Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Association Between Biofilm Formation Gene Bla exoU and Metallo and Extend Spectrum Beta-lactamase Production of Multidrug Resistance Pseudomonas aeruginosa in Clinical Samples

Author(s): Fattma Abodi Ali*

Volume 25, Issue 7, 2022

Published on: 19 April, 2021

Page: [1207 - 1218] Pages: 12

DOI: 10.2174/1386207324666210419112210

Price: $65

Abstract

Background: The presence of biofilm formation exoU gene is a significant challenge to infection control management in hospitals and exposure by Pseudomonas aeruginosa may lead to further spread and development of antimicrobial resistance.

Methods: Out of 227 samples, 40 clinical isolates of P. aeruginosa were collected from patients attending public hospitals (Rizgary, Teaching hospital, Laboratory center, Raparin, Nanakaly hospitals) in Erbil city, Iraq over a period during June 2018 to March 2019 and were fully characterized by standard bacteriological procedures and antimicrobial susceptibility test and ESBL has been carried out by Vitek 2 compact system and by Vitek 2 compact system. The identification has been verified by all isolates as P. aeruginosa by using 16S rDNA with product size (956pb).

Results: A high rate of resistance was seen against Penicillin, Lincomycin, Piperacillin and Chloramphenicol and Rifampicin (100 %), whereas Imipenem (5%) was found to be the most effective antimicrobial drug. Of all P. aeruginosa isolates, 30 (75% %) were identified as MDR, approximately 9 (22.5%) isolates were resistant to 9 drugs in burn samples. Quantitative biofilm determination using the Congo red method revealed that 28 isolates (70%) produced biofilm, biofilm production was significantly higher among MDR P. aeruginosa isolates while coproduction of Extended Spectrum β-lactamase (ESBL) together with Metallo β-lactamase (MBL) ESBLs MBLs was recorded in 52.5% of the isolates. Altogether 40 isolates were processed for the analysis by PCR assays and showed that 26 (70%) of P. aeruginosa isolates harboured the exoU encoding gene with product size (204) pb was more commonly seen in isolates obtained from burn isolates. In addition, exo U gene was significantly associated with the higher MDR (80%), 8 isolates (76.9%) had exoU gene with ESBL and (65%) had MBL and the same for MDR (80.8%) in samples for burning.

Conclusion: Our results showed surveillance of P. aeruginosa resistance against antimicrobial and ESBL and MBL is fundamental to monitor trends in susceptibility patterns and appropriately guide clinicians in choosing empirical or directed therapy.

Keywords: Pseudomonas aeruginosa, exoU gene, ESBL, MBL, MDR, biofilm formation.

Graphical Abstract
[1]
Koenig, A. Gram-negative bacterial infections. Infectious diseases of the dog and cat, 4th ed; Greene, C.E., Ed.; Elsevier, Saunders: St. Louis, Missouri, 2012, pp. 349-359.
[2]
Lau, G.W.; Hassett, D.J.; Ran, H.; Kong, F. The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol. Med., 2004, 10(12), 599-606.
[http://dx.doi.org/10.1016/j.molmed.2004.10.002] [PMID: 15567330]
[3]
Breidenstein, E.B.C. Césarde la, Fuente-Núñez; Robert E.W., Hancock Pseudomonas aeruginosa: All roads lead to resistance. Trends in Microbiology, 2011, 19(8), 419-426.
[4]
Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; Paterson, D.L.; Rice, L.B.; Stelling, J.; Struelens, M.J.; Vatopoulos, A.; Weber, J.T.; Monnet, D.L. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect., 2012, 18(3), 268-281.
[http://dx.doi.org/10.1111/j.1469-0691.2011.03570.x] [PMID: 21793988]
[5]
Potron, A.; Poirel, L.; Nordmann, P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology. Int. J. Antimicrob. Agents, 2015, 45(6), 568-585.
[http://dx.doi.org/10.1016/j.ijantimicag.2015.03.001] [PMID: 25857949]
[6]
Bae, I.K.; Suh, B.; Jeong, S.H.; Wang, K.K.; Kim, Y.R.; Yong, D.; Lee, K. Molecular epidemiology of Pseudomonas aeruginosa clinical isolates from Korea producing β-lactamases with extended-spectrum activity. Diagn. Microbiol. Infect. Dis., 2014, 79(3), 373-377.
[http://dx.doi.org/10.1016/j.diagmicrobio.2014.03.007] [PMID: 24792837]
[7]
Bisson, G.; Fishman, N.O.; Patel, J.B.; Edelstein, P.H.; Lautenbach, E. Extended-spectrum β-lactamases-producing Escherichia coli and Klebsiella species: risk factors for colonization and impact of antimicrobial formulary interventions on colonization prevalence. Infect. Control Hosp. Epidemiol., 2002, 23(5), 254-260.
[http://dx.doi.org/10.1086/502045] [PMID: 12026150]
[8]
Walsh, T.R.; Toleman, M.A.; Poirel, L.; Nordmann, P. Metallo-β- lactamases: the quiet before the storm? Clin. Microbiol. Rev., 2005, 18(2), 306-325.
[http://dx.doi.org/10.1128/CMR.18.2.306-325.2005] [PMID: 15831827]
[9]
Chiang, W.C.; Nilsson, M.; Jensen, P.Ø.; Høiby, N.; Nielsen, T.E.; Givskov, M.; Tolker-Nielsen, T. Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother., 2013, 57(5), 2352-2361.
[http://dx.doi.org/10.1128/AAC.00001-13] [PMID: 23478967]
[10]
Lewis, K. Multidrug tolerance of biofilms and persister cells. Curr. Top. Microbiol. Immunol., 2008, 322, 107-131.
[http://dx.doi.org/10.1007/978-3-540-75418-3_6] [PMID: 18453274]
[11]
Kumar, V.; Sen, M.R.; Nigam, C.; Gahlot, R.; Kumari, S. Burden of different beta-lactamase classes among clinical isolates of AmpC-producing Pseudomonas aeruginosa in burn patients: A prospective study. Indian J. Crit. Care Med., 2012, 16(3), 136-140. [PMC free article [PubMed [CrossRef [Google Scholar
[http://dx.doi.org/10.4103/0972-5229.102077] [PMID: 23188953]
[12]
Hauser, A.R. The type III secretion system of Pseudomonas aeruginosa: Infection by injection. Nat. Rev. Microbiol., 2009, 7(9), 654-665. [CrossRef]. [PubMed].
[http://dx.doi.org/10.1038/nrmicro2199] [PMID: 19680249]
[13]
Sato, H.; Frank, D.W. ExoU is a potent intracellular phospholipase. Mol. Microbiol., 2004, 53(5), 1279-1290.
[http://dx.doi.org/10.1111/j.1365-2958.2004.04194.x] [PMID: 15387809]
[14]
Macià, M.D.; Rojo-Molinero, E.; Oliver, A. Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin. Microbiol. Infect., 2014, 20(10), 981-990.
[http://dx.doi.org/10.1111/1469-0691.12651] [PMID: 24766583]
[15]
Feltman, H.; Schulert, G.; Khan, S.; Jain, M.; Peterson, L.; Hauser, A.R. Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa. Microbiology (Reading), 2001, 147(Pt 10), 2659-2669.
[http://dx.doi.org/10.1099/00221287-147-10-2659] [PMID: 11577145]
[16]
Eigner, U.; Schmid, A.; Wild, U.; Bertsch, D.; Fahr, A.M. Analysis of the comparative workflow and performance characteristics of the VITEK 2 and Phoenix systems. J. Clin. Microbiol., 2005, 43(8), 3829-3834.
[http://dx.doi.org/10.1128/JCM.43.8.3829-3834.2005] [PMID: 16081919]
[17]
CLSI (Clinical and Laboratory Standards Institute). Performance standard for antimicrobial susceptibility testing. Twenty-First informational supplement, 2011, 31(1), M100-S21.
[18]
Lee, K.; Lim, Y.S.; Yong, D.; Yum, J.H.; Chong, Y. Evaluation of the Hodge test and the imipenem-EDTA double disk synergy test for the differentiation of the metallo- β-lactamase producing clinical isolates of the Pseudomonas spp and the Acinetobacter spp. J. Clin. Microbiol., 2003, 41, 4623-4629.
[19]
Sharvari, S.A.; Chitra, P.G. Evaluation Of Different Detection Methods Of Biofilm Formation In Clinical Isolates Of Staphylococci. Int. J. Pharma Bio Sci., 2012, 3(4), 724-733.
[20]
Megahed, A.A.; Nasr, S.S.; Mohammed, G.M. Bacteriological and molecular detection of Pseudomonas species from raw milk sold in Port-Said City markets. Egypt J. Chem. Environ. Health., 2015, 1(1), 986-1002.
[21]
Fazeli, N Momtaz, H Virulence Gene Profiles of Multidrug- Resistant Pseudomonas aeruginosa Isolated From Iranian Hospital Infections. Iran Red Crescent Med J. 5, 2014. 16(10)
[22]
Cao, B.; Wang, H.; Sun, H.; Zhu, Y.; Chen, M. Risk factors and clinical outcomes of nosocomial multi-drug resistant Pseudomonas aeruginosa infections. J. Hosp. Infect., 2004, 57(2), 112-118.
[http://dx.doi.org/10.1016/j.jhin.2004.03.021] [PMID: 15183240]
[23]
Gales, A.C.; Jones, R.N.; Turnidge, J.; Rennie, R.; Ramphal, R. Characterization of Pseudomonas aeruginosa isolates: occurrence rates, antimicrobial susceptibility patterns, and molecular typing in the global SENTRY Antimicrobial Surveillance Program, 1997-1999. Clin. Infect. Dis., 2001, 32(Suppl. 2), S146-S155.
[http://dx.doi.org/10.1086/320186] [PMID: 11320454]
[24]
Rajaee Behbahani, M.; Keshavarzi, A.; Pirbonyeh, N.; Javanmardi, F.; Khoob, F.; Emami, A. Plasmid-related β-lactamase genes in Pseudomonas aeruginosa isolates: a molecular study in burn patients. J. Med. Microbiol., 2019, 68(12), 1740-1746.
[PMID: 31718745]
[25]
Al-Mamori, H. H Isolation of P. aeruginosa from Clinical Cases and Environmental Samples, and Analysis of its Antibiotic Resistant Spectrum at HillaTeaching Hospital. Med. J. Babylon, 2011, 8(4), 618-623.
[26]
Anzai, Y.; Kim, H.; Park, J.Y.; Wakabayashi, H.; Oyaizu, H. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int. J. Syst. Evol. Microbiol., 2000, 50(Pt 4), 1563-1589.
[http://dx.doi.org/10.1099/00207713-50-4-1563] [PMID: 10939664]
[27]
Kamali, E.; Jamali, A.; Ardebili, A.; Ezadi, F.; Mohebbi, A. Evaluation of antimicrobial resistance, biofilm forming potential, and the presence of biofilm-related genes among clinical isolates of Pseudomonas aeruginosa. BMC Res. Notes, 2020, 13(1), 27.
[http://dx.doi.org/10.1186/s13104-020-4890-z] [PMID: 31924268]
[28]
Altaai, ME; Aziz, IH Marhoon, AA Identification Pseudomonas aeruginosa by 16s rRNA gene for Differentiation from Other Pseudomonas Species that isolated from Patients and environment Baghdad Science Journal, 2014, 11(2) 8201
[29]
Kolbert, C.P.; Persing, D.H. Ribosomal DNA sequencing as a tool for identification of bacterial pathogens. Curr. Opin. Microbiol., 1999, 2(3), 299-305.
[http://dx.doi.org/10.1016/S1369-5274(99)80052-6] [PMID: 10383862]
[30]
Rafiee, R.F.; Eftekhar, S.A. Tabatabaei, Tehrani, D.M. Prevalence of extended-spectrum and metallo -lactamase production in AmpC -lactamase producing Pseudomonas aeruginosa isolates from burns. Jundishapur Journal of Microbiology, 2014, 7(9), 16436.
[31]
Behera, B.; Mathur, P.; Das, A.; Kapil, A.; Sharma, V. An evaluation of four different phenotypic techniques for detection of metallo-beta-lactamase producing Pseudomonas aeruginosa. Indian J. Med. Microbiol., 2008, 26(3), 233-237.
[http://dx.doi.org/10.4103/0255-0857.39587] [PMID: 18695320]
[32]
Khan, S.; Singh, P.; Rashmi, A.; Khanal, K. Recent trend of acquisition of multi-drug resistance in Pseudomonas aeruginosa. Asian Pacific Journal of Microbiology Research, 2014, 2(1), 1-5.
[33]
Moazami-Goudarzi, S.; Eftekhar, F. Assessment of carbapenem susceptibility & multidrug resistance in Pseudomonas aeruginosa in burn isolates. Jundishapur J. Microbiol., 2012, 6, 162-165.
[34]
El-Shouny, W.A.; Ali, S.S.; Sun, J.; Samy, S.M.; Ali, A. Drug resistance profile and molecular characterization of extended spectrum beta lactamase (ESβL)-producing Pseudomonas aeruginosa isolated from burn wound infections. Essential oils and their potential for utilization. Microbial pathogens, 2018, 116, 301-312.
[35]
Rankin, D.; Caicedo, L.; Dotson, N.; Gable, P.; Chu, A. Notes from the Field: Verona Integron-Encoded Metallo-Lactamase–Producing Pseudomonas aeruginosa Outbreak in a Long-Term Acute Care Hospital — Orange County, Florida. MMWR Morb. Mortal. Wkly. Rep., 2018, 67(21), 611-612.
[http://dx.doi.org/10.15585/mmwr.mm6721a6] [PMID: 29851944]
[36]
Nordmann, P.; Poirel, L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin. Microbiol. Infect., 2014, 20(9), 821-830.
[http://dx.doi.org/10.1111/1469-0691.12719] [PMID: 24930781]
[37]
Heydari, S. Eftekhar, F Biofilm Formation and β-Lactamase Production in Burn Isolates of Pseudomonas aeruginosa. Jundishapur J. Microbiol., 2015, 8(3), e15514.
[http://dx.doi.org/10.5812/jjm.15514]
[38]
Magiorakos, A.P. Multidrug Resistant (MDR), Extensively Drug Resistant (XDR) and Pandrug-1 Resistant (PDR) bacteria in healthcare settings. Expert Proposal for a Standardized International Terminology, 2011. Available online at: https://www.escmid.org
[39]
Ndip, R.N.H.; Dilonga, M.L.; Ndip, M.J.; Akoachere, F.K. Nkuo, Akenji P. aeruginosa isolates recovered from clinical and environmental samples in Buea, Cameroon: current status on biotyping and antibiogram. Tropical Medicine and International Health, 2005, 10(1), 74-81.
[PMID: 15655016]
[40]
AL-Marjani MF; Al-Ammar, MHM; Kadhem, EQ Occurrence of esbl and mbl genes in Pseudomonas aeruginosa and Acinetobacter baumannii isolated from Baghdad Iraq. International Journal of Current Research, 2013, 5(09), 2482-2486.
[41]
Gad, G.; Eldomany, E.; Zaki, S. Ashour, H Characterization of Pseudomonas aeruginosa isolated from clinical and environmental samples in Minia,Egypt: prevalence, Antibiogram and resistance mechanisms. J. Antimicrob. Chemother., 2007, 60, 1010-1017.
[42]
Aggarwal, R.; Chaudhary, U.; Bala, K. Detection of extended-spectrum β-lactamase in Pseudomonas aeruginosa. Indian J. Pathol. Microbiol., 2008, 51(2), 222-224.
[http://dx.doi.org/10.4103/0377-4929.41693] [PMID: 18603687]
[43]
Yu, Y.S.; Qu, T.T.; Zhou, J.Y.; Wang, J.; Li, H.Y.; Walsh, T.R. Integrons containing the VIM-2 metallo-β-lactamase gene among imipenem-resistant Pseudomonas aeruginosa strains from different Chinese hospitals. J. Clin. Microbiol., 2006, 44(11), 4242-4245.
[http://dx.doi.org/10.1128/JCM.01558-06] [PMID: 17005756]
[44]
Chen, Z. Niu1, H; Chen, G; Li, M; Li, M; Zhou, Y Prevalence of ESBLs-producing Pseudomonas aeruginosa isolates from different wards in a Chinese teaching hospital. Int J Clin Exp Med 2015, 8(10)19400-19405.19400-19405www.ijcem.com/ISSN:1940-5901
[45]
Al Bayssari, C.; Diene, S.M.M.; Loucif, L.; Gupta, S.K.; Dabboussi, F.; Mallat, H.; Hamze, M.; Rolain, J.M. Emergence of VIM-2 and IMP-15 carbapenemases and inactivation of oprD gene in carbapenem-resistant Pseudomonas aeruginosa clinical isolates from Lebanon. Antimicrob. Agents Chemother., 2014, 58(8), 4966-4970.
[http://dx.doi.org/10.1128/AAC.02523-13] [PMID: 24913164]
[46]
Peymani, A.; Naserpour-Farivar, T.; Zare, E.; Azarhoosh, K.H. Distribution of blaTEM, blaSHV, and blaCTX-M genes among ESBL-producing P. aeruginosa isolated from Qazvin and Tehran hospitals. Iran. J. Prev. Med. Hyg., 2017, 58(2), E155-E160.
[PMID: 28900355]
[47]
Chaudhary, M.; Payasi, A. Rising antimicrobial resistance of Pseudomonas aeruginosa isolated from clinical specimens in India. J. Proteomics Bioinform., 2013, 6(1), 5-9.
[48]
Al-Charrakh, A.H.; Al-Awadi, S.J.; Mohammed, A.S. Detection of metallo-β-lactamas producing Pseudomonas aeruginosa isolated from public and private hospitals in Baghdad, Iraq. Acta Med. Iran., , 54-, 107-113 2016.
[49]
Yassin, N.A.; Khalid, H.M. Hassan, AO Prevalence of metallo-lactamase producing Pseudomonas aeruginosa in wound infections in Duhok City, Iraq. Int. J. Res. Med. Sci., 2014, 2, 1576-1579.
[50]
Anoar, K.A.; Ali, F.A.; Omar, S.A. Detection of metallo-lactamase enzyme in some Gram negative bacterial isolated from burn patients in Sulaimani City, Iraq. Eur. Sci. J., 10, 1857-1881 2014,.
[51]
Alkhudhairy, M.K. Al-Shammari, MMM Prevalence of metallo-β-lactamase producing Pseudomonas aeruginosa isolated from diabetic foot infections in Iraq. New Microbes New Infect., 2020, 35(C)
[52]
Valenza, G.; Joseph, B.; Elias, J.; Claus, H.; Oesterlein, A.; Engelhardt, K.; Turnwald, D.; Frosch, M.; Abele-Horn, M.; Schoen, C. First survey of metallo-β-lactamases in clinical isolates of Pseudomonas aeruginosa in a German university hospital. Antimicrob. Agents Chemother., 2010, 54(8), 3493-3497.
[http://dx.doi.org/10.1128/AAC.00080-10] [PMID: 20498315]
[53]
Nasser, M.; Gayen, S.; Kharat, A.S. Prevalence of the β-lactamase and Antibiotic Resistant Pseudomonas aeruginosain the Arab Region J; Global Antimicrobial Resistance, 2020.
[http://dx.doi.org/10.1016/j.jgar.2020.01.011]
[54]
Freeman, D.J.; Falkiner, F.R.; Keane, C.T. New method for detecting slime production by coagulase negative Staphylococci. J. Clin. Pathol., 1989, 42(8), 872-874.
[http://dx.doi.org/10.1016/j.jgar.2020.01.011]
[55]
Rewatkar, A.R.; Wadher, B.J. Staphylococcus aureus and Pseudomonas aeruginosa–biofilm formation methods. IOSR-JPBS., 2013, 8(5), 36-40.
[http://dx.doi.org/10.9790/3008-0853640]
[56]
Saha, S.; Devi, K.M.; Damrolien, S.; Devi, K.H.S.; Kongbrailatpam, K. Biofilm production and its correlation with antibiotic resistance pattern among clinical isolates of Pseudomonas aeruginosa in a tertiary care hospital in north-east India. International Journal of Advances in Medicine. Int J Adv Med, 2018, 5(4), 964-968.http://www.ijmedicine.com
[57]
Perez, L.R.; Costa, M.C.; Freitas, A.L.; Barth, A.L. Evaluation of biofilm production by Pseudomonas Aeruginosa isolates recovered from cystic fibrosis and non-cystic fibrosis patients. Braz. J. Microbiol., 2011, 42(2), 476-479. [PMC free article]. [PubMed]. [Google Scholar].
[http://dx.doi.org/10.1590/S1517-83822011000200011] [PMID: 24031658]
[58]
Oliveira, A.; Cunha, M.L. Comparison of methods for the detection of biofilm production in coagulase-negative staphylococci. BMC Res. Notes, 2010, 3(260), 1756-1760.
[59]
Lima, dC; Alves, LR; Jacomé, PRLA; Neto, B; Pacífico, J; Maciel, MAV Biofilm production by clinical isolates of Pseudomonas aeruginosa and structural changes in Las R protein of isolates non biofilm-producing. Braz. J. Infect. Dis., 2018, 22(2), 129-136.
[http://dx.doi.org/10.1016/j.bjid.2013.06.008] [PMID: 29601791]
[60]
Abidi, S.H.; Sherwani, S.K.; Siddiqui, T.R.; Bashir, A.; Kazmi, S.U. Drug resistance profile and biofilm forming potential of Pseudomonas aeruginosa isolated from contact lenses in Karachi-Pakistan. BMC Ophthalmol., 2013, 13, 57.
[http://dx.doi.org/10.1186/1471-2415-13-57] [PMID: 24134792]
[61]
Azimi, S; Kafil, HS; Asgharzadeh, M; Firooz, MY Aghazadeh, M Presence of exoY, exoS, exoU and exoT genes, antibiotic resistance and biofilm production among Pseudomonas aeruginosa isolates in Northwest Iran GMS Hygiene and Infection Control. 2016, 11, 2196-522.
[62]
Ansari, S; Dhital, D; Shrestha, S. Thapa, Growing Menace of Antibacterial Resistance in Clinical Isolates of Pseudomonas aeruginosa in Nepal: An Insight of Beta-Lactamase Production. Bio Med Research International, 2016, Article ID 6437208.
[63]
Donlan, RM; Costerton, JW Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev., 15(2), 163-193.
[http://dx.doi.org/10.1128/CMR.15.2.]
[64]
Padiyath, S.C.; Hemachandra, P.; Rao, S.; Kotigadde, S. Detection of extended spectrum β-lactamase, AmpC -lactamase and metallo -lactamase in clinical isolates of Pseudomonas aeruginosa. J. Pharm. Biomed. Sci., 2013, 33(33), 1506-1515. [View at Google Scholar].
[65]
Al-Agamy, M.H.; Shibl, A.M.; Tawfik, A.F.; Elkhizzi, N.A.; Livermore, D.M. Extended-spectrum and metallo-beta-β-lactamases among ceftazidime-resistant Pseudomonas aeruginosa in Riyadh, Saudi Arabia. J. Chemother., 2012, 24(2), 97-100.
[http://dx.doi.org/10.1179/1120009X12Z.00000000015] [PMID: 22546765]
[66]
Pagani, L.; Migliavacca, R.; Docquier, J.D. Simple microdilution test for detection of metallo-b-lactamase production in Pseudomonas aeruginosa. Journal of Clinical Microbiology, 2002, 40, 4388-4390.
[67]
Oberoi, L.; Singh, N.; Sharma, P.; Aggarwal, A. ESBL, MBL and Ampc beta β-Lactamases Producing Superbugs - Havoc in the Intensive Care Units of Punjab India. J. Clin. Diagn. Res., 2013, 7(1), 70-73. [PMC free article]. [PubMed]. [CrossRef]. [Google Scholar].
[http://dx.doi.org/10.7860/JCDR/2012/5016.2673] [PMID: 23450498]
[68]
Karthic, A.; Gopinath, P. Detection of biofilm among clinical isolates of Pseudomonas aeruginosa by tissue culture plate (TCP) method. Journal of Chemical and Pharmaceutical Sciences, 2016, 9(4), 3236-3238.
[69]
Sahal, G.; Bilkay, I.S. Multidrug resistance by biofilm-forming clinical strains of Proteus mirabilis. Asian Biomed., 2015, 9(4), 535-554.
[70]
Newman, J.W.; Floyd, R.V.; Fothergill, J.L. The contribution of Pseudomonas aeruginosa virulence factors and host factors in the establishment of urinary tract infections. FEMS Microbiol. Lett., 2017, 364(15), 1-12. [Google Scholar]. [CrossRef].
[http://dx.doi.org/10.1093/femsle/fnx124] [PMID: 28605563]
[71]
Cuzick, A.; Stirling, F.R.; Lindsay, S.L.; Evans, T.J. The type III pseudomonal exotoxin U activates the c-Jun NH2-terminal kinase pathway and increases human epithelial interleukin-8 production. Infect. Immun., 2006, 74(7), 4104-4113. [Google Scholar]. [CrossRef].
[http://dx.doi.org/10.1128/IAI.02045-05] [PMID: 16790784]
[72]
Gawish, A. A.; Mohammed, N. A.; El-Shennawy, G. A.; Mohammed, H. A An investigation of type 3 secretion toxins encoding-genes of Pseudomonas aeruginosa isolates in a University Hospital in Egypt. Department of Microbiology and Immunology;
[73]
Al-Khafaji, N. Molecular study of some virulence factors among pseudomonas aeruginosa recovered from burn infection. Int. J. Med. (Dubai), 2014, 4(3), 71-80.
[74]
Anmar, W. AL-Mayyahi; AL-Hashimy, S; AL-Awady, KR Molecular detection of exoU and exoS among Pseudomonas aeruginosa isolates from Baghdad and Wasit, Iraq. Iraqi Journal of Biotechnology, 2018, 17(1), 1-8.
[75]
Firouzi-Dalvand, L.; Pooladi, M. Identification of exoS, exoU genes in Pseudomonas aeruginosa. Journal of Paramedical Sciences (JPS) Autumn, 2014, Vol.5(No.4) ISSN 2008-4978 89,
[76]
Wong-Beringer, A; Wiener-Kronish, J; Lynch, S Flanagan, J Comparison of type III secretion system virulence among fluoroquinolone-susceptible and -resistant clinical isolates of Pseudomonas aeruginosa. J. Soc. of Clin. Microbiol and Infect. Dis. CMI, 2008, 330-336.
[77]
Wolfgang, M.C.; Kulasekara, B.R.; Liang, X.; Boyd, D.; Wu, K.; Yang, Q.; Miyada, C.G.; Lory, S. Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 2003, 100(14), 8484-8489.
[http://dx.doi.org/10.1073/pnas.0832438100] [PMID: 12815109]
[78]
Subedi, D.; Vijay, A.K.; Kohli, G.S.; Rice, S.A. Association between possession of exoU and antibiotic resistance in Pseudomonas aeruginosa. PLoS ONE, 2018, 13(9)
[http://dx.doi.org/10.1371/journal.pone.0204936]
[79]
Mahdavi, M.; Salehi, T.Z.; Amini, K. Mobasseri, P Frequency of exoY, exoS, exoT and exoU genes among Pseudomonas aeruginosa Isolated from patients in Tehran hospitals by Multiplex PCR. Iran. J. Med. Microbiol., 2017, 11(1), 9-17.
[80]
Khodayary, R.; Nikokar, I.; Mobayen, M.R.; Afrasiabi, F.; Araghian, A.; Elmi, A.; Moradzadeh, M. High incidence of type III secretion system associated virulence factors (exoenzymes) in Pseudomonas aeruginosa isolated from Iranian burn patients. BMC Res. Notes, 2019, 12(1), 28.
[http://dx.doi.org/10.1186/s13104-019-4071-0] [PMID: 30646938]
[81]
Foulkes, D.M.; McLean, K.; Haneef, A.S.; Fernig, D.G.; Winstanley, C.; Berry, N.; Kaye, S.B. Pseudomonas aeruginosa Toxin ExoU as a Therapeutic Target in the Treatment of Bacterial Infections. Microorganisms, 2019, 7(12), 707.
[http://dx.doi.org/10.3390/microorganisms7120707] [PMID: 31888268]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy