Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

COVID-19 Global Pandemic Fight by Drugs: A Mini-Review on Hope and Hype

Author(s): Sunil Tekale, Vishnu Gore, Pravin Kendrekar, Shivaji Thore, László Kótai and Rajendra Pawar*

Volume 19, Issue 4, 2022

Published on: 29 June, 2021

Page: [439 - 450] Pages: 12

DOI: 10.2174/1570193X18666210629103117

Price: $65

Abstract

Coronavirus disease 2019 (Covid-19), a serious disease caused by the Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2), was firstly identified in the city of Wuhan of China in December 2019, which then spread and became a global issue due to its high transmission rate. To date, the outbreak of COVID-19 has resulted in infection to 230,868,745 people and the death of 4,732,669 patients. It has paralyzed the economy of all the countries worldwide. Considering the possible mutations of SARS-CoV-2, the current medical emergency requires a longer time for drug design and vaccine development. Drug repurposing is a promising option for potent therapeutics against the pandemic. The present review encompasses various drugs or appropriate combinations of already FDA-approved antimalarial, antiviral, anticancer, anti-inflammatory, and antibiotic therapeutic candidates for use in the clinical trials as a ray of hope against COVID-19. It is expected to deliver better clinical and laboratory outcomes of drugs as a prevention strategy for the eradication of the disease.

Keywords: COVID-19, SARS, CoV-2, drugs, global, pandemic, MERS.

Graphical Abstract
[1]
Grunwald, D.J.; Eisen, J.S. Headwaters of the zebrafish - emergence of a new model vertebrate. Nat. Rev. Genet., 2002, 3(9), 717-724.
[http://dx.doi.org/10.1038/nrg892] [PMID: 12209146]
[2]
Jain, N.; Lodha, R.; Kabra, S.K. Upper respiratory tract infections. Indian J. Pediatr., 2001, 68(12), 1135-1138.
[http://dx.doi.org/10.1007/BF02722930] [PMID: 11838568]
[3]
Liu, J.; Zheng, X.; Tong, Q.; Li, W.; Wang, B.; Sutter, K.; Trilling, M.; Lu, M.; Dittmer, U.; Yang, D. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J. Med. Virol., 2020, 92(5), 491-494.
[http://dx.doi.org/10.1002/jmv.25709] [PMID: 32056249]
[4]
Adams, J.G.; Walls, R.M. Supporting the health care workforce during the covid-19 global epidemic. JAMA, 2020, 323(15), 1439-1440.
[http://dx.doi.org/10.1001/jama.2020.3972] [PMID: 32163102]
[5]
Prompetchara, E.; Ketloy, C.; Palaga, T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac. J. Allergy Immunol., 2020, 38(1), 1-9.
[http://dx.doi.org/10.12932/AP-200220-0772] [PMID: 32105090]
[6]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[7]
Kalil, A.C. Treating covid-19-off-label drug use, compassionate use, and randomized clinical trials during pandemics. JAMA, 2020, 323(19), 1897-1898.
[http://dx.doi.org/10.1001/jama.2020.4742] [PMID: 32208486]
[8]
Rosa, S.G.V.; Santos, W.C. Clinical trials on drug repositioning for COVID-19 treatment. Rev. Panam. Salud Publica, 2020, 44, e40.
[http://dx.doi.org/10.26633/RPSP.2020.40] [PMID: 32256547]
[9]
Masters, P.S. The molecular biology of coronaviruses. Adv. Virus Res., 2006, 66, 193-292.
[http://dx.doi.org/10.1016/S0065-3527(06)66005-3] [PMID: 16877062]
[10]
Gallagher, T.M.; Buchmeier, M.J. Coronavirus spike proteins in viral entry and pathogenesis. Virology, 2001, 279(2), 371-374.
[http://dx.doi.org/10.1006/viro.2000.0757] [PMID: 11162792]
[11]
Bosch, B.J.; van der Zee, R.; de Haan, C.A.; Rottier, P.J. The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex. J. Virol., 2003, 77(16), 8801-8811.
[http://dx.doi.org/10.1128/JVI.77.16.8801-8811.2003] [PMID: 12885899]
[12]
Harrison, S.C. Viral membrane fusion. Nat. Struct. Mol. Biol., 2008, 15(7), 690-698.
[http://dx.doi.org/10.1038/nsmb.1456] [PMID: 18596815]
[13]
Fehr, A.R.; Perlman, S. Coronaviruses; Humana Press: New York, 2015, pp. 1-23.
[14]
Pooladanda, V.; Thatikonda, S.; Godugu, C. The current understanding and potential therapeutic options to combat COVID-19. Life Sci., 2020, 254, 117765.
[http://dx.doi.org/10.1016/j.lfs.2020.117765] [PMID: 32437797]
[15]
Lai, C.C.; Shih, T.P.; Ko, W.C.; Tang, H.J.; Hsueh, P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents, 2020, 55(3), 105924.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105924] [PMID: 32081636]
[16]
Domingo, E.; Perales, C. RNA virus. Genomes. eLS., 2001, 1-2.
[17]
Zhou, Y.; Zhang, S.; Chen, J.; Wan, C.; Zhao, W.; Zhang, B. Analysis of variation and evolution of SARS-CoV-2 genome. Nan Fang Yi Ke Da Xue Xue Bao, 2020, 40(2), 152-158.
[http://dx.doi.org/10.12122/j.issn.1673-4254.2020.02.02] [PMID: 32376535]
[18]
Yang, J.; Zheng, Y.; Gou, X.; Pu, K.; Chen, Z.; Guo, Q.; Ji, R.; Wang, H.; Wang, Y.; Zhou, Y. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. Int. J. Infect. Dis., 2020, 94, 91-95.
[http://dx.doi.org/10.1016/j.ijid.2020.03.017] [PMID: 32173574]
[19]
Ruth, F.R.; Timothy, N. Chapter 21 The role of interferons in systemic lupus erythematosusIn: Systemic Lupus Erythematosus; Tsokos, G., Ed.; Elsevier Science Publishing Co., 2021, pp. 171-178.
[20]
Brake, S.J.; Barnsley, K.; Lu, W.; McAlinden, K.D.; Eapen, M.S.; Sohal, S.S. Smoking upregulates angiotensin-converting enzyme-2 receptor: A potential adhesion site for novel coronavirus sars-cov-2 (covid-19). J. Clin. Med., 2020, 9, 841.
[http://dx.doi.org/10.3390/jcm9030841] [PMID: 32244852]
[21]
South, A.M.; Diz, D.I.; Chappell, M.C. COVID-19, ACE2, and the cardiovascular consequences. Am. J. Physiol. Heart Circ. Physiol., 2020, 318(5), H1084-H1090.
[http://dx.doi.org/10.1152/ajpheart.00217.2020] [PMID: 32228252]
[22]
Liu, C.; Zhou, Q.; Li, Y.; Garner, L.V.; Watkins, S.P.; Carter, L.J.; Smoot, J.; Gregg, A.C.; Daniels, A.D.; Jervey, S.; Albaiu, D. Research and development on therapeutic agents and vaccines for covid-19 and related human coronavirus diseases. ACS Cent. Sci., 2020, 6(3), 315-331.
[http://dx.doi.org/10.1021/acscentsci.0c00272] [PMID: 32226821]
[23]
Hanley, B.; Lucas, S.B.; Youd, E.; Swift, B.; Osborn, M. Autopsy in suspected COVID-19 cases. J. Clin. Pathol., 2020, 73(5), 239-242.
[http://dx.doi.org/10.1136/jclinpath-2020-206522] [PMID: 32198191]
[24]
Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun., 2020, 109, 102433.
[http://dx.doi.org/10.1016/j.jaut.2020.102433] [PMID: 32113704]
[25]
Nakamura, K.; Hikone, M.; Shimizu, H.; Kuwahara, Y.; Tanabe, M.; Kobayashi, M.; Ishida, T.; Sugiyama, K.; Washino, T.; Sakamoto, N.; Hamabe, Y. A sporadic COVID-19 pneumonia treated with extracorporeal membrane oxygenation in Tokyo, Japan: A case report. J. Infect. Chemother., 2020, 26(7), 756-761.
[http://dx.doi.org/10.1016/j.jiac.2020.03.018] [PMID: 32317225]
[26]
Pang, J.X.; Wang, M.; Ang, I.Y.; Tan, S.H.; Lewis, R.F.; Gutierrez, R.A.; Chen, J.I.; Gwee, S.X.; Chua, P.E.; Yang, Q.; Ng, X.Y. Potential rapid diagnostics, vaccine and therapeutics for 2019 novel Coronavirus (2019-nCoV): A systematic review. J. Clin. Med., 2020, 9(3), 623.
[http://dx.doi.org/10.3390/jcm9030623] [PMID: 32110875]
[27]
Sanders, J.M.; Monogue, M.L.; Jodlowski, T.Z.; Cutrell, J.B. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA, 2020, 323(18), 1824-1836.
[http://dx.doi.org/10.1001/jama.2020.6019] [PMID: 32282022]
[28]
Wang, Y.; Zhang, D.; Du, G.; Du, R.; Fu, S. Gao; Hu, Y.; Luo, G.; Wang, K.; Lu, Y.; Li, H.; Wang, S.; Ruan, S.; Yang, C.; Wang, C. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet, 2020, 395(10236), 1569-1578.
[29]
Cao, Y.C.; Deng, Q.X.; Dai, S.X. Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: An evaluation of the evidence. Travel Med. Infect. Dis., 2020, 35, 101647.
[http://dx.doi.org/10.1016/j.tmaid.2020.101647] [PMID: 32247927]
[30]
Choy, K.T.; Wong, A.Y.; Kaewpreedee, P.; Sia, S.F.; Chen, D.; Hui, K.P.Y.; Chu, D.K.W.; Chan, M.C.W.; Cheung, P.P.; Huang, X.; Peiris, M.; Yen, H.L. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res., 2020, 178, 104786.
[http://dx.doi.org/10.1016/j.antiviral.2020.104786] [PMID: 32251767]
[31]
Amirian, E.S.; Levy, J.K. Current knowledge about the antivirals remdesivir (GS-5734) and GS-441524 as therapeutic options for coronaviruses. One Health, 2020, 9, 100128.
[http://dx.doi.org/10.1016/j.onehlt.2020.100128] [PMID: 32258351]
[32]
Dehority, W.; Spence, D.; Dinwiddie, D.L. Severe acute respiratory syndrome coronavirus 2: genomic observations and emerging therapies. Ped. Allerg. Immun. Pulmon, 2020, 33(2), 49-52.
[http://dx.doi.org/10.1089/ped.2020.1179]
[33]
Shilatifard, A. COVID-19: Rescue by transcriptional inhibition. Sci. Adv., 2020, 6(27), eabc6891.
[34]
Neerukonda, S.; Katnen, U. A review on SARS-CoV-2 virology, pathophysiology, animal models and anti-viral interventions; Preprints, 2020, p. 2020050204.
[http://dx.doi.org/10.20944/preprints202005.0204.v1]
[35]
Ben-Zvi, I.; Kivity, S.; Langevitz, P.; Shoenfeld, Y. Hydroxychloroquine: from malaria to autoimmunity. Clin. Rev. Allergy Immunol., 2012, 42, 145-153.
[http://dx.doi.org/10.1007/s12016-010-8243-x] [PMID: 21221847]
[36]
Sahraei, Z.; Shabani, M.; Shokouhi, S.; Saffaei, A. Chloroquine and hydroxychloroquine: Current evidence for their effectiveness in treating COVID-19. Int. J. Antimicrob. Agents, 2020, 105945.
[37]
Yazdany, J.; Kim, A.H. Use of hydroxychloroquine and chloroquine during the COVID-19 pandemic: what every clinician should know. Ann. Intern. Med., 2020, 172(11), 754-755.
[38]
Cortegiani, A.; Ingoglia, G.; Ippolito, M.; Giarratano, A.; Einav, S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J. Crit. Care, 2020, 57, 279-283.
[http://dx.doi.org/10.1016/j.jcrc.2020.03.005] [PMID: 32173110]
[39]
Cubero, G.I.; Reguero, J.R.; Ortega, J.R. Restrictive cardiomyopathy caused by chloroquine. Heart, 1993, 69, 451-452.
[http://dx.doi.org/10.1136/hrt.69.5.451]
[40]
Taylor, W.R.; White, N.J. Antimalarial drug toxicity: A review. Drug Saf., 2004, 27(1), 25-61.
[http://dx.doi.org/10.2165/00002018-200427010-00003] [PMID: 14720085]
[41]
Colson, P.; Rolain, J.M.; Lagier, J.C.; Brouqui, P.; Raoult, D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int. J. Antimicrob. Agents, 2020, 54(4), 105932.
[42]
Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Tissot Dupont, H.; Honoré, S.; Colson, P.; Chabrière, E.; La Scola, B.; Rolain, J.M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 2020, 56(1), 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[43]
Keshtkar-Jahromi, M.; Bavari, S. A call for randomized controlled trials to test the efficacy of chloroquine and hydroxychloroquine as therapeutics against novel coronavirus disease (covid-19). Am. J. Trop. Med. Hyg., 2020, 102(5), 932-933.
[http://dx.doi.org/10.4269/ajtmh.20-0230] [PMID: 32247318]
[44]
Vincent, M.J.; Bergeron, E.; Benjannet, S.; Erickson, B.R.; Rollin, P.E.; Ksiazek, T.G.; Seidah, N.G.; Nichol, S.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J., 2005, 2, 69.
[45]
Morandini, G.; Perduca, M.; Zannini, G.; Foschino, M.P.; Miragliotta, G.; Carnimeo, N.S. Clinical efficacy of azithromycin in lower respiratory tract infections. J. Chemother., 1993, 5(1), 32-36.
[http://dx.doi.org/10.1080/1120009X.1993.11739206] [PMID: 8384658]
[46]
da Silva, S.; Oliveira Silva Martins, D.; Jardim, A.C.G. A review of the ongoing research on zika virus treatment. Viruses, 2018, 10(5), E255.
[http://dx.doi.org/10.3390/v10050255] [PMID: 29758005]
[47]
Molina, J.M.; Delaugerre, C.; Le Goff, J.; Mela-Lima, B.; Ponscarme, D.; Goldwirt, L.; de Castro, N. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med. Mal. Infect., 2020, 50(4), 384.
[http://dx.doi.org/10.1016/j.medmal.2020.03.006] [PMID: 32240719]
[48]
Kee, D.L.M.; Sternberg, A.; Stange, U.; Laufer, S.; Naujokat, C. Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacol. Res., 2020, 157, 104859.
[http://dx.doi.org/10.1016/j.phrs.2020.104859]
[49]
Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence that vitamin d supplementation could reduce risk of influenza and covid-19 infections and deaths. Nutrients, 2020, 12(4), 988.
[http://dx.doi.org/10.3390/nu12040988] [PMID: 32252338]
[50]
Popov, D. Treatment of covid-19 infection. A rationale for current and future pharmacological approach. EC Pulmonol. Respiratory Med., 2020, 9, 38-58.
[51]
Chu, C.M.; Cheng, V.C.; Hung, I.F.; Wong, M.M.; Chan, K.H.; Chan, K.S.; Kao, R.Y.; Poon, L.L.; Wong, C.L.; Guan, Y.; Peiris, J.S.; Yuen, K.Y. Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax, 2004, 59(3), 252-256.
[http://dx.doi.org/10.1136/thorax.2003.012658] [PMID: 14985565]
[52]
Chan, J.F.; Yao, Y.; Yeung, M.L.; Deng, W.; Bao, L.; Jia, L.; Li, F.; Xiao, C.; Gao, H.; Yu, P.; Cai, J.P.; Chu, H.; Zhou, J.; Chen, H.; Qin, C.; Yuen, K.Y. Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of mers-cov infection in a nonhuman primate model of common marmoset. J. Infect. Dis., 2015, 212(12), 1904-1913.
[http://dx.doi.org/10.1093/infdis/jiv392] [PMID: 26198719]
[53]
Mills, A.M.; Nelson, M.; Jayaweera, D.; Ruxrungtham, K.; Cassetti, I.; Girard, P.M.; Workman, C.; Dierynck, I.; Sekar, V.; Abeele, C.V.; Lavreys, L. Once-daily darunavir/ritonavir vs. lopinavir/ritonavir in treatment-naive, HIV-1-infected patients: 96-week analysis. AIDS, 2009, 23(13), 1679-1688.
[http://dx.doi.org/10.1097/QAD.0b013e32832d7350] [PMID: 19487905]
[54]
Campbell, W.C.; Fisher, M.H.; Stapley, E.O.; Albers-Schönberg, G.; Jacob, T.A. Ivermectin: A potent new antiparasitic agent. Science, 1983, 221(4613), 823-828.
[http://dx.doi.org/10.1126/science.6308762] [PMID: 6308762]
[55]
Abd El-Aziz, T.M.; Stockand, J.D. Recent progress and challenges in drug development against COVID-19 coronavirus (SARS-CoV-2) - an update on the status. Infect. Genet. Evol., 2020, 83, 104327.
[http://dx.doi.org/10.1016/j.meegid.2020.104327] [PMID: 32320825]
[56]
Leneva, I.A.; Russell, R.J.; Boriskin, Y.S.; Hay, A.J. Characteristics of arbidol-resistant mutants of influenza virus: Implications for the mechanism of anti-influenza action of arbidol. Antiviral Res., 2009, 81(2), 132-140.
[http://dx.doi.org/10.1016/j.antiviral.2008.10.009] [PMID: 19028526]
[57]
Deng, L.; Li, C.; Zeng, Q.; Liu, X.; Li, X.; Zhang, H.; Hong, Z.; Xia, J. Arbidol combined with LPV/r versus LPV/r alone against corona virus disease 2019: A retrospective cohort study. J. Infect., 2020, 81(1), e1-e5.
[http://dx.doi.org/10.1016/j.jinf.2020.03.002] [PMID: 32171872]
[58]
Al-Salama, Z.T.; Scott, L.J. Baricitinib: A review in rheumatoid arthritis. Drugs, 2018, 78(7), 761-772.
[http://dx.doi.org/10.1007/s40265-018-0908-4] [PMID: 29687421]
[59]
Stebbing, J.; Phelan, A. Griffin; Tucker, C.; Oechsle, O.; Smith, D.; Richardson, P. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect. Dis., 2020, 20, 400-402.
[http://dx.doi.org/10.1016/S1473-3099(20)30132-8] [PMID: 32113509]
[60]
Ferrara, N.; Hillan, K.J.; Novotny, W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem. Biophys. Res. Commun., 2005, 333(2), 328-335.
[http://dx.doi.org/10.1016/j.bbrc.2005.05.132] [PMID: 15961063]
[61]
Lythgoe, M.P.; Middleton, P. Ongoing clinical trials for the management of the COVID-19 pandemic. Trends Pharmacol. Sci., 2020, 41(6), 363-382.
[http://dx.doi.org/10.1016/j.tips.2020.03.006] [PMID: 32291112]
[62]
Shie, J.J.; Fang, J.M.; Wang, S.Y.; Tsai, K.C.; Cheng, Y.S.; Yang, A.S.; Hsiao, S.C.; Su, C.Y.; Wong, C.H. Synthesis of tamiflu and its phosphonate congeners possessing potent anti-influenza activity. J. Am. Chem. Soc., 2007, 129(39), 11892-11893.
[http://dx.doi.org/10.1021/ja073992i] [PMID: 17850083]
[63]
Velavan, T.P.; Meyer, C.G. The COVID-19 epidemic. Trop. Med. Int. Health, 2020, 25(3), 278-280.
[http://dx.doi.org/10.1111/tmi.13383] [PMID: 32052514]
[64]
Qin, X.; Qiu, S.; Yuan, Y.; Zong, Y.; Tuo, Z.; Li, J.; Liu, J. Clinical characteristics and treatment of patients infected with COVID-19 in Shishou, China. Lancet, 2020. Available from: https://ssrn.com/abstract=3541147
[65]
Morris, I.; Varughese, G.; Mattingly, P. Colchicine in acute gout. BMJ, 2003, 327(7426), 1275-1276.
[http://dx.doi.org/10.1136/bmj.327.7426.1275] [PMID: 14644973]
[66]
Gendelman, O.; Amital, H.; Bragazzi, N.L.; Watad, A.; Chodick, G. Continuous hydroxychloroquine or colchicine therapy does not prevent infection with SARS-CoV-2: Insights from a large healthcare database analysis. Autoimmun. Rev., 2020, 102566.
[67]
Calabresi, P.A.; Radue, E.W.; Goodin, D.; Jeffery, D.; Rammohan, K.W.; Reder, A.T.; Vollmer, T.; Agius, M.A.; Kappos, L.; Stites, T.; Li, B. Lancet Neurol., 2014, 13, 545-556.
[http://dx.doi.org/10.1016/S1474-4422(14)70049-3] [PMID: 24685276]
[68]
Bonam, S.R.; Kaveri, S.V.; Sakuntabhai, A.; Gilardin, L.; Bayry, J. Adjunct immunotherapies for the management of severely Ill COVID-19 Patients. Cell Reports Med., 2020, 1(2), 100016.
[69]
Herman, S.E.M.; Montraveta, A.; Niemann, C.U.; Mora-Jensen, H.; Gulrajani, M.; Krantz, F.; Mantel, R.; Smith, L.L.; McClanahan, F.; Harrington, B.K.; Colomer, D.; Covey, T.; Byrd, J.C.; Izumi, R.; Kaptein, A.; Ulrich, R.; Johnson, A.J.; Lannutti, B.J.; Wiestner, A.; Woyach, J.A. The bruton tyrosine kinase (btk) inhibitor acalabrutinib demonstrates potent on-target effects and efficacy in two mouse models of chronic lymphocytic leukemia. Clin. Cancer Res., 2017, 23(11), 2831-2841.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0463] [PMID: 27903679]
[70]
Gosain, R.; Abdou, Y.; Singh, A.; Rana, N.; Puzanov, I.; Ernstoff, M.S. COVID-19 and cancer: A comprehensive review. Curr. Oncol. Rep., 2020, 22(5), 53.
[http://dx.doi.org/10.1007/s11912-020-00934-7] [PMID: 32385672]
[71]
Banerjee, S.; Biehl, A.; Gadina, M.; Hasni, S.; Schwartz, D.M. JAK-STAT signaling as a target for inflammatory and autoimmune diseases: Current and future prospects. Drugs, 2017, 77(5), 521-546.
[http://dx.doi.org/10.1007/s40265-017-0701-9] [PMID: 28255960]
[72]
Rodriguez-Morales, A.J.; Cardona-Ospina, J.A.; Gutiérrez-Ocampo, E.; Villamizar-Peña, R.; Holguin-Rivera, Y.; Escalera-Antezana, J.P.; Alvarado-Arnez, L.E.; Bonilla-Aldana, D.K.; Franco-Paredes, C.; Henao-Martinez, A.F.; Paniz-Mondolfi, A.; Lagos-Grisales, G.J.; Ramírez-Vallejo, E.; Suárez, J.A.; Zambrano, L.I.; Villamil-Gómez, W.E.; Balbin-Ramon, G.J.; Rabaan, A.A.; Harapan, H.; Dhama, K.; Nishiura, H.; Kataoka, H.; Ahmad, T.; Sah, R. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med. Infect. Dis., 2020, 34, 101623.
[http://dx.doi.org/10.1016/j.tmaid.2020.101623] [PMID: 32179124]
[73]
Westover, J.B.; Mathis, A.; Taylor, R.; Wandersee, L.; Bailey, K.W.; Sefing, E.J.; Hickerson, B.T.; Jung, K.H.; Sheridan, W.P.; Gowen, B.B. Galidesivir limits rift valley fever virus infection and disease in Syrian golden hamsters. Antiviral Res., 2018, 156, 38-45.
[http://dx.doi.org/10.1016/j.antiviral.2018.05.013] [PMID: 29864447]
[74]
McHugh, K.J. Employing drug delivery strategies to create safe and effective pharmaceuticals for COVID‐19. Bioeng. Transl. Med., 2020, 5(2), e10163.
[75]
Corral, L.G.; Muller, G.W.; Moreira, A.L.; Chen, Y.; Wu, M.; Stirling, D.; Kaplan, G. Selection of novel analogs of thalidomide with enhanced tumor necrosis factor alpha inhibitory activity. Mol. Med., 1996, 2(4), 506-515.
[http://dx.doi.org/10.1007/BF03401909] [PMID: 8827720]
[76]
Chen, C.; Qi, F.; Shi, K.; Li, Y.; Li, J.; Chen, Y.; Pan, J.; Zhou, T.; Lin, X.; Zhang, J.; Luo, Y.; Li, X.; Xia, J. Thalidomide combined with low-dose glucocorticoid in the treatment of COVID-19 pneumonia; Preprints, 2020, p. 2020020395.
[77]
Ghosh, A.K.; Dawson, Z.L.; Mitsuya, H. Darunavir, a conceptually new HIV-1 protease inhibitor for the treatment of drug-resistant HIV. Bioorg. Med. Chem., 2007, 15(24), 7576-7580.
[http://dx.doi.org/10.1016/j.bmc.2007.09.010] [PMID: 17900913]
[78]
Deeks, E.D. Cobicistat: A review of its use as a pharmacokinetic enhancer of atazanavir and darunavir in patients with HIV-1 infection. Drugs, 2014, 74(2), 195-206.
[http://dx.doi.org/10.1007/s40265-013-0160-x] [PMID: 24343782]
[79]
Marzolini, C.; Gibbons, S.; Khoo, S.; Back, D. Cobicistat versus ritonavir boosting and differences in the drug-drug interaction profiles with co-medications. J. Antimicrob. Chemother., 2016, 71(7), 1755-1758.
[http://dx.doi.org/10.1093/jac/dkw032] [PMID: 26945713]
[80]
McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Bělohlávek, J.; Böhm, M.; Chiang, C.E.; Chopra, V.K.; de Boer, R.A.; Desai, A.S.; Diez, M.; Drozdz, J.; Dukát, A.; Ge, J.; Howlett, J.G.; Katova, T.; Kitakaze, M.; Ljungman, C.E.A.; Merkely, B.; Nicolau, J.C.; O’Meara, E.; Petrie, M.C.; Vinh, P.N.; Schou, M.; Tereshchenko, S.; Verma, S.; Held, C.; DeMets, D.L.; Docherty, K.F.; Jhund, P.S.; Bengtsson, O.; Sjöstrand, M.; Langkilde, A.M. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med., 2019, 381(21), 1995-2008.
[http://dx.doi.org/10.1056/NEJMoa1911303] [PMID: 31535829]
[81]
Cure, E.; Cumhur Cure, M. Can dapagliflozin have a protective effect against COVID-19 infection? A hypothesis. Diabetes Metab. Syndr., 2020, 14(4), 405-406.
[http://dx.doi.org/10.1016/j.dsx.2020.04.024] [PMID: 32335366]
[82]
Day, M. Covid-19: Ibuprofen should not be used for managing symptoms, say doctors and scientists. BMJ, 2020, 368, m1086.
[http://dx.doi.org/10.1136/bmj.m1086] [PMID: 32184201]
[83]
Carr, A.C. A new clinical trial to test high-dose vitamin C in patients with COVID-19. Crit. Care, 2020, 24(1), 133.
[http://dx.doi.org/10.1186/s13054-020-02851-4] [PMID: 32264963]
[84]
Jean, S.S.; Lee, P.I.; Hsueh, P.R. Treatment options for COVID-19: The reality and challenges. J. Microbiol. Immunol. Infect., 2020, 53(3), 436-443.
[85]
Vaduganathan, M.; Vardeny, O.; Michel, T.; McMurray, J.J.V.; Pfeffer, M.A.; Solomon, S.D. Renin-angiotensin-aldosterone system inhibitors in patients with covid-19. N. Engl. J. Med., 2020, 382(17), 1653-1659.
[http://dx.doi.org/10.1056/NEJMsr2005760] [PMID: 32227760]
[86]
Zhang, H.; Penninger, J.M.; Li, Y.; Zhong, N.; Slutsky, A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med., 2020, 46(4), 586-590.
[http://dx.doi.org/10.1007/s00134-020-05985-9] [PMID: 32125455]
[87]
Siebert, S.; Tsoukas, A.; Robertson, J.; McInnes, I. Cytokines as therapeutic targets in rheumatoid arthritis and other inflammatory diseases. Pharmacol. Rev., 2015, 67(2), 280-309.
[http://dx.doi.org/10.1124/pr.114.009639] [PMID: 25697599]
[88]
Luo, P.; Liu, Y.; Qiu, L.; Liu, X.; Liu, D.; Li, J. Tocilizumab treatment in COVID-19: A single center experience. J. Med. Virol., 2020, 92(7), 814-818.
[89]
Arnold, C. Taking down covid-19. New Sci., 2020, 245, 44-47.
[http://dx.doi.org/10.1016/S0262-4079(20)30692-8]
[90]
Ortiz-Martínez, Y. Tocilizumab: A new opportunity in the possible therapeutic arsenal against COVID-19. Travel Med. Infect. Dis., 2020, 37, 101678.
[http://dx.doi.org/10.1016/j.tmaid.2020.101678] [PMID: 32325121]
[91]
Genovese, M.C.; Fleischmann, R.; Kivitz, A.J.; Rell-Bakalarska, M.; Martincova, R.; Fiore, S.; Rohane, P.; van Hoogstraten, H.; Garg, A.; Fan, C.; van Adelsberg, J.; Weinstein, S.P.; Graham, N.M.; Stahl, N.; Yancopoulos, G.D.; Huizinga, T.W.; van der Heijde, D. Sarilumab plus methotrexate in patients with active rheumatoid arthritis and inadequate response to methotrexate: Results of a phase iii study. Arthritis Rheumatol., 2015, 67(6), 1424-1437.
[http://dx.doi.org/10.1002/art.39093] [PMID: 25733246]
[92]
Lu, C.C.; Chen, M.Y.; Lee, W.S.; Chang, Y.L. Potential therapeutic agents against COVID-19: What we know so far. J. Chin. Med. Assoc., 2020, 83(6), 534-536.
[http://dx.doi.org/10.1097/JCMA.0000000000000318] [PMID: 32243270]
[93]
Scott, M.J.; Jowett, A.; Orecchia, M.; Ertl, P.; Ouro-Gnao, L.; Ticehurst, J.; Gower, D.; Yates, J.; Poulton, K.; Harris, C.; Mullin, M.J.; Smith, K.J.; Lewis, A.P.; Barton, N.; Washburn, M.L.; de Wildt, R. Rapid identification of highly potent human anti-GPCR antagonist monoclonal antibodies. MAbs, 2020, 12(1), 1755069.
[http://dx.doi.org/10.1080/19420862.2020.1755069] [PMID: 32343620]
[94]
Terrence Jose Jerome, J. Is everything okay? COVID-19. J. Hand Microsurg., 2020, 12(02), 071-073.
[http://dx.doi.org/10.1055/s-0040-1709948]
[95]
Kaplon, H.; Muralidharan, M.; Schneider, Z.; Reichert, J.M. Antibodies to watch in 2020. MAbs, 2020, 12(1), 1703531.
[http://dx.doi.org/10.1080/19420862.2019.1703531] [PMID: 31847708]
[96]
Duan, K.; Liu, B.; Li, C.; Zhang, H.; Yu, T.; Qu, J.; Zhou, M.; Chen, L.; Meng, S.; Hu, Y.; Peng, C.; Yuan, M.; Huang, J.; Wang, Z.; Yu, J.; Gao, X.; Wang, D.; Yu, X.; Li, L.; Zhang, J.; Wu, X.; Li, B.; Xu, Y.; Chen, W.; Peng, Y.; Hu, Y.; Lin, L.; Liu, X.; Huang, S.; Zhou, Z.; Zhang, L.; Wang, Y.; Zhang, Z.; Deng, K.; Xia, Z.; Gong, Q.; Zhang, W.; Zheng, X.; Liu, Y.; Yang, H.; Zhou, D.; Yu, D.; Hou, J.; Shi, Z.; Chen, S.; Chen, Z.; Zhang, X.; Yang, X. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc. Natl. Acad. Sci. USA, 2020, 117(17), 9490-9496.
[http://dx.doi.org/10.1073/pnas.2004168117] [PMID: 32253318]
[97]
Shen, C.; Wang, Z.; Zhao, F.; Yang, Y.; Li, J.; Yuan, J.; Wang, F.; Li, D.; Yang, M.; Xing, L.; Wei, J. Covid-19: FDA approves use of convalescent plasma to treat critically ill patients. JAMA, 2020, 323, 1582-1589.
[http://dx.doi.org/10.1136/bmj.m1256]
[98]
Scavone, C.; Brusco, S.; Bertini, M.; Sportiello, L.; Rafaniello, C.; Zoccoli, A.; Berrino, L.; Racagni, G.; Rossi, F.; Capuano, A. What’s next? Br. J. Pharmacol., 2020, 177(21), 4813-4824.
[99]
Misra, D.P.; Agarwal, V.; Gasparyan, A.Y.; Zimba, O. Rheumatologists’ perspective on coronavirus disease 19 (COVID-19) and potential therapeutic targets. Clin. Rheumatol., 2020, 39(7), 2055-2062.
[100]
Ronco, C.; Reis, T. Kidney involvement in COVID-19 and rationale for extracorporeal therapies. Nat. Rev. Nephrol., 2020, 16(6), 308-310.
[http://dx.doi.org/10.1038/s41581-020-0284-7] [PMID: 32273593]
[101]
Zhou, Y.; Wang, F.; Tang, J.; Nussinov, R.; Cheng, F. Artificial intelligence in COVID-19 drug repurposing. Lancet Digit Health, 2020, 2(12), e667-e676.
[http://dx.doi.org/10.1016/S2589-7500(20)30192-8] [PMID: 32984792]
[102]
Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R.K. Artificial intelligence in drug discovery and development. Drug Discov. Today, 2021, 26(1), 80-93.
[http://dx.doi.org/10.1016/j.drudis.2020.10.010] [PMID: 33099022]
[103]
Kaushal, K.; Sarma, P.; Rana, S.V.; Medhi, B.; Naithani, M. Emerging role of artificial intelligence in therapeutics for COVID- 19: A systematic review. J. Bimol. Stru. Dyn., 2020, 1-16.
[104]
Mohanty, S.; Harun Ai Rashid, M.; Mridul, M.; Mohanty, C.; Swayamsiddha, S. Application of artificial intelligence in covid-19 drug repurposing. Diabetes Metab. Syndr., 2020, 14(5), 1027-1031.
[http://dx.doi.org/10.1016/j.dsx.2020.06.068] [PMID: 32634717]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy