Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Dietary Nutrients and Prevention of Alzheimer’s Disease

Author(s): Pallavi Singh Chauhan, Dhananjay Yadav* and Ananta Prasad Arukha

Volume 21, Issue 3, 2022

Published on: 05 April, 2021

Page: [217 - 227] Pages: 11

DOI: 10.2174/1871527320666210405141123

Price: $65

Abstract

Alzheimer’s disease is an irrevocable, progressive brain disorder that gradually destroys memory and cognitive skills. One of the extensively studied methods of preventing Alzheimer’s disease (AD) progression is by providing a nutritional diet. Several reports have shown that intake of nutritional elements as huperzine A, ursolic acid, vitamins etc., can directly influence pathogenesis of AD. Surprisingly, the occurrence of metabolic disorders due to an unhealthy diet has been known to be a major environmental cause of AD. It has been noted that AD severity can be controlled by supplementing dietary supplements containing huge amounts of health-promoting ingredients. These elements promote cell health, regeneration, and the anti-aging process that specifically interrupt the pathogenic pathways in AD development. Fortunately, incorporating changes in the nutritional content is inexpensive, easy, acceptable, safe, effective, and in most cases, free from major adverse events. Many nutritional phytoconstituents such as flavonoids, alkaloids, and terpenoids are still being evaluated in the hope of identifying a successful therapy for AD. This review discusses the therapeutical potential of several key nutrients that have been researched for treating AD treatment and the method of their neuroprotective intervention.

Keywords: Alzheimer’s Disease, nutrition, oxidative stress, neurodegeneration, inflammation, brain disease.

Graphical Abstract
[1]
Cao J, Hou J, Ping J, Cai D. Advances in developing novel therapeutic strategies for Alzheimer’s disease. Mol Neurodegener 2018; 13(1): 64.
[http://dx.doi.org/10.1186/s13024-018-0299-8] [PMID: 30541602]
[2]
Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA. Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation 2019; 16(1): 142.
[http://dx.doi.org/10.1186/s12974-019-1516-2] [PMID: 31291966]
[3]
Singh K, Yadav D, Chauhan PS, Mishra M, Jin JO. Novel therapeutics for the treatment of Alzheimer’s and Parkinson’s disease. Curr Pharm Des 2020; 26(7): 755-63.
[http://dx.doi.org/10.2174/1381612826666200107161051] [PMID: 31914906]
[4]
Toklu HZ, Tümer N. Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. CRC Press/Taylor & Francis 2015; pp. 43-8.
[5]
Seo D-Y, Heo J-W, Ko JR, Kwak H-B. Exercise and neuroinflammation in health and disease. Int Neurourol J 2019; 23(Suppl. 2): S82-92.
[http://dx.doi.org/10.5213/inj.1938214.107] [PMID: 31795607]
[6]
Prados-Pardo Á, Martín-González E, Mora S, Merchán A, Flores P, Moreno M. Increased fear memory and glutamatergic modulation in compulsive drinker rats selected by schedule-induced polydipsia. Front Behav Neurosci 2019; 13: 100.
[http://dx.doi.org/10.3389/fnbeh.2019.00100] [PMID: 31133835]
[7]
Wade AT, Davis CR, Dyer KA, et al. A mediterranean diet with fresh, lean pork improves processing speed and mood: cognitive findings from the medpork randomised controlled trial. Nutrients 2019; 11(7): 1521.
[http://dx.doi.org/10.3390/nu11071521] [PMID: 31277446]
[8]
Safouris A, Tsivgoulis G, Sergentanis TN, Psaltopoulou T. Mediterranean diet and risk of dementia. Curr Alzheimer Res 2015; 12(8): 736-44.
[http://dx.doi.org/10.2174/1567205012666150710114430] [PMID: 26159192]
[9]
Hu N, Yu J-T, Tan L, Wang Y-L, Sun L, Tan L. Nutrition and the risk of Alzheimer’s disease. BioMed Res Int 2013; 2013: 524820.
[http://dx.doi.org/10.1155/2013/524820] [PMID: 23865055]
[10]
van de Rest O, Geleijnse JM, Kok FJ, et al. Effect of fish oil on cognitive performance in older subjects: a randomized, controlled trial. Neurology 2008; 71(6): 430-8.
[http://dx.doi.org/10.1212/01.wnl.0000324268.45138.86] [PMID: 18678826]
[11]
Chew EY, Clemons TE, Agrón E, Launer LJ, Grodstein F, Bernstein PS. Effect of omega-3 fatty acids, lutein/zeaxanthin, or other nutrient supplementation on cognitive function: the AREDS2 randomized clinical trial. JAMA 2015; 314(8): 791-801.
[http://dx.doi.org/10.1001/jama.2015.9677] [PMID: 26305649]
[12]
Martínez-González MA, Gea A, Ruiz-Canela M. The mediterranean diet and cardiovascular health. Circ Res 2019; 124(5): 779-98.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313348] [PMID: 30817261]
[13]
Boehme AK, Esenwa C, Elkind MS. Stroke risk factors, genetics, and prevention. Circ Res 2017; 120(3): 472-95.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308398] [PMID: 28154098]
[14]
Goldstein BD. The precautionary principle also applies to public health actions. Am J Public Health 2001; 91(9): 1358-61.
[http://dx.doi.org/10.2105/AJPH.91.9.1358] [PMID: 11527755]
[15]
Gómez-Pinilla F. Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci 2008; 9(7): 568-78.
[http://dx.doi.org/10.1038/nrn2421] [PMID: 18568016]
[16]
Shaji KS, Sivakumar PT, Rao GP, Paul N. Clinical practice guidelines for management of dementia. Indian J Psychiatry 2018; 60(Suppl. 3): S312-28.
[PMID: 29535467]
[17]
Bernstock JD, Ye DG, Lee Y-J, et al. Drugging SUMOylation for neuroprotection and oncotherapy. Neural Regen Res 2018; 13(3): 415-6.
[http://dx.doi.org/10.4103/1673-5374.228718] [PMID: 29623920]
[18]
Lapchak PA, Zivin JA. Ebselen, a seleno-organic antioxidant, is neuroprotective after embolic strokes in rabbits: synergism with low-dose tissue plasminogen activator. Stroke 2003; 34(8): 2013-8.
[http://dx.doi.org/10.1161/01.STR.0000081223.74129.04] [PMID: 12855833]
[19]
Mizuma A, You JS, Yenari MA. Targeting reperfusion injury in the age of mechanical thrombectomy. Stroke 2018; 49(7): 1796-802.
[http://dx.doi.org/10.1161/STROKEAHA.117.017286] [PMID: 29760275]
[20]
Rajah GB, Ding Y. Experimental neuroprotection in ischemic stroke: a concise review. 2017; 42(4): E2.
[http://dx.doi.org/10.3171/2017.1.FOCUS16497]
[21]
Huang T, Li N, Gao J. Recent strategies on targeted delivery of thrombolytics. J Pharm Sci 2019; 14(3): 233-47.
[http://dx.doi.org/10.1016/j.ajps.2018.12.004]
[22]
Bhaskar S, Stanwell P, Cordato D, Attia J, Levi C. Reperfusion therapy in acute ischemic stroke: dawn of a new era? BMC Neurol 2018; 18(1): 8.
[http://dx.doi.org/10.1186/s12883-017-1007-y] [PMID: 29338750]
[23]
Cremonini AL, Caffa I, Cea M, Nencioni A, Odetti P, Monacelli F. Nutrients in the prevention of Alzheimer’s disease. Oxid Med Cell Longev 2019; 2019: 9874159-9.
[http://dx.doi.org/10.1155/2019/9874159] [PMID: 31565158]
[24]
Wang Y, Xu E, Musich PR, Lin F. Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neurosci Ther 2019; 25(7): 816-24.
[http://dx.doi.org/10.1111/cns.13116] [PMID: 30889315]
[25]
Dang W. The controversial world of sirtuins. Drug Discov Today Technol 2014; 12: e9-e17.
[http://dx.doi.org/10.1016/j.ddtec.2012.08.003] [PMID: 25027380]
[26]
Zhang T, Chi Y, Ren Y, Du C, Shi Y, Li Y. Resveratrol reduces oxidative stress and apoptosis in podocytes via sir2-related enzymes, sirtuins1 (SIRT1)/peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) axis. Med Sci Monit 2019; 25: 1220-31.
[http://dx.doi.org/10.12659/MSM.911714] [PMID: 30765684]
[27]
Magrone T, Magrone M, Russo MA, Jirillo E. Recent advances on the anti-inflammatory and antioxidant properties of red grape polyphenols: in vitro and in vivo studies. Antioxidants (Basel, Switzerland) 2019; 9(1): 35.
[28]
Potì F, Santi D, Spaggiari G, Zimetti F, Zanotti I. Polyphenol health effects on cardiovascular and neurodegenerative disorders: a review and meta-analysis. Int J Mol Sci 2019; 20(2): E351.
[http://dx.doi.org/10.3390/ijms20020351] [PMID: 30654461]
[29]
Xu D, Hu M-J, Wang Y-Q, Cui Y-L. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules 2019; 24(6): 1123.
[http://dx.doi.org/10.3390/molecules24061123] [PMID: 30901869]
[30]
Kumar A, Lalitha S, Mishra J. Hesperidin potentiates the neuroprotective effects of diazepam and gabapentin against pentylenetetrazole-induced convulsions in mice: Possible behavioral, biochemical and mitochondrial alterations. Indian J Pharmacol 2014; 46(3): 309-15.
[http://dx.doi.org/10.4103/0253-7613.132180] [PMID: 24987179]
[31]
de Oliveira MR, Jardim FR, Setzer WN, Nabavi SM, Nabavi SF. Curcumin, mitochondrial biogenesis, and mitophagy: Exploring recent data and indicating future needs. Biotechnol Adv 2016; 34(5): 813-26.
[http://dx.doi.org/10.1016/j.biotechadv.2016.04.004] [PMID: 27143655]
[32]
Migliaccio V, Scudiero R, Sica R, Lionetti L, Putti R. Oxidative stress and mitochondrial uncoupling protein 2 expression in hepatic steatosis induced by exposure to xenobiotic DDE and high fat diet in male Wistar rats. PLoS One 2019; 14(4): e0215955.
[http://dx.doi.org/10.1371/journal.pone.0215955] [PMID: 31022254]
[33]
Enogieru AB, Haylett W, Hiss DC, Bardien S, Ekpo OE. Rutin as a potent antioxidant: implications for neurodegenerative disorders. Oxid Med Cell Longev 2018; 2018: 6241017-7.
[http://dx.doi.org/10.1155/2018/6241017] [PMID: 30050657]
[34]
Chavda V, Patel V, Yadav D, Shah J, Patel S, Jin JO. Therapeutics and research related to glioblastoma: advancements and future targets. Curr Drug Metab 2020; 21(3): 186-98.
[http://dx.doi.org/10.2174/1389200221666200408083950] [PMID: 32268863]
[35]
Kushwah N, Jain V, Yadav D. Osmolytes: a possible therapeutic molecule for ameliorating the neurodegeneration caused by protein misfolding and aggregation. Biomolecules 2020; 10(1): 1-11.
[http://dx.doi.org/10.3390/biom10010132] [PMID: 31941036]
[36]
Oveissi V, Ram M, Bahramsoltani R, et al. Medicinal plants and their isolated phytochemicals for the management of chemotherapy-induced neuropathy: therapeutic targets and clinical perspective. Daru 2019; 27(1): 389-406.
[http://dx.doi.org/10.1007/s40199-019-00255-6] [PMID: 30852764]
[37]
Xu SL, Choi RCY, Zhu KY, et al. Isorhamnetin, a flavonol aglycone from Ginkgo biloba L., induces neuronal differentiation of cultured PC12 cells: potentiating the effect of nerve growth factor. Evid Based Complement Alternat Med 2012; 2012: 278273.
[http://dx.doi.org/10.1155/2012/278273] [PMID: 22761636]
[38]
Mei N, Guo X, Ren Z, Kobayashi D, Wada K, Guo L. Review of Ginkgo biloba-induced toxicity, from experimental studies to human case reports. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 2017; 35(1): 1-28.
[http://dx.doi.org/10.1080/10590501.2016.1278298] [PMID: 28055331]
[39]
Shi C, Zou J, Li G, Ge Z, Yao Z, Xu J. Bilobalide protects mitochondrial function in ovariectomized rats by up-regulation of mRNA and protein expression of cytochrome c oxidase subunit I. J Mol Neurosci 2011; 45(2): 69-75.
[http://dx.doi.org/10.1007/s12031-010-9388-z] [PMID: 20490713]
[40]
Bui TT, Nguyen TH. Natural product for the treatment of Alzheimer’s disease. J Basic Clin Physiol Pharmacol 2017; 28(5): 413-23.
[http://dx.doi.org/10.1515/jbcpp-2016-0147] [PMID: 28708573]
[41]
Gowda Saralamma VV, Lee HJ, Raha S, et al. Inhibition of IAP’s and activation of p53 leads to caspase-dependent apoptosis in gastric cancer cells treated with Scutellarein. Oncotarget 2017; 9(5): 5993-6006.
[http://dx.doi.org/10.18632/oncotarget.23202] [PMID: 29464049]
[42]
Park S, Lim W, Bazer FW, Song G. Apigenin induces ROS-dependent apoptosis and ER stress in human endometriosis cells. J Cell Physiol 2018; 233(4): 3055-65.
[http://dx.doi.org/10.1002/jcp.26054] [PMID: 28617956]
[43]
Fedder KN, Sabo SL. On the role of glutamate in presynaptic development: possible contributions of presynaptic NMDA receptors. Biomolecules 2015; 5(4): 3448-66.
[http://dx.doi.org/10.3390/biom5043448] [PMID: 26694480]
[44]
Litwin DB, Carrillo E, Shaikh SA, Berka V, Jayaraman V. The structural arrangement at intersubunit interfaces in homomeric kainate receptors. Sci Rep 2019; 9(1): 6969-9.
[http://dx.doi.org/10.1038/s41598-019-43360-x] [PMID: 31061516]
[45]
Lewerenz J, Maher P. Chronic glutamate toxicity in neurodegenerative diseases-what is the evidence? Front Neurosci 2015; 9: 469-9.
[http://dx.doi.org/10.3389/fnins.2015.00469] [PMID: 26733784]
[46]
Belov Kirdajova D, Kriska J, Tureckova J, Anderova M. Ischemia-triggered glutamate excitotoxicity from the perspective of glial cells. Front Cell Neurosci 2020; 14: 51-1.
[http://dx.doi.org/10.3389/fncel.2020.00051] [PMID: 32265656]
[47]
Yasuno Y, Hamada M, Yoshida Y, et al. Structure-activity relationship study at C9 position of kaitocephalin. Bioorg Med Chem Lett 2016; 26(15): 3543-6.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.026] [PMID: 27329796]
[48]
Taheri Y, Suleria HAR, Martins N, et al. Myricetin bioactive effects: moving from preclinical evidence to potential clinical applications. BMC Complement Med Ther 2020; 20(1): 241.
[http://dx.doi.org/10.1186/s12906-020-03033-z] [PMID: 32738903]
[49]
Barzegar A. Antioxidant activity of polyphenolic myricetin in vitro cell- free and cell-based systems. Mol Biol Res Commun 2016; 5(2): 87-95.
[PMID: 28097162]
[50]
Jewett BE, Thapa B. Physiology, NDMA receptor. StatPearls Publishing 2020.
[51]
Bachiller S, Jiménez-Ferrer I, Paulus A, et al. Microglia in neurological diseases: a road map to brain-disease dependent-inflammatory response. Front Cell Neurosci 2018; 12: 488-8.
[http://dx.doi.org/10.3389/fncel.2018.00488] [PMID: 30618635]
[52]
Veremeyko T, Yung AWY, Dukhinova M, Strekalova T, Ponomarev ED. The role of neuronal factors in the epigenetic reprogramming of microglia in the normal and diseased central nervous system. Front Cell Neurosci 2019; 13: 453-3.
[http://dx.doi.org/10.3389/fncel.2019.00453] [PMID: 31680868]
[53]
Bernabeu-Zornoza A, Coronel R, Palmer C, Monteagudo M, Zambrano A, Liste I. Physiological and pathological effects of amyloid-β species in neural stem cell biology. Neural Regen Res 2019; 14(12): 2035-42.
[http://dx.doi.org/10.4103/1673-5374.262571] [PMID: 31397330]
[54]
Ginwala R, Bhavsar R, Chigbu DI, Jain P, Khan ZK. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants 2019; 8(2): E35.
[http://dx.doi.org/10.3390/antiox8020035] [PMID: 30764536]
[55]
Ko Y-H, Kim S-K, Kwon S-H, et al. 7,8,4′-trihydroxyisoflavone, a metabolized product of daidzein, attenuates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Biomol Ther (Seoul) 2019; 27(4): 363-72.
[http://dx.doi.org/10.4062/biomolther.2018.211] [PMID: 30866601]
[56]
Liu H, Leak RK, Hu X. Neurotransmitter receptors on microglia. Stroke Vasc Neurol 2016; 1(2): 52-8.
[http://dx.doi.org/10.1136/svn-2016-000012] [PMID: 28959464]
[57]
Wang J, Jia R, Celi P, et al. Green tea polyphenol epigallocatechin-3-gallate improves the antioxidant capacity of eggs. Food Funct 2020; 11(1): 534-43.
[http://dx.doi.org/10.1039/C9FO02157D] [PMID: 31845690]
[58]
Mansuri ML, Parihar P, Solanki I, Parihar MS. Flavonoids in modulation of cell survival signalling pathways. Genes Nutr 2014; 9(3): 400-0.
[http://dx.doi.org/10.1007/s12263-014-0400-z] [PMID: 24682883]
[59]
Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging 2018; 13: 757-72.
[http://dx.doi.org/10.2147/CIA.S158513] [PMID: 29731617]
[60]
Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J 2016; 15(1): 71-1.
[http://dx.doi.org/10.1186/s12937-016-0186-5] [PMID: 27456681]
[61]
Li R, Jia Z, Zhu H. Regulation of Nrf2 signaling. React Oxyg Species (Apex) 2019; 8(24): 312-22.
[PMID: 31692987]
[62]
Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines (Basel) 2018; 5(3): 93.
[http://dx.doi.org/10.3390/medicines5030093] [PMID: 30149600]
[63]
Sricharoen P, Techawongstein S, Chanthai S. A high correlation indicating for an evaluation of antioxidant activity and total phenolics content of various chilli varieties. J Food Sci Technol 2015; 52(12): 8077-85.
[http://dx.doi.org/10.1007/s13197-015-1931-z] [PMID: 26604380]
[64]
Vargas-Mendoza N, Morales-González Á, Madrigal-Santillán EO, et al. Antioxidant and adaptative response mediated by Nrf2 during physical exercise. Antioxidants 2019; 8(6): 196.
[http://dx.doi.org/10.3390/antiox8060196] [PMID: 31242588]
[65]
Zhou W-B, Miao Z-N, Zhang B, et al. Luteolin induces hippocampal neurogenesis in the Ts65Dn mouse model of Down syndrome. Neural Regen Res 2019; 14(4): 613-20.
[http://dx.doi.org/10.4103/1673-5374.248519] [PMID: 30632501]
[66]
Bosco P, Ferri R, Salluzzo MG, et al. Role of the transforming- growth-factor-β1 gene in late-onset Alzheimer’s disease: implications for the treatment. Curr Genomics 2013; 14(2): 147-56.
[http://dx.doi.org/10.2174/1389202911314020007] [PMID: 24082824]
[67]
Zanin JP, Montroull LE, Volosin M, Friedman WJ. The p75 neurotrophin receptor facilitates TrkB signaling and function in rat hippocampal neurons. Front Cell Neurosci 2019; 13: 485-5.
[http://dx.doi.org/10.3389/fncel.2019.00485] [PMID: 31736712]
[68]
Nair A, Chauhan P, Saha B, Kubatzky KF. Conceptual evolution of cell signaling. Int J Mol Sci 2019; 20(13): 3292.
[http://dx.doi.org/10.3390/ijms20133292] [PMID: 31277491]
[69]
Mishra MR, Mishra A, Pradhan DK, Panda AK, Behera RK, Jha S. Antidiabetic and antioxidant activity of scoparia dulcis linn. Indian J Pharm Sci 2013; 75(5): 610-4.
[PMID: 24403665]
[70]
Salehi B, Mishra AP, Nigam M, et al. Resveratrol: a double-edged sword in health benefits. Biomedicines 2018; 6(3): E91.
[http://dx.doi.org/10.3390/biomedicines6030091] [PMID: 30205595]
[71]
Liu C, Chan CB, Ye K. 7,8-dihydroxyflavone, a small molecular TrkB agonist, is useful for treating various BDNF-implicated human disorders. Transl Neurodegener 2016; 5: 2.
[http://dx.doi.org/10.1186/s40035-015-0048-7] [PMID: 26740873]
[72]
Katebi S, Esmaeili A, Ghaedi K, Zarrabi A. Superparamagnetic iron oxide nanoparticles combined with NGF and quercetin promote neuronal branching morphogenesis of PC12 cells. Int J Nanomedicine 2019; 14: 2157-69.
[http://dx.doi.org/10.2147/IJN.S191878] [PMID: 30992663]
[73]
Jasek K, Kubatka P, Samec M, et al. DNA methylation status in cancer disease: modulations by plant-derived natural compounds and dietary interventions. Biomolecules 2019; 9(7): 289.
[http://dx.doi.org/10.3390/biom9070289] [PMID: 31323834]
[74]
Thomas EA, D’Mello SR. Complex neuroprotective and neurotoxic effects of histone deacetylases. J Neurochem 2018; 145(2): 96-110.
[http://dx.doi.org/10.1111/jnc.14309] [PMID: 29355955]
[75]
Kowal NM, Indurthi DC, Ahring PK, Chebib M, Olafsdottir ES, Balle T. Novel approach for the search for chemical scaffolds with dual activity with acetylcholinesterase and the α7 nicotinic acetylcholine receptor-a perspective for the treatment of neurodegenerative disorders. Molecules 2019; 24(3): 446.
[http://dx.doi.org/10.3390/molecules24030446] [PMID: 30691196]
[76]
Dhiman P, Malik N, Khatkar A. Lead optimization for promising monoamine oxidase inhibitor from eugenol for the treatment of neurological disorder: synthesis and in silico based study. BMC Chem 2019; 13(1): 38.
[http://dx.doi.org/10.1186/s13065-019-0552-4] [PMID: 31384786]
[77]
Ayaz M, Sadiq A, Junaid M, et al. Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Front Aging Neurosci 2019; 11(155): 155.
[http://dx.doi.org/10.3389/fnagi.2019.00155] [PMID: 31293414]
[78]
Zhang X-W, Chen J-Y, Ouyang D, Lu J-H. Quercetin in animal models of Alzheimer’s disease: a systematic review of preclinical studies. Int J Mol Sci 2020; 21(2): 493.
[http://dx.doi.org/10.3390/ijms21020493] [PMID: 31941000]
[79]
Chen J, Deng X, Liu N, et al. Quercetin attenuates tau hyperphosphorylation and improves cognitive disorder via suppression of ER stress in a manner dependent on AMPK pathway. J Funct Foods 2016; 22: 463-76.
[http://dx.doi.org/10.1016/j.jff.2016.01.036]
[80]
Cheng S-C, Huang W-C, S Pang JH, Wu YH, Cheng CY. Quercetin inhibits the production of IL-1β-induced inflammatory cytokines and chemokines in ARPE-19 cells via the MAPK and NF-κB signaling pathways. Int J Mol Sci 2019; 20(12): 2957.
[http://dx.doi.org/10.3390/ijms20122957] [PMID: 31212975]
[81]
Xiao X, Shi D, Liu L, et al. Quercetin suppresses cyclooxygenase-2 expression and angiogenesis through inactivation of P300 signaling. PLoS One 2011; 6(8): e22934.
[http://dx.doi.org/10.1371/journal.pone.0022934] [PMID: 21857970]
[82]
Singh S, Mishra A, Tiwari V, Shukla S. Enhanced neuroinflammation and oxidative stress are associated with altered hippocampal neurogenesis in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treated mice. Behav Pharmacol 2019; 30(8): 689-99.
[http://dx.doi.org/10.1097/FBP.0000000000000516] [PMID: 31703031]
[83]
Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014; 2014: 360438-8.
[http://dx.doi.org/10.1155/2014/360438] [PMID: 24999379]
[84]
Somade OT, Olorode SK, Olaniyan TO, Faokunla O. Quercetin, a polyphenolic phytochemical prevents sodium azide-induced extra-hepatic oxidative stress in rats. Cogent Biol 2016; 2(1): 1200798.
[http://dx.doi.org/10.1080/23312025.2016.1200798]
[85]
Singh AK, Patel PK, Choudhary K, Joshi J, Yadav D, Jin JO. Quercetin and coumarin inhibit dipeptidyl peptidase-IV and exhibits antioxidant properties: in silico, in vitro, ex vivo. Biomolecules 2020; 10(2): 1-14.
[http://dx.doi.org/10.3390/biom10020207] [PMID: 32023875]
[86]
Forni C, Facchiano F, Bartoli M, et al. Beneficial role of phytochemicals on oxidative stress and age-related diseases. BioMed Res Int 2019; 2019: 8748253.
[http://dx.doi.org/10.1155/2019/8748253] [PMID: 31080832]
[87]
Cecilia O-M, José Alberto C-G, José N-P, et al. Oxidative stress as the main target in diabetic retinopathy pathophysiology. J Diabetes Res 2019; 2019: 8562408.
[http://dx.doi.org/10.1155/2019/8562408] [PMID: 31511825]
[88]
Mahan VL. Neurointegrity and neurophysiology: astrocyte, glutamate, and carbon monoxide interactions. Med Gas Res 2019; 9(1): 24-45.
[PMID: 30950417]
[89]
Hwang J-Y, Aromolaran KA, Zukin RS. The emerging field of epigenetics in neurodegeneration and neuroprotection. Nat Rev Neurosci 2017; 18(6): 347-61.
[http://dx.doi.org/10.1038/nrn.2017.46] [PMID: 28515491]
[90]
Joseph C, Mangani AS, Gupta V, et al. Cell cycle deficits in neurodegenerative disorders: uncovering molecular mechanisms to drive innovative therapeutic development. Aging Dis 2020; 11(4): 946-66.
[http://dx.doi.org/10.14336/AD.2019.0923] [PMID: 32765956]
[91]
Rao CV, Asch AS, Carr DJJ, Yamada HY. “Amyloid-beta accumulation cycle” as a prevention and/or therapy target for Alzheimer’s disease. Aging Cell 2020; 19(3): e13109-9.
[http://dx.doi.org/10.1111/acel.13109] [PMID: 31981470]
[92]
Chirumbolo S, Bjørklund G, Lysiuk R, Vella A, Lenchyk L, Upyr T. Targeting cancer with phytochemicals via their fine tuning of the cell survival signaling pathways. Int J Mol Sci 2018; 19(11): 3568.
[http://dx.doi.org/10.3390/ijms19113568] [PMID: 30424557]
[93]
AlJohri R, AlOkail M, Haq SH. Neuroprotective role of vitamin D in primary neuronal cortical culture. eNeurologicalSci 2018; 14: 43-8.
[http://dx.doi.org/10.1016/j.ensci.2018.12.004] [PMID: 30619951]
[94]
Kulkarni RA, Bak DW, Wei D, et al. A chemoproteomic portrait of the oncometabolite fumarate. Nat Chem Biol 2019; 15(4): 391-400.
[http://dx.doi.org/10.1038/s41589-018-0217-y] [PMID: 30718813]
[95]
Robledinos-Antón N, Fernández-Ginés R, Manda G, Cuadrado A. Activators and inhibitors of NRF2: a review of their potential for clinical development. Oxid Med Cell Longev 2019; 2019: 9372182.
[http://dx.doi.org/10.1155/2019/9372182] [PMID: 31396308]
[96]
Piroli GG, Manuel AM, Patel T, et al. Identification of novel protein targets of dimethyl fumarate modification in neurons and astrocytes reveals actions independent of Nrf2 stabilization. Molecular & Cellular Proteomics 2019; 18(3): 504-19.
[97]
Kolahdouzan M, Futhey NC, Kieran NW, Healy LM. Novel molecular leads for the prevention of damage and the promotion of repair in neuroimmunological disease. Front Immunol 2019; 10: 1657-7.
[http://dx.doi.org/10.3389/fimmu.2019.01657] [PMID: 31379852]
[98]
Brandes MS, Gray NE. NRF2 as a therapeutic target in neurodegenerative diseases. ASN Neuro 2020; 12: 1759091419899782.
[http://dx.doi.org/10.1177/1759091419899782] [PMID: 31964153]
[99]
Johnson JA, Johnson DA, Kraft AD, et al. The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration. Ann N Y Acad Sci 2008; 1147: 61-9.
[http://dx.doi.org/10.1196/annals.1427.036] [PMID: 19076431]
[100]
Vasconcelos AR, Dos Santos NB, Scavone C, Munhoz CD. Nrf2/ARE pathway modulation by dietary energy regulation in neurological disorders. Front Pharmacol 2019; 10: 33-3.
[http://dx.doi.org/10.3389/fphar.2019.00033] [PMID: 30778297]
[101]
Wang W-Y, Tan M-S, Yu J-T, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med 2015; 3(10): 136-6.
[PMID: 26207229]
[102]
Abdulwanis Mohamed Z, Mohamed Eliaser E, Mazzon E, Rollin P, Cheng Lian Ee G, Abdull Razis AF. Neuroprotective potential of secondary metabolites from Melicope lunu-ankenda (Rutaceae). Molecules 2019; 24(17): 3109.
[http://dx.doi.org/10.3390/molecules24173109] [PMID: 31461914]
[103]
Kim T, Song B, Cho KS, Lee I-S. Therapeutic potential of volatile terpenes and terpenoids from forests for inflammatory diseases. Int J Mol Sci 2020; 21(6): 2187.
[http://dx.doi.org/10.3390/ijms21062187] [PMID: 32235725]
[104]
Kashyap D, Tuli HS, Sharma AK. Ursolic acid (UA): A metabolite with promising therapeutic potential. Life Sci 2016; 146: 201-13.
[http://dx.doi.org/10.1016/j.lfs.2016.01.017] [PMID: 26775565]
[105]
Wang Y, Li L, Deng S, Liu F, He Z. Ursolic acid ameliorates inflammation in cerebral ischemia and reperfusion injury possibly via high mobility group box 1/toll-like receptor 4/NFκB pathway. Front Neurol 2018; 9(253)
[http://dx.doi.org/10.3389/fneur.2018.00253]
[106]
Habtemariam S. Antioxidant and anti-inflammatory mechanisms of neuroprotection by ursolic acid: addressing brain injury, cerebral ischemia, cognition deficit, anxiety, and depression. Oxid Med Cell Longev 2019; 2019: 8512048.
[http://dx.doi.org/10.1155/2019/8512048] [PMID: 31223427]
[107]
de Oliveira VS, Ferreira FS, Cople MCR, et al. Use of natural antioxidants in the inhibition of cholesterol oxidation: A review. Compr Rev Food Sci Food Saf 2018; 17(6): 1465-83.
[http://dx.doi.org/10.1111/1541-4337.12386] [PMID: 33350141]
[108]
Kakaroubas N, Brennan S, Keon M, Saksena NK. Pathomechanisms of blood-brain barrier disruption in ALS. Neurosci J 2019; 2019: 2537698-8.
[http://dx.doi.org/10.1155/2019/2537698] [PMID: 31380411]
[109]
Mahmoud S, Gharagozloo M, Simard C, Gris D. Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells 2019; 8(2): 184.
[http://dx.doi.org/10.3390/cells8020184] [PMID: 30791579]
[110]
May JM. Vitamin C transport and its role in the central nervous system. Subcell Biochem 2012; 56: 85-103.
[http://dx.doi.org/10.1007/978-94-007-2199-9_6] [PMID: 22116696]
[111]
Shafi S, Ansari HR, Bahitham W, Aouabdi S. The impact of natural antioxidants on the regenerative potential of vascular cells. Front Cardiovasc Med 2019; 6: 28-8.
[http://dx.doi.org/10.3389/fcvm.2019.00028] [PMID: 30968031]
[112]
Ulloa V, Saldivia N, Ferrada L, et al. Basal sodium-dependent vitamin C transporter 2 polarization in choroid plexus explant cells in normal or scorbutic conditions. Sci Rep 2019; 9(1): 14422.
[http://dx.doi.org/10.1038/s41598-019-50772-2] [PMID: 31594969]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy