Review Article

A Quest to the Therapeutic Arsenal: Novel Strategies to Combat Multidrug- resistant Bacteria

Author(s): Priyanka Ashwath and Akhila Dharnappa Sannejal *

Volume 22, Issue 2, 2022

Published on: 19 April, 2021

Page: [79 - 88] Pages: 10

DOI: 10.2174/1566523221666210419084836

Price: $65

Abstract

The increasing resistance of the disease-causing pathogens to antimicrobial drugs is a public health concern and a socio-economic burden. The emergence of multi-drug resistant strains has made it harder to treat and combat infectious diseases with available conventional antibiotics. There are currently few effective therapeutic regimens for the successful prevention of infections caused by drug-resistant microbes. Various alternative strategies used in the recent past to decrease and limit antibiotic resistance in pathogens include bacteriophages, vaccines, anti-biofilm peptides, and antimicrobial peptides. However, in this review, we focus on the novel and robust molecular approach of antisense RNA (asRNA) technology and the clustered regulatory interspaced short palindromic repeat (CRISPR)-based antibiotic therapy, which can be exploited to selectively eradicate the drug-resistant bacterial strain in a sequence-specific fashion establishing opportunities in the treatment of multi-drug resistant related infections.

Keywords: Drug-resistant bacteria, antisense RNA technology, CRISPR-based antibiotic therapy, microbes, MDR, AMR.

« Previous
Graphical Abstract
[1]
Palliyil S, Downham C, Broadbent I, Charlton K, Porter AJ. High-sensitivity monoclonal antibodies specific for homoserine lactones protect mice from lethal Pseudomonas aeruginosa infections. Appl Environ Microbiol 2014; 80(2): 462-9.
[http://dx.doi.org/10.1128/AEM.02912-13] [PMID: 24185854]
[2]
Gandra S, Tseng KK, Arora A, et al. The mortality burden of multidrug-resistant pathogens in India: a retrospective, observational study. Clin Infect Dis 2019; 69(4): 563-70.
[http://dx.doi.org/10.1093/cid/ciy955] [PMID: 30407501]
[3]
O’Neil J. Tackling drug-resistant infections globally: final report and recommendations The review on antimicrobial resistance 2016.
[4]
Taneja N, Sharma M. Antimicrobial resistance in the environment: The Indian scenario. Indian J Med Res 2019; 149(2): 119-28.
[http://dx.doi.org/10.4103/ijmr.IJMR_331_18] [PMID: 31219076]
[5]
Laxminarayan R, Matsoso P, Pant S, et al. Access to effective antimicrobials: a worldwide challenge. Lancet 2016; 387(10014): 168-75.
[http://dx.doi.org/10.1016/S0140-6736(15)00474-2] [PMID: 26603918]
[6]
Jani K, Bandal J, Rale V, Shouche Y, Sharma A. Antimicrobial resistance pattern of microorganisms isolated and identified from Godavari River across the mass gathering event. J Biosci 2019; 44(5): 121.
[http://dx.doi.org/10.1007/s12038-019-9941-z] [PMID: 31719230]
[7]
Gwenzi W, Musiyiwa K, Mangori L. Sources, behaviour and health risks of antimicrobial resistance genes in wastewaters: a hotspot reservoir. J Environ Chem Eng 2020; 8102220
[http://dx.doi.org/10.1016/j.jece.2018.02.028]
[8]
Lee K, Kim DW, Lee DH, et al. Mobile resistome of human gut and pathogen drives anthropogenic bloom of antibiotic resistance. Microbiome 2020; 8(1): 2.
[http://dx.doi.org/10.1186/s40168-019-0774-7] [PMID: 31910889]
[9]
World Health Organization. Situation analysis on antimicrobial resistance in the South-East Asia Region: Report. 2016.
[10]
Gandra S, Joshi J, Trett A, et al. Scoping report on antimicrobial resistance in India. Washington, DC, USA: CDDEP 2017.
[11]
Kumar S, Patil PP, Singhal L, Ray P, Patil PB, Gautam V. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii isolates reveals the emergence of blaOXA-23 and blaNDM-1 encoding international clones in India. Infect Genet Evol 2019; 75103986
[http://dx.doi.org/10.1016/j.meegid.2019.103986] [PMID: 31362071]
[12]
Ahmed MO, Elramalli AK, Baptiste KE, et al. Whole Genome Sequence Analysis of the First Vancomycin-Resistant Enterococcus faecium Isolates from a Libyan Hospital in Tripoli. Microbial drug resistance 2020.
[13]
Parikh MP, Octaria R, Kainer MA. Methicillin-Resistant Staphylococcus aureus Bloodstream Infections and Injection Drug Use, Tennessee, USA, 2015-2017. Emerg Infect Dis 2020; 26(3): 446-56.
[http://dx.doi.org/10.3201/eid2603.191408] [PMID: 32091385]
[14]
Vounba P, Arsenault J, Bada-Alambédji R, Fairbrother JM. Prevalence of antimicrobial resistance and potential pathogenicity, and possible spread of third generation cephalosporin resistance, in Escherichia coli isolated from healthy chicken farms in the region of Dakar, Senegal. PLoS One 2019; 14(3)e0214304
[http://dx.doi.org/10.1371/journal.pone.0214304] [PMID: 30913237]
[15]
Lester R, Maheswaran H, Jewell CP, Lalloo DG, Feasey NA. Estimating the burden of antimicrobial resistance in Malawi: protocol for a prospective observational study of the morbidity, mortality and economic cost of third-generation cephalosporin resistant bloodstream infection. Wellcome Open Res 2020; 5: 29.
[http://dx.doi.org/10.12688/wellcomeopenres.15719.2] [PMID: 32566760]
[16]
Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE 2008.
[http://dx.doi.org/10.1086/533452]
[17]
Navidinia M. The clinical importance of emerging ESKAPE pathogens in nosocomial infections. Physical Society of Japan 2016; p. 7.
[18]
Tacconelli E, Carrara E, Savoldi A, et al. WHO Pathogens Priority List Working Group. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 2018; 18(3): 318-27.
[http://dx.doi.org/10.1016/S1473-3099(17)30753-3] [PMID: 29276051]
[19]
Venter H. Reversing resistance to counter antimicrobial resistance in the World Health Organisation’s critical priority of most dangerous pathogens. Biosci Rep 2019; 39(4): 39.
[http://dx.doi.org/10.1042/BSR20180474] [PMID: 30910848]
[20]
Rice LB, Bonomo RA. Mechanisms of resistance to antibacterial agents. Antimicrobial Stewardship: Principles and Practice 2008; 1114-5.
[21]
Mims C, Dockrell HM, Goering RV, Roitt I, Wakelin D, Zuckerman M. Attacking the Enemy: Antimicrobial Agents and Chemotherapy Macrolides. In: Chapter. 2004; 33: p. 489.
[22]
Wickens H, Wade P. Understanding antibiotic resistance. Pharm J 2005; 274: 501-4.
[23]
Codjoe FS, Donkor ES. Carbapenem resistance: a review. Med Sci 2018; 1.
[24]
Jacoby GA, Munoz-Price LS. The new β-lactamases. N Engl J Med 2005; 352(4): 380-91.
[http://dx.doi.org/10.1056/NEJMra041359] [PMID: 15673804]
[25]
Garau G, García-Sáez I, Bebrone C, et al. Update of the standard numbering scheme for class B β-lactamases. Antimicrob Agents Chemother 2004; 48(7): 2347-9.
[http://dx.doi.org/10.1128/AAC.48.7.2347-2349.2004] [PMID: 15215079]
[26]
Alekshun MN, Levy SB. Molecular mechanisms of antibacterial multidrug resistance. Cell 2007; 128(6): 1037-50.
[http://dx.doi.org/10.1016/j.cell.2007.03.004] [PMID: 17382878]
[27]
Vatopoulos A. High rates of metallo-beta-lactamase-producing Klebsiella pneumoniae in Greece--a review of the current evidence. Euro Surveill 2008; 13(4): 7-8.
[http://dx.doi.org/10.2807/ese.13.04.08023-en] [PMID: 18445397]
[28]
Thomson JM, Bonomo RA. The threat of antibiotic resistance in Gram-negative pathogenic bacteria: β-lactams in peril! Curr Opin Microbiol 2005; 8(5): 518-24.
[http://dx.doi.org/10.1016/j.mib.2005.08.014] [PMID: 16126451]
[29]
Babic M, Hujer AM, Bonomo RA. What's new in antibiotic resistance? Focus on beta-lactamases. Drug resistance update 2006; 9: 142-56.
[http://dx.doi.org/10.1016/j.drup.2006.05.005]
[30]
Govinden U, Mocktar C, Moodley P, et al. Geographical evolution of the CTX-M ß-lactamase–an update. Afr J Biotechnol 2007; 6: 831-9.
[31]
Kim YH, Lee Y, Kim S, et al. The role of periplasmic antioxidant enzymes (superoxide dismutase and thiol peroxidase) of the Shiga toxin-producing Escherichia coli O157:H7 in the formation of biofilms. Proteomics 2006; 6(23): 6181-93.
[http://dx.doi.org/10.1002/pmic.200600320] [PMID: 17133368]
[32]
Dzidic S, Suskovic J, Kos B. Antibiotic resistance mechanisms in bacteria: biochemical and genetic aspects. Food Technol Biotechnol 2008; 46: 11-21.
[33]
Strateva T, Yordanov D. Pseudomonas aeruginosa - a phenomenon of bacterial resistance. J Med Microbiol 2009; 58(Pt 9): 1133-48.
[http://dx.doi.org/10.1099/jmm.0.009142-0] [PMID: 19528173]
[34]
Tolmasky ME. Bacterial resistance to aminoglycosides and beta-lactams: the Tn1331 transposon paradigm. Front Biosci 2000; 5: D20-9.
[http://dx.doi.org/10.2741/A493] [PMID: 10702385]
[35]
Rolo J, Worning P, Nielsen JB, et al. Evolutionary origin of the staphylococcal cassette chromosome mec (SCCmec). Antimicrob Agents Chemother 2017; 61(6): e02302-16.
[http://dx.doi.org/10.1128/AAC.02302-16] [PMID: 28373201]
[36]
Hiramatsu K, Cui L, Kuroda M, Ito T. The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends Microbiol 2001; 9(10): 486-93.
[http://dx.doi.org/10.1016/S0966-842X(01)02175-8] [PMID: 11597450]
[37]
Grundmann H, Aires-de-Sousa M, Boyce J, Tiemersma E. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet 2006; 368(9538): 874-85.
[http://dx.doi.org/10.1016/S0140-6736(06)68853-3] [PMID: 16950365]
[38]
Kim YH, Cha CJ, Cerniglia CE. Purification and characterization of an erythromycin esterase from an erythromycin-resistant Pseudomonas sp. FEMS Microbiol Lett 2002; 210(2): 239-44.
[http://dx.doi.org/10.1111/j.1574-6968.2002.tb11187.x] [PMID: 12044681]
[39]
Walsh C. Molecular mechanisms that confer antibacterial drug resistance. Nature 2000; 406(6797): 775-81.
[http://dx.doi.org/10.1038/35021219] [PMID: 10963607]
[40]
Giedraitienė A, Vitkauskienė A, Naginienė R, Pavilonis A. Antibiotic resistance mechanisms of clinically important bacteria. Medicina (Kaunas) 2011; 47(3): 137-46.
[http://dx.doi.org/10.3390/medicina47030019] [PMID: 21822035]
[41]
Poole K. Efflux pumps as antimicrobial resistance mechanisms. Ann Med 2007; 39(3): 162-76.
[http://dx.doi.org/10.1080/07853890701195262] [PMID: 17457715]
[42]
Schweizer HP. Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: unanswered questions. Genet Mol Res 2003; 2(1): 48-62.
[PMID: 12917802]
[43]
Pesingi PV, Singh BR, Pesingi PK, et al. MexAB-OprM efflux pump of Pseudomonas aeruginosa offers resistance to carvacrol: A herbal antimicrobial agent. Front Microbiol 2019; 10: 2664.
[http://dx.doi.org/10.3389/fmicb.2019.02664] [PMID: 31803171]
[44]
Livermore DM, Woodford N. The β-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. Trends Microbiol 2006; 14(9): 413-20.
[http://dx.doi.org/10.1016/j.tim.2006.07.008] [PMID: 16876996]
[45]
Piddock LJ. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 2006; 19(2): 382-402.
[http://dx.doi.org/10.1128/CMR.19.2.382-402.2006] [PMID: 16614254]
[46]
Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 2001; 14(4): 933-51.
[http://dx.doi.org/10.1128/CMR.14.4.933-951.2001] [PMID: 11585791]
[47]
Hocquet D, Nordmann P, El Garch F, Cabanne L, Plésiat P. Involvement of the MexXY-OprM efflux system in emergence of cefepime resistance in clinical strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2006; 50(4): 1347-51.
[http://dx.doi.org/10.1128/AAC.50.4.1347-1351.2006] [PMID: 16569851]
[48]
Strachunsky LS, Belousova UB, Kozlova SN. A practical guide to anti-infective chemotherapy. Smolensk: MAKMAX 2007. (in Russian)
[49]
Raghunath D. Emerging antibiotic resistance in bacteria with special reference to India. J Biosci 2008; 33(4): 593-603.
[http://dx.doi.org/10.1007/s12038-008-0077-9] [PMID: 19208984]
[50]
Bennett PM. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol 2008; 153(Suppl. 1): S347-57.
[http://dx.doi.org/10.1038/sj.bjp.0707607] [PMID: 18193080]
[51]
Hawkey PM. Molecular epidemiology of clinically significant antibiotic resistance genes. Br J Pharmacol 2008; 153(Suppl. 1): S406-13.
[http://dx.doi.org/10.1038/sj.bjp.0707632] [PMID: 18311156]
[52]
Daikos GL, Kosmidis C, Tassios PT, et al. Enterobacteriaceae bloodstream infections: presence of integrons, risk factors, and outcome. Antimicrob Agents Chemother 2007; 51(7): 2366-72.
[http://dx.doi.org/10.1128/AAC.00044-07] [PMID: 17452479]
[53]
Xue XY, Mao XG, Zhou Y, et al. Advances in the delivery of antisense oligonucleotides for combating bacterial infectious diseases. Nanomedicine (Lond) 2018; 14(3): 745-58.
[http://dx.doi.org/10.1016/j.nano.2017.12.026] [PMID: 29341934]
[54]
Parmeciano Di Noto G, Molina MC, Quiroga C. Insights into non-coding RNAs as novel antimicrobial drugs. Front iers in genetics 2019; 22: 10-57.
[http://dx.doi.org/10.3389/fgene.2019.00057]
[55]
Stach JE, Good L. Synthetic RNA silencing in bacteria–antimicrobial discovery and resistance breaking. Front iers in microbiology 2011; 12(2): 185.
[56]
Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007; 315(5819): 1709-12.
[http://dx.doi.org/10.1126/science.1138140] [PMID: 17379808]
[57]
Ma X, Zhang Q, Zhu Q, et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 2015; 8(8): 1274-84.
[http://dx.doi.org/10.1016/j.molp.2015.04.007] [PMID: 25917172]
[58]
van der Oost J, Brouns SJ. RNAi: prokaryotes get in on the act. Cell 2009; 139(5): 863-5.
[http://dx.doi.org/10.1016/j.cell.2009.11.018] [PMID: 19945373]
[59]
Khanzadi MN, Khan AA. CRISPR/Cas9: Nature’s gift to prokaryotes and an auspicious tool in genome editing. J Basic Microbiol 2020; 60(2): 91-102.
[http://dx.doi.org/10.1002/jobm.201900420] [PMID: 31693214]
[60]
Lei Y, Lu L, Liu HY, Li S, Xing F, Chen LL. CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant 2014; 7(9): 1494-6.
[http://dx.doi.org/10.1093/mp/ssu044] [PMID: 24719468]
[61]
Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 2006; 1: 7.
[http://dx.doi.org/10.1186/1745-6150-1-7] [PMID: 16545108]
[62]
Yosef I, Goren MG, Qimron U. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res 2012; 40(12): 5569-76.
[http://dx.doi.org/10.1093/nar/gks216] [PMID: 22402487]
[63]
Brouns SJ, Jore MM, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008; 321(5891): 960-4.
[http://dx.doi.org/10.1126/science.1159689] [PMID: 18703739]
[64]
Carte J, Wang R, Li H, Terns RM, Terns MP. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev 2008; 22(24): 3489-96.
[http://dx.doi.org/10.1101/gad.1742908] [PMID: 19141480]
[65]
Hale C, Kleppe K, Terns RM, Terns MP. Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus. RNA 2008; 14(12): 2572-9.
[http://dx.doi.org/10.1261/rna.1246808] [PMID: 18971321]
[66]
Haft DH, Selengut J, Mongodin EF, Nelson KE. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLOS Comput Biol 2005; 1(6)e60
[http://dx.doi.org/10.1371/journal.pcbi.0010060] [PMID: 16292354]
[67]
Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature 2012; 482(7385): 331-8.
[http://dx.doi.org/10.1038/nature10886] [PMID: 22337052]
[68]
Lioliou E, Romilly C, Romby P, Fechter P. RNA-mediated regulation in bacteria: from natural to artificial systems. N Biotechnol 2010; 27(3): 222-35.
[http://dx.doi.org/10.1016/j.nbt.2010.03.002] [PMID: 20211281]
[69]
Wagner EG, Flärdh K. Antisense RNAs everywhere? Trends Genet 2002; 18(5): 223-6.
[http://dx.doi.org/10.1016/S0168-9525(02)02658-6] [PMID: 12047936]
[70]
Hindley J. Fractionation of 32P-labelled ribonucleic acids on polyacrylamide gels and their characterization by fingerprinting. J Mol Biol 1967; 30(1): 125-36.
[http://dx.doi.org/10.1016/0022-2836(67)90248-3] [PMID: 4865141]
[71]
Numata K, Okada Y, Saito R, Kiyosawa H, Kanai A, Tomita M. Comparative analysis of cis-encoded antisense RNAs in eukaryotes. Gene 2007; 392(1-2): 134-41.
[http://dx.doi.org/10.1016/j.gene.2006.12.005] [PMID: 17250976]
[72]
Saberi F, Kamali M, Najafi A, Yazdanparast A, Moghaddam MM. Natural antisense RNAs as mRNA regulatory elements in bacteria: a review on function and applications. Cell Mol Biol Lett 2016; 21: 6.
[http://dx.doi.org/10.1186/s11658-016-0007-z] [PMID: 28536609]
[73]
Rasmussen LC, Sperling-Petersen HU, Mortensen KK. Hitting bacteria at the heart of the central dogma: sequence-specific inhibition. Microb Cell Fact 2007; 6: 24.
[http://dx.doi.org/10.1186/1475-2859-6-24] [PMID: 17692125]
[74]
Mehdizadeh Aghdam E, Hejazi MS, Barzegar A. Riboswitches: From living biosensors to novel targets of antibiotics. Gene 2016; 592(2): 244-59.
[http://dx.doi.org/10.1016/j.gene.2016.07.035] [PMID: 27432066]
[75]
Kiga K, Tan XE, Ibarra-Chávez R, et al. Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria. Nat Commun 2020; 11(1): 2934.
[http://dx.doi.org/10.1038/s41467-020-16731-6] [PMID: 32523110]
[76]
Selle K, Fletcher JR, Tuson H, et al. In vivo targeting of Clostridioides difficile using phage-delivered CRISPR-Cas3 antimicrobials. Mbio 2020; 8(11): 2.
[77]
Park JY, Moon BY, Park JW, Thornton JA, Park YH, Seo KS. Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus. Sci Rep 2017; 7: 44929.
[http://dx.doi.org/10.1038/srep44929] [PMID: 28322317]
[78]
Kim JS, Cho DH, Park M, et al. CRISPR/Cas9-mediated re-sensitization of antibiotic-resistant Escherichia coli harboring extended-spectrum beta-lactamases. J Microbiol Biotechnol 2016; 26(2): 394-401.
[http://dx.doi.org/10.4014/jmb.1508.08080] [PMID: 26502735]
[79]
de la Fuente-Núñez C, Reffuveille F, Fernández L, Hancock RE. Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol 2013; 16(5): 580-9.
[http://dx.doi.org/10.1016/j.mib.2013.06.013] [PMID: 23880136]
[80]
Rodrigues M, Hullahalli K, Palmer K. CRISPR-mediated removal of antibiotic resistance genes in Enterococcus faecalis populations. FASEB Journal 2017. (1_supplement)909-3.
[81]
Xu Z, Li M, Li Y, et al. Native CRISPR-Cas-mediated genome editing enables dissecting and sensitizing clinical multidrug-resistant P. aeruginosa. Cell Rep 2019; 29(6): 1707-1717.e3.
[http://dx.doi.org/10.1016/j.celrep.2019.10.006] [PMID: 31693906]
[82]
Wan P, Cui S, Ma Z, et al. Reversal of mcr-1-Mediated Colistin Resistance in Escherichia coli by CRISPR-Cas9 System. Infect Drug Resist 2020; 13: 1171-8.
[http://dx.doi.org/10.2147/IDR.S244885] [PMID: 32368108]
[83]
Yanagihara K, Tashiro M, Fukuda Y, et al. Effects of short interfering RNA against methicillin-resistant Staphylococcus aureus coagulase in vitro and in vivo. J Antimicrob Chemother 2006; 57(1): 122-6.
[http://dx.doi.org/10.1093/jac/dki416] [PMID: 16344286]
[84]
Fooladi AA, Aghelimansour A, Nourani MR. Evaluation of the Pathogenesis of Pseudomonas aeruginosa’s Flagellum Be-fore and After Flagellar Gene Knockdown by Small Interfering RNAs (siRNA). Jundishapur J Microbiol 2013.
[85]
Verma D, Negi A, Pant K, et al. Designing of Short Interfering RNAs (siRNAs) for Tuberculosis. International Journal of Innovative Technology and Exploring Engineering 2020; 3
[86]
Gong FY, Zhang DY, Zhang JG, et al. siRNA-mediated gene silencing of MexB from the MexA-MexB-OprM efflux pump in Pseudomonas aeruginosa. BMB Rep 2014; 47(4): 203-8.
[http://dx.doi.org/10.5483/BMBRep.2014.47.4.040] [PMID: 24219865]
[87]
Mohanty PS, Sharma S, Naaz F, Kumar D, Raikwar A, Patil SA. Inhibition of Mycobacterium tuberculosis tRNA-Ligases Using siRNA-Based Gene Silencing Method: A Computational Approach. J Comput Biol 2020; 27(1): 91-9.
[http://dx.doi.org/10.1089/cmb.2019.0156] [PMID: 31433209]
[88]
Ji Y, Marra A, Rosenberg M, Woodnutt G. Regulated antisense RNA eliminates alpha-toxin virulence in Staphylococcus aureus infection. J Bacteriol 1999; 181(21): 6585-90.
[http://dx.doi.org/10.1128/JB.181.21.6585-6590.1999] [PMID: 10542157]
[89]
Ji Y, Zhang B, Van SF, et al. Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science 2001; 293(5538): 2266-9.
[http://dx.doi.org/10.1126/science.1063566] [PMID: 11567142]
[90]
Wu S, Liu Y, Zhang H, Lei L. Nano-graphene oxide with antisense vicR RNA reduced exopolysaccharide synthesis and biofilm aggregation for Streptococcus mutans. Dent Mater J 2020; 39(2): 278-86.
[http://dx.doi.org/10.4012/dmj.2019-039] [PMID: 31827056]
[91]
Suzuki Y, Ishimoto T, Fujita S, et al. Antimicrobial antisense RNA delivery to F-pili producing multidrug-resistant bacteria via a genetically engineered bacteriophage. Biochem Biophys Res Commun 2020; 530(3): 533-40.
[http://dx.doi.org/10.1016/j.bbrc.2020.06.088] [PMID: 32739024]
[92]
Hillman T. Antisense inhibition of accA in Escherichia coli suppressed luxS expression and increased antibiotic susceptibility. bioRxiv 2020; Jan 1: 747980.
[93]
Nakashima N, Tamura T. Gene silencing in Escherichia coli using antisense RNAs expressed from doxycycline-inducible vectors. Lett Appl Microbiol 2013; 56(6): 436-42.
[http://dx.doi.org/10.1111/lam.12066] [PMID: 23480057]
[94]
Patil SD, Sharma R, Srivastava S, Navani NK, Pathania R. Downregulation of yidC in Escherichia coli by antisense RNA expression results in sensitization to antibacterial essential oils eugenol and carvacrol. PLoS One 2013; 8(3)e57370
[http://dx.doi.org/10.1371/journal.pone.0057370] [PMID: 23469191]
[95]
Meng J, Kanzaki G, Meas D, et al. A genome-wide inducible phenotypic screen identifies antisense RNA constructs silencing Escherichia coli essential genes. FEMS Microbiol Lett 2012; 329(1): 45-53.
[http://dx.doi.org/10.1111/j.1574-6968.2012.02503.x] [PMID: 22268863]
[96]
Edson JA, Kwon YJ. RNAi for silencing drug resistance in microbes toward development of nanoantibiotics. J Control Release 2014; 189: 150-7.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.054] [PMID: 24995951]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy