10.1016/j.matlet.2016.02.026]
[127]
Kumar, B.; Smita, K.; Cumbal, L.; Camacho, J.; Hernández-Gallegos, E. Chávez-López; de Guadalupe Chávez-López, M.; Andra, K. One pot phytosynthesis of gold NPs using Genipa American fruit extract and its biological application. Mater. Sci. Eng. C, 2016, 62, 725-731.
[http://dx.doi.org/10.1016/j.msec.2016.02.029]
[128]
Tavallali, V.; Rahmati, S.; Rowshan, V. Characterization and influence of green synthesis of nano-sized zinc complex with 5-aminolevulinic acid on bioactive compounds of aniseed. Chem. Biodivers., 2017, 14(11)
[http://dx.doi.org/10.1002/cbdv.201700197] [PMID: 28746739]
[129]
Balasooriya, E.R.; Jayasinghe, C.D.; Jayawardena, U.A.; Ruwanthika, R.W.D.; de Silva, R.M.; Udagama, P.V. Honey mediated green synthesis of nanoparticles: new era of safe technology.J. Nanomat.,. 2017, 1-10.
[http://dx.doi.org/10.1155/2017/5919836]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy