2D and Layered Ti-based Materials for Supercapacitors and Rechargeable Batteries: Synthesis, Properties, and Applications

Author(s): Wei Ni*, Lingying Shi*

Journal Name: Current Applied Materials

Volume 1 , Issue 1 , 2022

Article ID: e200521193451
Become EABM
Become Reviewer
Call for Editor


Titanium-based two-dimensional (2D) and layered compounds with open and stable crystal structures have attracted increasing attention for energy storage and conversion purposes, e.g., rechargeable alkali-ion batteries and hybrid capacitors, due to their superior rate capability derived from the intercalation-type or pseudocapacitive kinetics. Various strategies, including structure design, conductivity enhancement, surface modification, and electrode engineering, have been implemented to effectively overcome the intrinsic drawbacks while simultaneously maintaining their advantages as promising and competitive electrode materials for advanced energy storage and conversion. Here, we provide a comprehensive overview of the recent progress on Ti-based compound materials for high-rate and low-cost electrochemical energy storage applications (mainly on rechargeable batteries and supercapacitors). The energy storage mechanisms, structure-performance relations, and performance-optimizing strategies in these typical energy storage devices are discussed. Moreover, major challenges and perspectives for future research and industrial application are also illustrated.

Keywords: Two-dimensional (2D), Ti-based compounds, MXenes, layered oxides, energy storage and conversion, batteries, supercapacitors.

open access plus

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2022
Published on: 28 May, 2021
Article ID: e200521193451
Pages: 17
DOI: 10.2174/2666731201666210520125051

Article Metrics

PDF: 22