Generic placeholder image

Current Applied Materials

Editor-in-Chief

ISSN (Print): 2666-7312
ISSN (Online): 2666-7339

Research Article

Benzotriazacycle Cored Perylene Diimide Non-fullerene Acceptors for High-performance Organic Solar Cells

Author(s): Min Deng, Zhenkai Ji, Xiaopeng Xu, Liyang Yu* and Qiang Peng*

Volume 1, Issue 1, 2022

Published on: 16 June, 2021

Article ID: e100821194107 Pages: 9

DOI: 10.2174/2666731201666210616114513

Abstract

Background: Perylene diimide (PDI) is among the most investigated non-fullerene electron acceptor for organic solar cells (OSCs). Constructing PDI derivatives into three-dimensional propellerlike molecular structures is not only one of the viable routes to suppress the over aggregation tendency of the PDI chromophores but also rise possibilities to tune and optimize the optoelectronic property of the molecules.

Objective: In this work, we reported the design, synthesis, and characterization of three electronaccepting materials, namely BOZ-PDI, BTZ-PDI, and BIZ-PDI, each with three PDI arms linked to benzotrioxazole, benzotrithiazole, and benzotriimidazole based center cores, respectively.

Methods: The introduction of electron-withdrawing center cores with heteroatoms does not significantly complicate the synthesis of the acceptor molecules, but drastically influences the energy levels of the propeller-like PDI derivatives.

Results: The highest power conversion efficiency was obtained with benzoxazole-based BOZ-PDI reaching 7.70% for its higher photon absorption and charge-transport ability.

Conclusion: This work explores the utilization of electron-withdrawing cores with heteroatoms in the propeller-like PDI derivatives, which provides a handy tool to construct high-performance nonfullerene acceptor materials.

Keywords: Organic solar cells, non-fullerene acceptor, perylene diimide, propeller-like, benzotriazacycle core, heteroatoms.

Graphical Abstract
[1]
Inganäs O. Organic photovoltaics over three decades. Adv Mater 2018; 30(35): e1800388.
[http://dx.doi.org/10.1002/adma.201800388] [PMID: 29938847]
[2]
Yan CQ, Barlow S, Wang ZH, et al. Non-fullerene acceptors for organic solar cells. Nat Rev Mater 2018; 3(3): 18003.
[http://dx.doi.org/10.1038/natrevmats.2018.3]
[3]
Cui Y, Yao H, Zhang J, et al. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat Commun 2019; 10(1): 2515.
[http://dx.doi.org/10.1038/s41467-019-10351-5] [PMID: 31175276]
[4]
Yu R, Yao H, Cui Y, Hong L, He C, Hou J. Improved charge transport and reduced nonradiative energy loss enable over 16% efficiency in ternary polymer solar cells. Adv Mater 2019; 31(36): e1902302.
[http://dx.doi.org/10.1002/adma.201902302] [PMID: 31294900]
[5]
Sun HL, Liu T, Yu JW, et al. A monothiophene unit incorporating both fluoro and ester substitution enabling high-performance donor polymers for non-fullerene solar cells with 16.4% efficiency. Energy Environ Sci 2019; 12(11): 3328-37.
[http://dx.doi.org/10.1039/C9EE01890E]
[6]
Yan T, Song W, Huang J, Peng R, Huang L, Ge Z. 16.67% rigid and 14.06% flexible organic solar cells enabled by ternary heterojunction strategy. Adv Mater 2019; 31(39): e1902210.
[http://dx.doi.org/10.1002/adma.201902210] [PMID: 31411359]
[7]
Wang R, Jiang K, Yu H, Wu F, Zhu LN, Yan H. Efficient inverted perovskite solar cells with truxene-bridged PDI trimers as electron transporting materials. Mater Chem Front 2019; 3(10): 2137-42.
[http://dx.doi.org/10.1039/C9QM00329K]
[8]
Zhu L, Zhang M, Zhou GQ, et al. Efficient organic solar cell with 16.88% efficiency enabled by refined acceptor crystallization and morphology with improved charge transfer and transport properties. Adv Energy Mater 2020; 10(18): 1904234.
[http://dx.doi.org/10.1002/aenm.201904234]
[9]
Liu T, Zhang YD, Shao YM, et al. Asymmetric acceptors with fluorine and chlorine substitution for organic solar cells toward 16.83% efficiency. Adv Funct Mater 2020; 30(24): 2000456.
[http://dx.doi.org/10.1002/adfm.202000456]
[10]
Macedo AG, Christopholi LP, Gavim AEX, et al. Perylene derivatives for solar cells and energy harvesting: A review of materials, challenges and advances. J Mater Sci Mater Electron 2019; 30(17): 15803-24.
[http://dx.doi.org/10.1007/s10854-019-02019-z]
[11]
Singh R, Kim M, Lee JJ, Ye TL, Keivanidis PE, Cho KW. Excimer formation effects and trap-assisted charge recombination loss channels in organic solar cells of perylene diimide dimer acceptors. J Mater Chem C Mater Opt Electron Devices 2020; 8(5): 1686-96.
[http://dx.doi.org/10.1039/C9TC04955J]
[12]
Kozma E, Catellani M. Perylene diimides based materials for organic solar cells. Dyes Pigments 2013; 98(1): 160-79.
[http://dx.doi.org/10.1016/j.dyepig.2013.01.020]
[13]
Zheng MM, Miao YW, Syed AA, et al. Spatial configuration engineering of perylenediimide-based non-fullerene electron transport materials for efficient inverted perovskite solar cells. J Energy Chem 2021; 56: 374-82.
[http://dx.doi.org/10.1016/j.jechem.2020.08.012]
[14]
Li G, Yang WB, Wang SH, et al. Methane-perylene diimide-based small molecule acceptors for high efficiency non-fullerene organic solar cells. J Mater Chem C Mater Opt Electron Devices 2019; 7(35): 10901-7.
[http://dx.doi.org/10.1039/C9TC03457A]
[15]
Xia P, Wu ML, Zhang SX, et al. High performance PDI based ternary organic solar cells fabricated with non-halogenated solvent. Org Electron 2019; 73: 205-11.
[http://dx.doi.org/10.1016/j.orgel.2019.03.052]
[16]
Wang H, Li M, Liu YH, Song JS, Li CH, Bo ZS. Perylene diimide based star-shaped small molecular acceptors for high efficiency organic solar cells. J Mater Chem C Mater Opt Electron Devices 2019; 7(4): 819-25.
[http://dx.doi.org/10.1039/C8TC05332D]
[17]
Ahmed Qureshi MB, Li M, Wang H, Song JS, Bo ZS. Nonfullerene acceptors with an n-annulated perylene core and two perylene diimide units for efficient organic solar cells. Dyes Pigments 2020; 173: 107970.
[http://dx.doi.org/10.1016/j.dyepig.2019.107970]
[18]
Pan JW, Wang L, Chen W, et al. Non-fullerene small molecule acceptors with three-dimensional thiophene/selenophene-annulated perylene diimides for efficient organic solar cells. J Mater Chem C Mater Opt Electron Devices 2020; 8(20): 6749-55.
[http://dx.doi.org/10.1039/D0TC00341G]
[19]
Cann J, Dayneko S, Sun J-P, Hendsbee AD, Hill IG, Welch GC. N-annulated perylene diimide dimers: Acetylene linkers as a strategy for controlling structural conformation and the impact on physical, electronic, optical and photovoltaic properties. J Mater Chem C Mater Opt Electron Devices 2017; 5(8): 2074-83.
[http://dx.doi.org/10.1039/C6TC05107C]
[20]
Luo ZH, Liu T, Cheng WL, et al. A three-dimensional thiophene-annulated perylene bisimide as a fullerene-free acceptor for a high performance polymer solar cell with the highest PCE of 8.28% and a Voc over 1.0 V. J Mater Chem C Mater Opt Electron Devices 2018; 6(5): 1136-42.
[http://dx.doi.org/10.1039/C7TC05261H]
[21]
Fan W, Liang N, Meng D, et al. A high performance three-dimensional thiophene-annulated perylene dye as an acceptor for organic solar cells. Chem Commun (Camb) 2016; 52(77): 11500-3.
[http://dx.doi.org/10.1039/C6CC05810H] [PMID: 27709212]
[22]
Sun D, Meng D, Cai Y, et al. Non-fullerene-acceptor-based bulk-heterojunction organic solar cells with efficiency over 7%. J Am Chem Soc 2015; 137(34): 11156-62.
[http://dx.doi.org/10.1021/jacs.5b06414] [PMID: 26278192]
[23]
Meng D, Sun D, Zhong C, et al. High-performance solution-processed non-fullerene organic solar cells based on selenophene-containing perylene bisimide acceptor. J Am Chem Soc 2016; 138(1): 375-80.
[http://dx.doi.org/10.1021/jacs.5b11149] [PMID: 26652276]
[24]
Li M, Wang H, Liu YH, et al. Perylene diimide acceptor with two planar arms and a twisted core for high efficiency polymer solar cells. Dyes Pigments 2020; 175: 108186.
[http://dx.doi.org/10.1016/j.dyepig.2020.108186]
[25]
Bian GF, Zhao F, Lau TK, et al. Simply planarizing nonfused perylene diimide based acceptors toward promising non-fullerene solar cells. J Mater Chem C Mater Opt Electron Devices 2019; 7(26): 8092-100.
[http://dx.doi.org/10.1039/C9TC02013F]
[26]
Wang K, Xia P, Wang K, et al. π-extension, selenium incorporation, and trimerization: “Three in one” for efficient perylene diimide oligomer-based organic solar cells. ACS Appl Mater Interfaces 2020; 12(8): 9528-36.
[http://dx.doi.org/10.1021/acsami.9b21929] [PMID: 32009378]
[27]
Sun H, Song X, Xie J, et al. PDI derivative through fine-tuning the molecular structure for fullerene-free organic solar cells. ACS Appl Mater Interfaces 2017; 9(35): 29924-31.
[http://dx.doi.org/10.1021/acsami.7b08282] [PMID: 28795560]
[28]
Weng KK, Li C, Bi PQ, et al. Ternary organic solar cells based on two compatible PDI-based acceptors with an enhanced power conversion efficiency. J Mater Chem A Mater Energy Sustain 2019; 7(8): 3552-7.
[http://dx.doi.org/10.1039/C8TA12034J]
[29]
Ding K, Wang Y, Shan T, et al. Propeller-like acceptors with difluoride perylene diimides for organic solar cells. Org Electron 2020; 78: 105569.
[http://dx.doi.org/10.1016/j.orgel.2019.105569]
[30]
Duan Y, Xu X, Yan H, Wu W, Li Z, Peng Q. Pronounced effects of a triazine core on photovoltaic performance-efficient organic solar cells enabled by a PDI trimer-based small molecular acceptor. Adv Mater 2017; 29(7): 1605115.
[http://dx.doi.org/10.1002/adma.201605115] [PMID: 27922731]
[31]
Zhang GJ, Xu XP, Lee YW, Woo HY, Li Y, Peng Q. Achieving a high fill factor and stability in perylene diimide–based polymer solar cells using the molecular lock effect between 4,4′-bipyridine and a tri(8-hydroxyquinoline)aluminum(III) core. Adv Funct Mater 2019; 29(29): 1902079.
[http://dx.doi.org/10.1002/adfm.201902079]
[32]
Lee J, Singh R, Sin DH, Kim HG, Song KC, Cho K. A nonfullerene small molecule acceptor with 3D interlocking geometry enabling efficient organic solar cells. Adv Mater 2016; 28(1): 69-76.
[http://dx.doi.org/10.1002/adma.201504010] [PMID: 26539752]
[33]
Lin H, Chen S, Hu H, et al. Reduced intramolecular twisting improves the performance of 3D molecular acceptors in non-fullerene organic solar cells. Adv Mater 2016; 28(38): 8546-51.
[http://dx.doi.org/10.1002/adma.201600997] [PMID: 27501996]
[34]
Tang F, Wu KL, Zhou ZJ, Wang G, Zhao B, Tan ST. Alkynyl-functionalized pyrene-cored perylene diimide electron acceptors for efficient nonfullerene organic solar cells. ACS Appl Energy Mater 2019; 2(5): 3918-26.
[http://dx.doi.org/10.1021/acsaem.9b00611]
[35]
Lin Y, Wang Y, Wang J, et al. A star-shaped perylene diimide electron acceptor for high-performance organic solar cells. Adv Mater 2014; 26(30): 5137-42.
[http://dx.doi.org/10.1002/adma.201400525] [PMID: 24659432]
[36]
Zhang JQ, Bai FJ, Li YK, et al. Intramolecular π-stacked perylene-diimide acceptors for non-fullerene organic solar cells. J Mater Chem A Mater Energy Sustain 2019; 7(14): 8136-43.
[http://dx.doi.org/10.1039/C9TA00343F]
[37]
Li Y, Gong Y, Che Y, Xu X, Yu L, Peng Q. Propeller-like all-fused perylene diimide based electron acceptors with chalcogen linkage for efficient polymer solar cells. Front Chem 2020; 8: 350.
[http://dx.doi.org/10.3389/fchem.2020.00350] [PMID: 32411672]
[38]
Kim HS, Park HJ, Lee SK, Shin WS, Song CE, Hwang DH. Effects of the core unit on perylene-diimide-based molecular acceptors in fullerene-free organic solar cells. Org Electron 2019; 71: 238-45.
[http://dx.doi.org/10.1016/j.orgel.2019.05.029]
[39]
Liu J, Lu H, Liu Y, et al. Efficient organic solar cells based on non-fullerene acceptors with two planar thiophene-fused perylene diimide units. ACS Appl Mater Interfaces 2020; 12(9): 10746-54.
[http://dx.doi.org/10.1021/acsami.9b22927] [PMID: 32054268]
[40]
Benatto L, Marchiori CFN, Moyses Araujo C, Koehler M. Molecular origin of efficient hole transfer from non-fullerene acceptors: Insights from first-principles calculations. J Mater Chem C Mater Opt Electron Devices 2019; 7(39): 12180-93.
[http://dx.doi.org/10.1039/C9TC03563J]
[41]
Wang HL, Yang F, Xiang YR, et al. Achieving efficient inverted perovskite solar cells with excellent electron transport and stability by employing a ladder-conjugated perylene diimide dimer. J Mater Chem A Mater Energy Sustain 2019; 7(42): 24191-8.
[http://dx.doi.org/10.1039/C9TA09260A]
[42]
Meng D, Fu H, Xiao C, et al. Three-bladed rylene propellers with three-dimensional network assembly for organic electronics. J Am Chem Soc 2016; 138(32): 10184-90.
[http://dx.doi.org/10.1021/jacs.6b04368] [PMID: 27440216]
[43]
Wu ML, Yi JP, Hu J, et al. Ring fusion attenuates the device performance: Star-shaped long helical perylene diimide based non-fullerene acceptors. J Mater Chem C Mater Opt Electron Devices 2019; 7(31): 9564-72.
[http://dx.doi.org/10.1039/C9TC02150G]
[44]
Luo ZH, Xiong WT, Liu T, et al. Triphenylamine-cored star-shape compounds as non-fullerene acceptor for high-efficiency organic solar cells: Tuning the optoelectronic properties by S/Se-annulated perylene diimide. Org Electron 2017; 41: 166-72.
[http://dx.doi.org/10.1016/j.orgel.2016.10.044]
[45]
Li SX, Liu WQ, Li CZ, et al. A simple perylene diimide derivative with a highly twisted geometry as an electron acceptor for efficient organic solar cells. J Mater Chem A Mater Energy Sustain 2016; 4(27): 10659-65.
[http://dx.doi.org/10.1039/C6TA04232E]
[46]
Wang B, Liu WQ, Li HB, et al. Electron acceptors with varied linkages between perylene diimide and benzotrithiophene for efficient fullerene-free solar cells. J Mater Chem A Mater Energy Sustain 2017; 5(19): 9396-401.
[http://dx.doi.org/10.1039/C7TA02582C]
[47]
Xiong Y, Wu B, Zheng X, et al. Novel dimethylmethylene-bridged triphenylamine-pdi acceptor for bulk-heterojunction organic solar cells. Adv Sci (Weinh) 2017; 4(10): 1700110.
[http://dx.doi.org/10.1002/advs.201700110] [PMID: 29051855]
[48]
Zhang LP, Zhao WC, Liu XY, et al. A triptycene-cored perylenediimide derivative and its application in organic solar cells as a non-fullerene acceptor. New J Chem 2017; 41(18): 10237-44.
[http://dx.doi.org/10.1039/C7NJ01971H]
[49]
Li G, Zhang Y, Liu T, et al. Pyran-annulated perylene diimide derivatives as non-fullerene acceptors for high performance organic solar cells. J Mater Chem C Mater Opt Electron Devices 2018; 6(41): 11111-7.
[http://dx.doi.org/10.1039/C8TC02823K]
[50]
Zhang GJ, Feng J, Xu XP, Ma W, Li Y, Peng Q. Perylene diimide-based nonfullerene polymer solar cells with over 11% efficiency fabricated by smart molecular design and supramolecular morphology optimization. Adv Funct Mater 2019; 29(50): 1906587.
[http://dx.doi.org/10.1002/adfm.201906587]
[51]
Malliaras GG, Salem JR, Brock PJ, Scott C. Electrical characteristics and efficiency of single-layer organic light-emitting diodes. Phys Rev B Condens Matter Mater Phys 1998; 58(20): 13411-4.
[http://dx.doi.org/10.1103/PhysRevB.58.R13411]
[52]
Andersson LM, Müller C, Badada BH, Zhang F, Würfel U, Inganäs O. Transport mobility and fill factor correlation in geminate recombination limited solar cells. J Appl Phys 2011; 110(2): 024509.
[http://dx.doi.org/10.1063/1.3609079]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy