Functional Exploration of Chaperonin (HSP60/10) Family Genes and their Abiotic Stress-induced Expression Patterns in Sorghum bicolor

Author(s): M. Nagaraju, Anuj Kumar, N. Jalaja, D. Manohar Rao*, P.B. Kavi Kishor*

Journal Name: Current Genomics

Volume 22 , Issue 2 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Sorghum, the C4 dry-land cereal, important for food, fodder, feed and fuel, is a model crop for abiotic stress tolerance with smaller genome size, genetic diversity, and bioenergy traits. The heat shock proteins/chaperonin 60s (HSP60/Cpn60s) assist the plastid proteins, and participate in the folding and aggregation of proteins. However, the functions of HSP60s in abiotic stress tolerance in Sorghum remain unclear.

Methods: Genome-wide screening and in silico characterization of SbHSP60s were carried out along with tissue and stress-specific expression analysis.

Results: A total of 36 HSP60 genes were identified in Sorghum bicolor. They were subdivided into 2 groups, the HSP60 and HSP10 co-chaperonins encoded by 30 and 6 genes, respectively. The genes are distributed on all the chromosomes, chromosome 1 being the hot spot with 9 genes. All the HSP60s were found hydrophilic and highly unstable. The HSP60 genes showed a large number of introns, the majority of them with more than 10. Among the 12 paralogs, only 1 was tandem and the remaining 11 segmental, indicating their role in the expansion of SbHSP60s. Majority of the SbHSP60 genes expressed uniformly in leaf while a moderate expression was observed in the root tissues, with the highest expression displayed by SbHSP60-1. From expression analysis, SbHSP60- 3 for drought, SbHSP60-9 for salt, SbHSP60-9 and 24 for heat and SbHSP60-3, 9 and SbHSP10- 2 have been found implicated for cold stress tolerance and appeared as the key regulatory genes.

Conclusion: This work paves the way for the utilization of chaperonin family genes for achieving abiotic stress tolerance in plants.

Keywords: HSP60, HSP10, abiotic stress-responsive, phylogenetic tree, gene expressions, chaperonin.

[1]
Canter, L.W. Environmental Impact of Agricultural Production Activities; Broken Sound Parkway: NW CRC Press, 2018.
[http://dx.doi.org/10.1201/9781351071796]
[2]
Vaughan, M.; Block, A.; Christensen, S.A.; Allen, L.H.; Schmelz, E.A. The effects of climate change associated abiotic stresses on maize phytochemical defences. Phytochem. Rev., 2018, 17, 37-49.
[http://dx.doi.org/10.1007/s11101-017-9508-2]
[3]
Mantri, N.; Patade, V.; Penna, S.; Ford, R.; Pang, E. Abiotic stress responses in plants: Present and future.Abiotic stress responses in plants; Springer New York, 2012, pp. 1-19.
[http://dx.doi.org/10.1007/978-1-4614-0634-1_1]
[4]
Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M.R. Heat tolerance in plants: An overview. Environ. Exp. Bot., 2007, 61, 199-223.
[http://dx.doi.org/10.1016/j.envexpbot.2007.05.011]
[5]
Zhang, J.; Jia, W.; Yang, J.; Ismail, A.M. Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res., 2006, 97, 111-119.
[http://dx.doi.org/10.1016/j.fcr.2005.08.018]
[6]
Sato, S.; Kamiyama, M.; Iwata, T.; Makita, N.; Furukawa, H.; Ikeda, H. Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Ann. Bot., 2006, 97(5), 731-738.
[http://dx.doi.org/10.1093/aob/mcl037] [PMID: 16497700]
[7]
Wang, L.J.; Li, S.H. Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Sci., 2006, 170, 685-694.
[http://dx.doi.org/10.1016/j.plantsci.2005.09.005]
[8]
Pareek, A.; Sopory, S.K.; Bohnert, H.J. Abiotic stress adaptation in plants.Physiological Molecular and Genomic Foundation; Springer Dordrecht, 2010.
[http://dx.doi.org/10.1007/978-90-481-3112-9]
[9]
Vierling, E. The roles of heat shock proteins in plant. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1991, 42, 579-620.
[http://dx.doi.org/10.1146/annurev.pp.42.060191.003051]
[10]
Guo, M.; Liu, J.H.; Ma, X.; Luo, D.X.; Gong, Z.H.; Lu, M.H. The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Front. Plant Sci., 2016, 7, 114.
[http://dx.doi.org/10.3389/fpls.2016.00114] [PMID: 26904076]
[11]
Hartl, F.U. Molecular chaperones in cellular protein folding. Nature, 1996, 381(6583), 571-579.
[http://dx.doi.org/10.1038/381571a0] [PMID: 8637592]
[12]
Wang, W.; Vinocur, B.; Shoseyov, O.; Altman, A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci., 2004, 9(5), 244-252.
[http://dx.doi.org/10.1016/j.tplants.2004.03.006] [PMID: 15130550]
[13]
Gupta, S.C.; Sharma, A.; Mishra, M.; Mishra, R.K.; Chowdhuri, D.K. Heat shock proteins in toxicology: how close and how far? Life Sci., 2010, 86(11-12), 377-384.
[http://dx.doi.org/10.1016/j.lfs.2009.12.015] [PMID: 20060844]
[14]
Lubben, T.H.; Donaldson, G.K.; Viitanen, P.V.; Gatenby, A.A. Several proteins imported into chloroplasts form stable complexes with the GroEL-related chloroplast molecular chaperone. Plant Cell, 1989, 1(12), 1223-1230.
[PMID: 2577724]
[15]
Hartl, F.U.; Bracher, A.; Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature, 2011, 475(7356), 324-332.
[http://dx.doi.org/10.1038/nature10317] [PMID: 21776078]
[16]
Balchin, D.; Hayer-Hartl, M.; Hartl, F.U. In vivo aspects of protein folding and quality control. Science, 2016, 353(6294), aac4354.
[http://dx.doi.org/10.1126/science.aac4354] [PMID: 27365453]
[17]
Bukau, B.; Horwich, A.L. The Hsp70 and Hsp60 chaperone machines. Cell, 1998, 92(3), 351-366.
[http://dx.doi.org/10.1016/S0092-8674(00)80928-9] [PMID: 9476895]
[18]
Ditzel, L.; Löwe, J.; Stock, D.; Stetter, K.O.; Huber, H.; Huber, R.; Steinbacher, S. Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell, 1998, 93(1), 125-138.
[http://dx.doi.org/10.1016/S0092-8674(00)81152-6] [PMID: 9546398]
[19]
Sigler, P.B.; Xu, Z.; Rye, H.S.; Burston, S.G.; Fenton, W.A.; Horwich, A.L. Structure and function in GroEL-mediated protein folding. Annu. Rev. Biochem., 1998, 67, 581-608.
[http://dx.doi.org/10.1146/annurev.biochem.67.1.581] [PMID: 9759498]
[20]
Saibil, H. Chaperone machines for protein folding, unfolding and disaggregation. Nat. Rev. Mol. Cell Biol., 2013, 14(10), 630-642.
[http://dx.doi.org/10.1038/nrm3658] [PMID: 24026055]
[21]
Hill, J.E.; Hemmingsen, S.M. Arabidopsis thaliana type I and II chaperonins. Cell Stress Chaperones, 2001, 6(3), 190-200.
[http://dx.doi.org/10.1379/1466-1268(2001)006<0190:ATTIAI>2.0.CO;2] [PMID: 11599560]
[22]
Braig, K.; Otwinowski, Z.; Hegde, R.; Boisvert, D.C.; Joachimiak, A.; Horwich, A.L.; Sigler, P.B. The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature, 1994, 371(6498), 578-586.
[http://dx.doi.org/10.1038/371578a0] [PMID: 7935790]
[23]
Peng, L.; Fukao, Y.; Myouga, F.; Motohashi, R.; Shinozaki, K.; Shikanai, T. A chaperonin subunit with unique structures is essential for folding of a specific substrate. PLoS Biol., 2011, 9(4), e1001040.
[http://dx.doi.org/10.1371/journal.pbio.1001040] [PMID: 21483722]
[24]
Martel, R.; Cloney, L.P.; Pelcher, L.E.; Hemmingsen, S.M. Unique composition of plastid chaperonin-60: alpha and beta polypeptide-encoding genes are highly divergent. Gene, 1990, 94(2), 181-187.
[http://dx.doi.org/10.1016/0378-1119(90)90385-5] [PMID: 1979547]
[25]
Nishio, K.; Hirohashi, T.; Nakai, M. Chloroplast chaperonins: evidence for heterogeneous assembly of alpha and beta Cpn60 polypeptides into a chaperonin oligomer. Biochem. Biophys. Res. Commun., 1999, 266(2), 584-587.
[http://dx.doi.org/10.1006/bbrc.1999.1868] [PMID: 10600546]
[26]
Suzuki, K.; Nakanishi, H.; Bower, J.; Yoder, D.W.; Osteryoung, K.W.; Miyagishima, S.Y. Plastid chaperonin proteins Cpn60 α and Cpn60 β are required for plastid division in Arabidopsis thaliana. BMC Plant Biol., 2009, 9, 38.
[http://dx.doi.org/10.1186/1471-2229-9-38] [PMID: 19344532]
[27]
Cloney, L.P.; Bekkaoui, D.R.; Feist, G.L.; Lane, W.S.; Hemmingsen, S.M. Brassica napus plastid and mitochondrial chaperonin-60 proteins contain multiple distinct polypeptides. Plant Physiol., 1994, 105(1), 233-241.
[http://dx.doi.org/10.1104/pp.105.1.233] [PMID: 7913238]
[28]
Saibil, H. Molecular chaperones: containers and surfaces for folding, stabilising or unfolding proteins. Curr. Opin. Struct. Biol., 2000, 10(2), 251-258.
[http://dx.doi.org/10.1016/S0959-440X(00)00074-9] [PMID: 10753820]
[29]
Horwich, A.L.; Fenton, W.A.; Chapman, E.; Farr, G.W. Two families of chaperonin: physiology and mechanism. Annu. Rev. Cell Dev. Biol., 2007, 23, 115-145.
[http://dx.doi.org/10.1146/annurev.cellbio.23.090506.123555] [PMID: 17489689]
[30]
Schroda, M. The Chlamydomonas genome reveals its secrets: chaperone genes and the potential roles of their gene products in the chloroplast. Photosynth. Res., 2004, 82(3), 221-240.
[http://dx.doi.org/10.1007/s11120-004-2216-y] [PMID: 16143837]
[31]
Trösch, R.; Mühlhaus, T.; Schroda, M.; Willmund, F. ATP-dependent molecular chaperones in plastids--More complex than expected. Biochim. Biophys. Acta, 2015, 1847(9), 872-888.
[http://dx.doi.org/10.1016/j.bbabio.2015.01.002] [PMID: 25596449]
[32]
Hemmingsen, S.M.; Woolford, C.; van der Vies, S.M.; Tilly, K.; Dennis, D.T.; Georgopoulos, C.P.; Hendrix, R.W.; Ellis, R.J. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature, 1988, 333(6171), 330-334.
[http://dx.doi.org/10.1038/333330a0] [PMID: 2897629]
[33]
Wilson, R.H.; Hayer-Hartl, M. Complex chaperone dependence of Rubisco biogenesis. Biochemistry, 2018, 57(23), 3210-3216.
[http://dx.doi.org/10.1021/acs.biochem.8b00132] [PMID: 29589905]
[34]
Ruggero, D.; Ciammaruconi, A.; Londei, P. The chaperonin of the archaeon Sulfolobus solfataricus is an RNA-binding protein that participates in ribosomal RNA processing. EMBO J., 1998, 17(12), 3471-3477.
[http://dx.doi.org/10.1093/emboj/17.12.3471] [PMID: 9628882]
[35]
Hsu, Y.W.; Juan, C.T.; Wang, C.M.; Jauh, G.Y. Mitochondrial heat shock protein 60s interact with what’s this factor 9 to regulate RNA splicing of ccmFC and rpl2. Plant Cell Physiol., 2019, 60(1), 116-125.
[http://dx.doi.org/10.1093/pcp/pcy199] [PMID: 30289547]
[36]
Weiss, C.; Bonshtien, A.; Farchi-Pisanty, O.; Vitlin, A.; Azem, A. Cpn20: siamese twins of the chaperonin world. Plant Mol. Biol., 2009, 69(3), 227-238.
[http://dx.doi.org/10.1007/s11103-008-9432-3] [PMID: 19031045]
[37]
Prasad, T.K.; Stewart, C.R. cDNA clones encoding Arabidopsis thaliana and Zea mays mitochondrial chaperonin HSP60 and gene expression during seed germination and heat shock. Plant Mol. Biol., 1992, 18(5), 873-885.
[http://dx.doi.org/10.1007/BF00019202] [PMID: 1349837]
[38]
Xu, Q.; Qin, Y. Molecular cloning of heat shock protein 60 (PtHSP60) from Portunus trituberculatus and its expression response to salinity stress. Cell Stress Chaperones, 2012, 17(5), 589-601.
[http://dx.doi.org/10.1007/s12192-012-0334-6] [PMID: 22434146]
[39]
Haq, S.U.; Khan, A.; Ali, M.; Gai, W.X.; Zhang, H.X.; Yu, Q.H.; Yang, S.B.; Wei, A.M.; Gong, Z.H. Knockdown of CaHSP60-6 confers enhanced sensitivity to heat stress in pepper (Capsicum annuum L.). Planta, 2019, 250(6), 2127-2145.
[http://dx.doi.org/10.1007/s00425-019-03290-4] [PMID: 31606756]
[40]
Jung, K.H.; Ko, H.J.; Nguyen, M.X.; Kim, S.R.; Ronald, P.; An, G. Genome-wide identification and analysis of early heat stress responsive genes in rice. J. Plant Biol., 2012, 55, 458-468.
[http://dx.doi.org/10.1007/s12374-012-0271-z]
[41]
Hartman, D.J.; Dougan, D.; Hoogenraad, N.J.; Høj, P.B. Heat shock proteins of barley mitochondria and chloroplasts. Identification of organellar hsp 10 and 12: putative chaperonin 10 homologues. FEBS Lett., 1992, 305(2), 147-150.
[http://dx.doi.org/10.1016/0014-5793(92)80883-I] [PMID: 1352261]
[42]
Viitanen, P.V.; Schmidt, M.; Buchner, J.; Suzuki, T.; Vierling, E.; Dickson, R.; Lorimer, G.H.; Gatenby, A.; Soll, J. Functional characterization of the higher plant chloroplast chaperonins. J. Biol. Chem., 1995, 270(30), 18158-18164.
[http://dx.doi.org/10.1074/jbc.270.30.18158] [PMID: 7629128]
[43]
Nitnavare, R.B.; Yeshvekar, R.K.; Sharma, K.K.; Vadez, V.; Reddy, M.K.; Reddy, P.S. Molecular cloning, characterization and expression analysis of a heat shock protein 10 (Hsp10) from Pennisetum glaucum (L.), a C4 cereal plant from the semi-arid tropics. Mol. Biol. Rep., 2016, 43(8), 861-870.
[http://dx.doi.org/10.1007/s11033-016-4012-0] [PMID: 27206926]
[44]
Carter, P.R.; Hicks, D.R.; Oplinger, E.S.; Doll, J.D.; Bundy, L.G.; Schuler, R.T.; Holmes, B.T. Grain Sorghum (Milo). 2020. Available from: http://corn.agronomy.wisc.edu/Crops/SorghumGrain.aspx
[45]
Premachandra, G.S.; Hahn, D.T.; Joly, R.J. Leaf water relations and gas exchange in two grain sorghum genotypes differing in their pre-and post-flowering drought tolerance. J. Plant Physiol., 1994, 143, 96-101.
[http://dx.doi.org/10.1016/S0176-1617(11)82103-6]
[46]
Rosenow, D.T. Breeding for lodging resistance in sorghum. Proceedings of 32nd Annual corn and sorghum industry research conference, 1997, 171-185.
[47]
Borrell, A.K.; Graeme, L.H.; Andrew, C.L.D. Does maintaining green leaf area in sorghum improve yield under drought? I. Leaf growth and senescence. Crop Sci., 2000, 40, 1026.
[http://dx.doi.org/10.2135/cropsci2000.4041026x]
[48]
Kusaba, M.; Tanaka, A.; Tanaka, R. Stay-green plants: what do they tell us about the molecular mechanism of leaf senescence. Photosynth. Res., 2013, 117(1-3), 221-234.
[http://dx.doi.org/10.1007/s11120-013-9862-x] [PMID: 23771643]
[49]
Borrell, A.K.; van Oosterom, E.J.; Mullet, J.E.; George-Jaeggli, B.; Jordan, D.R.; Klein, P.E.; Hammer, G.L. Stay-green alleles individually enhance grain yield in sorghum under drought by modifying canopy development and water uptake patterns. New Phytol., 2014, 203(3), 817-830.
[http://dx.doi.org/10.1111/nph.12869] [PMID: 24898064]
[50]
Rosenow, D.; Quisenberry, J.E.; Wendt, C.E.; Clark, L.E. Drought tolerant sorghum and cotton germplasm. Agric. Water Manage., 1983, 7, 207-222.
[http://dx.doi.org/10.1016/0378-3774(83)90084-7]
[51]
Nagaraju, M.; Kumar, S.A.; Reddy, P.S.; Kumar, A.; Rao, D.M.; Kavi, K.P.B. Genome-scale identification, classification, and tissue specific expression analysis of late embryogenesis abundant (LEA) genes under abiotic stress conditions in Sorghum bicolor L. PLoS One, 2019, 14(1), e0209980.
[http://dx.doi.org/10.1371/journal.pone.0209980] [PMID: 30650107]
[52]
R, R.K.; N S, N.; S P, A.; Sinha, D.; Veedin Rajan, V.B.; Esthaki, V.K.; D’Silva, P. HSPIR: a manually annotated heat shock protein information resource. Bioinformatics, 2012, 28(21), 2853-2855.
[http://dx.doi.org/10.1093/bioinformatics/bts520] [PMID: 22923302]
[53]
Monaco, M.K.; Stein, J.; Naithani, S.; Wei, S.; Dharmawardhana, P.; Kumari, S.; Amarasinghe, V.; Youens-Clark, K.; Thomason, J.; Preece, J.; Pasternak, S.; Olson, A.; Jiao, Y.; Lu, Z.; Bolser, D.; Kerhornou, A.; Staines, D.; Walts, B.; Wu, G.; D’Eustachio, P.; Haw, R.; Croft, D.; Kersey, P.J.; Stein, L.; Jaiswal, P.; Ware, D. Gramene 2013: comparative plant genomics resources. Nucleic Acids Res., 2014, 42(Database issue), D1193-D1199.
[http://dx.doi.org/10.1093/nar/gkt1110] [PMID: 24217918]
[54]
Letunic, I.; Copley, R.R.; Schmidt, S.; Ciccarelli, F.D.; Doerks, T.; Schultz, J.; Ponting, C.P.; Bork, P. SMART 4.0: towards genomic data integration. Nucleic Acids Res., 2004, 32(Database issue), D142-D144.
[http://dx.doi.org/10.1093/nar/gkh088] [PMID: 14681379]
[55]
Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the ExPASy Server. The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press, 2005, pp. 571-607.
[http://dx.doi.org/10.1385/1-59259-890-0:571]
[56]
Guo, A.Y.; Zhu, Q.H.; Chen, X.; Luo, J.C.; Chuan, Y.L. [GSDS: a gene structure display server]. Yi Chuan, 2007, 29(8), 1023-1026.
[http://dx.doi.org/10.1360/yc-007-1023] [PMID: 17681935]
[57]
Horton, P.; Park, K.J.; Obayashi, T.; Fujita, N.; Harada, H.; Adams-Collier, C.J.; Nakai, K. WoLF PSORT: protein localization predictor. Nucleic Acids Res., 2007, 35(Web Server issue), W585-7.
[PMID: 17517783]
[58]
Möller, S.; Croning, M.D.R.; Apweiler, R. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics, 2001, 17(7), 646-653.
[http://dx.doi.org/10.1093/bioinformatics/17.7.646] [PMID: 11448883]
[59]
Blom, N.; Sicheritz-Pontén, T.; Gupta, R.; Gammeltoft, S.; Brunak, S. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics, 2004, 4(6), 1633-1649.
[http://dx.doi.org/10.1002/pmic.200300771] [PMID: 15174133]
[60]
Bailey, T.L.; Williams, N.; Misleh, C.; Li, W.W. MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res., 2006, 34(Web Server issue)(Suppl. 2), W369-73.
[http://dx.doi.org/10.1093/nar/gkl198] [PMID: 16845028]
[61]
Higo, K.; Ugawa, Y.; Iwamoto, M.; Korenaga, T. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res., 1999, 27(1), 297-300.
[http://dx.doi.org/10.1093/nar/27.1.297] [PMID: 9847208]
[62]
Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res., 2002, 30(1), 325-327.
[http://dx.doi.org/10.1093/nar/30.1.325] [PMID: 11752327]
[63]
Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6. Mol. Biol. Evol., 2013, 30(12), 2725-2729.
[http://dx.doi.org/10.1093/molbev/mst197] [PMID: 24132122]
[64]
Suyama, M.; Torrents, D.; Bork, P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res., 2006, 34(Web Server issue), W609-12.
[http://dx.doi.org/10.1093/nar/gkl315] [PMID: 16845082]
[65]
Dai, X.; Zhao, P.X. psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res., 2011, 39(Web Server issue), W155-9.
[http://dx.doi.org/10.1093/nar/gkr319] [PMID: 21622958]
[66]
Tian, T.; You, Q.; Zhang, L.; Yi, X.; Yan, H.; Xu, W.; Su, Z. SorghumFDB: sorghum functional genomics database with multidimensional network analysis. Database (Oxford), 2016, 2016, baw099.
[http://dx.doi.org/10.1093/database/baw099] [PMID: 27352859]
[67]
Hruz, T.; Laule, O.; Szabo, G.; Wessendorp, F.; Bleuler, S.; Oertle, L.; Widmayer, P.; Gruissem, W.; Zimmermann, P. Genevestigator v3: A reference expression database for the meta analysis of transcriptomes. Adv. Bioinformatics., 2008, 420747.
[68]
Grennan, A.K. Genevestigator. Facilitating web-based gene-expression analysis. Plant Physiol., 2006, 141(4), 1164-1166.
[http://dx.doi.org/10.1104/pp.104.900198] [PMID: 16896229]
[69]
Kumar, A.; Batra, R.; Gahlaut, V.; Gautam, T.; Kumar, S.; Sharma, M.; Tyagi, S.; Singh, K.P.; Balyan, H.S.; Pandey, R.; Gupta, P.K. Genome-wide identification and characterization of gene family for RWP-RK transcription factors in wheat (Triticum aestivum L.). PLoS One, 2018, 13(12), e0208409.
[http://dx.doi.org/10.1371/journal.pone.0208409] [PMID: 30540790]
[70]
Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 2012, 13, 134.
[http://dx.doi.org/10.1186/1471-2105-13-134] [PMID: 22708584]
[71]
Sudhakar Reddy, P.; Srinivas, R.D.; Sivasakthi, K.; Bhatnagar-Mathur, P.; Vadez, V.; Sharma, K.K. Evaluation of sorghum [Sorghum bicolor (L.)] reference genes in various tissues and under abiotic stress conditions for quantitative real-time PCR data normalization. Front. Plant Sci., 2016, 7, 529.
[http://dx.doi.org/10.3389/fpls.2016.00529] [PMID: 27200008]
[72]
Pfaffl, M.W.; Horgan, G.W.; Dempfle, L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res., 2002, 30(9), e36.
[http://dx.doi.org/10.1093/nar/30.9.e36] [PMID: 11972351]
[73]
Guo, M.; Liu, J.-H.; Lu, J.-P.; Zhai, Y.F.; Wang, H.; Gong, Z.H.; Wang, S.B.; Lu, M.H. Genome-wide analysis of the CaHsp20 gene family in pepper: comprehensive sequence and expression profile analysis under heat stress. Front. Plant Sci., 2015, 6, 806.
[http://dx.doi.org/10.3389/fpls.2015.00806] [PMID: 26483820]
[74]
Scharf, K.D.; Siddique, M.; Vierling, E. The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chaperones, 2001, 6(3), 225-237.
[http://dx.doi.org/10.1379/1466-1268(2001)006<0225:TEFOAT>2.0.CO;2] [PMID: 11599564]
[75]
Lee, U.; Rioflorido, I.; Hong, S.W.; Larkindale, J.; Waters, E.R.; Vierling, E. The Arabidopsis ClpB/Hsp100 family of proteins: chaperones for stress and chloroplast development. Plant J., 2007, 49(1), 115-127.
[http://dx.doi.org/10.1111/j.1365-313X.2006.02940.x] [PMID: 17144892]
[76]
Hu, W.; Hu, G.; Han, B. Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Sci., 2009, 176(4), 583-590.
[http://dx.doi.org/10.1016/j.plantsci.2009.01.016] [PMID: 26493149]
[77]
Singh, R.K.; Jaishankar, J.; Muthamilarasan, M.; Shweta, S.; Dangi, A.; Prasad, M. Genome-wide analysis of heat shock proteins in C4 model, foxtail millet identifies potential candidates for crop improvement under abiotic stress. Sci. Rep., 2016, 6, 32641.
[http://dx.doi.org/10.1038/srep32641] [PMID: 27586959]
[78]
Yer, E.N.; Baloglu, M.C.; Ayan, S. Identification and expression profiling of all Hsp family member genes under salinity stress in different poplar clones. Gene, 2018, 678, 324-336.
[http://dx.doi.org/10.1016/j.gene.2018.08.049] [PMID: 30110648]
[79]
Zhang, J.; Liu, B.; Li, J.; Zhang, L.; Wang, Y.; Zheng, H.; Lu, M.; Chen, J. Hsf and Hsp gene families in Populus: genome-wide identification, organization and correlated expression during development and in stress responses. BMC Genomics, 2015, 16, 181.
[http://dx.doi.org/10.1186/s12864-015-1398-3] [PMID: 25887520]
[80]
Rao, P.K.; Roxas, B.A.; Li, Q. Determination of global protein turnover in stressed mycobacterium cells using hybrid-linear ion trap-fourier transform mass spectrometry. Anal. Chem., 2008, 80(2), 396-406.
[http://dx.doi.org/10.1021/ac701690d] [PMID: 18085750]
[81]
Cannon, S.B.; Mitra, A.; Baumgarten, A.; Young, N.D.; May, G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol., 2004, 4, 10.
[http://dx.doi.org/10.1186/1471-2229-4-10] [PMID: 15171794]
[82]
Sémon, M.; Wolfe, K.H.; Wolfe, K.H. Rearrangement rate following the whole-genome duplication in teleosts. Mol. Biol. Evol., 2007, 24(3), 860-867.
[http://dx.doi.org/10.1093/molbev/msm003] [PMID: 17218642]
[83]
Subba, P.; Barua, P.; Kumar, R.; Datta, A.; Soni, K.K.; Chakraborty, S.; Chakraborty, N. Phosphoproteomic dynamics of chickpea (Cicer arietinum L.) reveals shared and distinct components of dehydration response. J. Proteome Res., 2013, 12(11), 5025-5047.
[http://dx.doi.org/10.1021/pr400628j] [PMID: 24083463]
[84]
Mikami, K.; Katagiri, T.; Iuchi, S.; Yamaguchi-Shinozaki, K.; Shinozaki, K. A gene encoding phosphatidylinositol-4-phosphate 5-kinase is induced by water stress and abscisic acid in Arabidopsis thaliana. Plant J., 1998, 15(4), 563-568.
[http://dx.doi.org/10.1046/j.1365-313X.1998.00227.x] [PMID: 9753781]
[85]
Tran, L.S.P.; Urao, T.; Qin, F.; Maruyama, K.; Kakimoto, T.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc. Natl. Acad. Sci. USA, 2007, 104(51), 20623-20628.
[http://dx.doi.org/10.1073/pnas.0706547105] [PMID: 18077346]
[86]
Dalton, D.A.; Boniface, C.; Turner, Z.; Lindahl, A.; Kim, H.J.; Jelinek, L.; Govindarajulu, M.; Finger, R.E.; Taylor, C.G. Physiological roles of glutathione s-transferases in soybean root nodules. Plant Physiol., 2009, 150(1), 521-530.
[http://dx.doi.org/10.1104/pp.109.136630] [PMID: 19279195]
[87]
Yang, C.; Li, D.; Mao, D.; Liu, X.; Ji, C.; Li, X.; Zhao, X.; Cheng, Z.; Chen, C.; Zhu, L. Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant Cell Environ., 2013, 36(12), 2207-2218.
[http://dx.doi.org/10.1111/pce.12130] [PMID: 23651319]
[88]
Xie, F.; Jones, D.C.; Wang, Q.; Sun, R.; Zhang, B. Small RNA sequencing identifies miRNA roles in ovule and fibre development. Plant Biotechnol. J., 2015, 13(3), 355-369.
[http://dx.doi.org/10.1111/pbi.12296] [PMID: 25572837]
[89]
Liu, H.H.; Tian, X.; Li, Y.J.; Wu, C.A.; Zheng, C.C. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA, 2008, 14(5), 836-843.
[http://dx.doi.org/10.1261/rna.895308] [PMID: 18356539]
[90]
Zhao, B.; Liang, R.; Ge, L.; Li, W.; Xiao, H.; Lin, H.; Ruan, K.; Jin, Y. Identification of drought-induced microRNAs in rice. Biochem. Biophys. Res. Commun., 2007, 354(2), 585-590.
[http://dx.doi.org/10.1016/j.bbrc.2007.01.022] [PMID: 17254555]
[91]
Liu, Q.; Zhang, H. Molecular identification and analysis of arsenite stress-responsive miRNAs in rice. J. Agric. Food Chem., 2012, 60(26), 6524-6536.
[http://dx.doi.org/10.1021/jf300724t] [PMID: 22712679]
[92]
Li, W.; Wang, T.; Zhang, Y.; Li, Y. Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana. J. Exp. Bot., 2016, 67(1), 175-194.
[http://dx.doi.org/10.1093/jxb/erv450] [PMID: 26466661]
[93]
Bate, N.; Twell, D. Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol. Biol., 1998, 37(5), 859-869.
[http://dx.doi.org/10.1023/A:1006095023050] [PMID: 9678581]
[94]
Chen, W.; Provart, N.J.; Glazebrook, J.; Katagiri, F.; Chang, H.S.; Eulgem, T.; Mauch, F.; Luan, S.; Zou, G.; Whitham, S.A.; Budworth, P.R.; Tao, Y.; Xie, Z.; Chen, X.; Lam, S.; Kreps, J.A.; Harper, J.F.; Si-Ammour, A.; Mauch-Mani, B.; Heinlein, M.; Kobayashi, K.; Hohn, T.; Dangl, J.L.; Wang, X.; Zhu, T. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell, 2002, 14(3), 559-574.
[http://dx.doi.org/10.1105/tpc.010410] [PMID: 11910004]
[95]
Nishiuchi, T.; Shinshi, H.; Suzuki, K. Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves: possible involvement of NtWRKYs and autorepression. J. Biol. Chem., 2004, 279(53), 55355-55361.
[http://dx.doi.org/10.1074/jbc.M409674200] [PMID: 15509567]
[96]
Xu, C.; Huang, B. Comparative analysis of drought responsive proteins in Kentucky blue grass cultivars contrasting in drought tolerance. Crop Sci., 2010, 50, 2543-2552.
[http://dx.doi.org/10.2135/cropsci2010.03.0152]
[97]
Schlicher, T.; Soll, J. Molecular chaperones are present in the thylakoid lumen of pea chloroplasts. FEBS Lett., 1996, 379(3), 302-304.
[http://dx.doi.org/10.1016/0014-5793(95)01534-5] [PMID: 8603711]
[98]
Kim, S.R.; Yang, J.I.; An, G. OsCpn60α1, encoding the plastid chaperonin 60α subunit, is essential for folding of rbcL. Mol. Cells, 2013, 35(5), 402-409.
[http://dx.doi.org/10.1007/s10059-013-2337-2] [PMID: 23620301]
[99]
Swindell, W.R.; Huebner, M.; Weber, A.P. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics, 2007, 8, 125.
[http://dx.doi.org/10.1186/1471-2164-8-125] [PMID: 17519032]
[100]
Hahn, A.; Bublak, D.; Schleiff, E.; Scharf, K.D. Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. Plant Cell, 2011, 23(2), 741-755.
[http://dx.doi.org/10.1105/tpc.110.076018] [PMID: 21307284]
[101]
Turhan, E.; Ergin, S.; Aydogan, C.; Ozturk, N. Influence of grafting on heat shock proteins of tomato (Lycopersicon esculentum Mill) plants under heat stress. J. Biotechnol., 2016, 231, 27.
[http://dx.doi.org/10.1016/j.jbiotec.2016.05.115]
[102]
Taj, G.; Agarwal, P.; Grant, M.; Kumar, A. MAPK machinery in plants: recognition and response to different stresses through multiple signal transduction pathways. Plant Signal. Behav., 2010, 5(11), 1370-1378.
[http://dx.doi.org/10.4161/psb.5.11.13020] [PMID: 20980831]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 22
ISSUE: 2
Year: 2021
Published on: 24 March, 2021
Page: [137 - 152]
Pages: 16
DOI: 10.2174/1389202922666210324154336
Price: $65

Article Metrics

PDF: 284
HTML: 2
EPUB: 1
PRC: 1