Effects of Gene and Plasma Tau on Cognitive Impairment in Rural Chinese Population

Author(s): Xu Tang, Shuzhen Liu, Jiansheng Cai, Quanhui Chen, Xia Xu, Chun B. Mo, Min Xu, Tingyu Mai, Shengle Li, Haoyu He, Jian Qin*, Zhiyong Zhang*

Journal Name: Current Alzheimer Research

Volume 18 , Issue 1 , 2021


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: Sufficient attention was not paid to the effects of microtubule-associated protein tau (MAPT) and plasma tau protein on cognition.

Objective: A total of 3072 people in rural China were recruited. They were provided with questionnaires, and blood samples were obtained.

Methods: The MMSE score was used to divide the population into cognitive impairment group and control group. First, logistic regression analysis was used to explore the possible factors influencing cognitive function. Second, 1837 samples were selected for SNP detection through stratified sampling. Third, 288 samples were selected to test three plasma biomarkers (tau, phosphorylated tau, and Aβ-42).

Results: For the MAPT rs242557, people with AG genotypes were 1.32 times more likely to develop cognitive impairment than those with AA genotypes, and people with GG genotypes were 1.47 times more likely to develop cognitive impairment than those with AG phenotypes. The plasma tau protein concentration was also increased in the population carrying G (P = 0.020). The plasma tau protein was negatively correlated with the MMSE score (P = 0.004).

Conclusion: The mutation of MAPT rs242557 (A > G) increased the risk of cognitive impairment and the concentration of plasma tau protein.

Keywords: Microtubule-associated protein tau, cognitive impairment, plasma tau, gene polymorphism, rural China, Alzheimer's disease.

[1]
Nagumo R, Zhang Y, Ogawa Y, et al. Automatic detection of cognitive impairments through acoustic analysis of speech. Curr Alzheimer Res 2020; 17(1): 60-8.
[http://dx.doi.org/10.2174/1567205017666200213094513] [PMID: 32053074]
[2]
Yang H, Hong W, Chen L, Tao Y, Peng Z, Zhou H. Analysis of risk factors for depression in Alzheimer’s disease patients. Int J Neurosci 2020; 130(11): 1136-41.
[http://dx.doi.org/10.1080/00207454.2020.1730369] [PMID: 32053409]
[3]
Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol 2018; 25(1): 59-70.
[http://dx.doi.org/10.1111/ene.13439] [PMID: 28872215]
[4]
Alsunusi S, Kumosani TA, Glabe CG, Huwait EA, Moselhy SS. In vitro study of the mechanism of intraneuronal β-amyloid aggregation in Alzheimer’s disease. Arch Physiol Biochem 2020; 1-8.
[http://dx.doi.org/10.1080/13813455.2020.1722707] [PMID: 32046518]
[5]
Lange J, Lunde KA, Sletten C, et al. Association of a BACE1 gene polymorphism with Parkinson’s disease in a norwegian population. Parkinsons Dis 2015; 2015: 973298.
[http://dx.doi.org/10.1155/2015/973298] [PMID: 26788404]
[6]
Myrum C, Nikolaienko O, Bramham CR, Haavik J, Zayats T. Implication of the APP gene in intellectual abilities. J Alzheimers Dis 2017; 59(2): 723-35.
[http://dx.doi.org/10.3233/JAD-170049] [PMID: 28671113]
[7]
Davies G, Harris SE, Reynolds CA, et al. A genome-wide association study implicates the APOE locus in nonpathological cognitive ageing. Mol Psychiatry 2014; 19(1): 76-87.
[http://dx.doi.org/10.1038/mp.2012.159] [PMID: 23207651]
[8]
Ma C, Zhang Y, Li X, et al. Is there a significant interaction effect between apolipoprotein E rs405509 T/T and ε4 genotypes on cognitive impairment and gray matter volume? Eur J Neurol 2016; 23(9): 1415-25.
[http://dx.doi.org/10.1111/ene.13052] [PMID: 27259692]
[9]
Mun MJ, Kim JH, Choi JY, Jang WC. Genetic polymorphisms of interleukin genes and the risk of Alzheimer’s disease: An update meta-analysis. Meta Gene 2016; 8: 1-10.
[http://dx.doi.org/10.1016/j.mgene.2016.01.001] [PMID: 27014584]
[10]
Jia L, Fu Y, Shen L, et al. PSEN1, PSEN2, and APP mutations in 404 Chinese pedigrees with familial Alzheimer's disease. Alzheimer's Dementia: The J Alzheimer's Assoc 2020; 16(12): 178-91.
[11]
Liu QY, Yu JT, Miao D, et al. An exploratory study on STX6, MOBP, MAPT, and EIF2AK3 and late-onset Alzheimer’s disease. Neurobiol Aging 2013; 34(5): 1519.e13.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.10.004] [PMID: 23116876]
[12]
Santa-Maria I, Haggiagi A, Liu X, et al. The MAPT H1 haplotype is associated with tangle-predominant dementia. Acta Neuropathol 2012; 124(5): 693-704.
[http://dx.doi.org/10.1007/s00401-012-1017-1] [PMID: 22802095]
[13]
Heckman MG, Kasanuki K, Brennan RR, et al. Association of MAPT H1 subhaplotypes with neuropathology of lewy body disease. Mov Disord 2019; 34(9): 1325-32.
[http://dx.doi.org/10.1002/mds.27773] [PMID: 31234228]
[14]
Hsieh YC, Guo C, Yalamanchili HK, et al. Tau-mediated disruption of the spliceosome triggers cryptic RNA splicing and neurodegeneration in Alzheimer’s disease. Cell Rep 2019; 29(2): 301-316.e10.
[http://dx.doi.org/10.1016/j.celrep.2019.08.104] [PMID: 31597093]
[15]
Patnode ML, Beller ZW, Han ND, et al. Interspecies competition impacts targeted manipulation of human gut bacteria by fiber-derived glycans. Cell 2019; 179(1): 59-73.e13.
[http://dx.doi.org/10.1016/j.cell.2019.08.011] [PMID: 31539500]
[16]
Chen TB, Lai YH, Ke TL, Chen JP, Lee YJ, Lin SY, et al. Changes in plasma amyloid and tau in a longitudinal study of normal aging, mild cognitive impairment, and Alzheimer’s disease. Dement Geriatr Cogn Disord 2020; 48(3-4): 180-95.
[PMID: 31991443]
[17]
Tracy TE, Gan L. Tau-mediated synaptic and neuronal dysfunction in neurodegenerative disease. Curr Opin Neurobiol 2018; 51: 134-8.
[http://dx.doi.org/10.1016/j.conb.2018.04.027] [PMID: 29753269]
[18]
Jung NY, Kim ES, Kim HS, et al. Comparison of diagnostic performances between cerebrospinal fluid biomarkers and amyloid PET in a clinical setting. J Alzheimers Dis 2020; 74(2): 473-90.
[http://dx.doi.org/10.3233/JAD-191109] [PMID: 32039853]
[19]
Franzmeier N, Neitzel J, Rubinski A, et al. Functional brain architecture is associated with the rate of tau accumulation in Alzheimer’s disease. Nat Commun 2020; 11(1): 347.
[http://dx.doi.org/10.1038/s41467-019-14159-1] [PMID: 31953405]
[20]
Weigand AJ, Bangen KJ, Thomas KR, Delano-Wood L, Gilbert PE, Brickman AM, et al. Is tau in the absence of amyloid on the Alzheimer's continuum?: A study of discordant PET positivity. Brain communications 2020; 2(1): fcz046.
[21]
Ning K, Zhao L, Matloff W, Sun F, Toga AW. Association of relative brain age with tobacco smoking, alcohol consumption, and genetic variants. Sci Rep 2020; 10(1): 10.
[http://dx.doi.org/10.1038/s41598-019-56089-4] [PMID: 32001736]
[22]
Kim JW, Byun MS, Yi D, et al. Association of moderate alcohol intake with in vivo amyloid-beta deposition in human brain: A cross-sectional study. PLoS Med 2020; 17(2): e1003022.
[http://dx.doi.org/10.1371/journal.pmed.1003022] [PMID: 32097439]
[23]
Bohn L, McFall GP, Wiebe SA, Dixon RA. Body mass index predicts cognitive aging trajectories selectively for females: Evidence from the Victoria Longitudinal Study. Neuropsychology 2020; 34(4): 388-403.
[24]
Kang SW, Xiang X. The influence of cognitive impairment on health behaviors among older adults. Am J Health Behav 2020; 44(2): 159-68.
[http://dx.doi.org/10.5993/AJHB.44.2.4] [PMID: 32019649]
[25]
Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12(3): 189-98.
[http://dx.doi.org/10.1016/0022-3956(75)90026-6] [PMID: 1202204]
[26]
Wang BR, Zheng HF, Xu C, Sun Y, Zhang YD, Shi JQ. Comparative diagnostic accuracy of ACE-III and MoCA for detecting mild cognitive impairment. Neuropsychiatr Dis Treat 2019; 15: 2647-53.
[http://dx.doi.org/10.2147/NDT.S212328] [PMID: 31571881]
[27]
Hilsabeck RC, Holdnack JA, Cullum CM, Drozdick LW, Edelstein B, Fiske A, et al. The Brief Cognitive Status Examination (BCSE): Comparing diagnostic utility and equating scores to the Mini-Mental State Examination (MMSE). Arch Clin Neuropsychol: The Off J Nat Acad Neuropsychol 2015; 30(5): 458-67.
[28]
Arevalo-Rodriguez I, Smailagic N, Roqué I Figuls M, et al. Mini-Mental State Examination (MMSE) for the detection of Alzheimer’s disease and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev 2015; (3): CD010783.
[PMID: 25740785]
[29]
Tombaugh TN. Test-retest reliable coefficients and 5-year change scores for the MMSE and 3MS. Arch Clin Neuropsychol: The Off J Nat Acad Neuropsychol 2005; 20(1): 485-503.
[30]
Kapusta J, Kidawa TM, Rynkowska-Kidawa M. Evaluation of frequency of occurrence of cognitive impairment in the course of arterial hypertension in an elderly population. Psychogeriatrics 2020; 20(4): 406-11.
[31]
Kaya D, Isik AT, Usarel C, Soysal P, Ellidokuz H, Grossberg GT. The saint louis university mental status examination is better than the mini-mental state examination to determine the cognitive impairment in Turkish elderly people. J Am Med Dir Assoc 2016; 17(4): 370.e11-5.
[http://dx.doi.org/10.1016/j.jamda.2015.12.093] [PMID: 26851199]
[32]
Sánchez-Juan P, Moreno S, de Rojas I, et al. The MAPT H1 haplotype is a risk factor for Alzheimer’s disease in APOE ε4 non-carriers. Front Aging Neurosci 2019; 11: 327.
[http://dx.doi.org/10.3389/fnagi.2019.00327] [PMID: 31866851]
[33]
Laws SM, Friedrich P, Diehl-Schmid J, et al. Fine mapping of the MAPT locus using quantitative trait analysis identifies possible causal variants in Alzheimer’s disease. Mol Psychiatry 2007; 12(5): 510-7.
[http://dx.doi.org/10.1038/sj.mp.4001935] [PMID: 17179995]
[34]
Chen J, Yu JT, Wojta K, et al. Genome-wide association study identifies MAPT locus influencing human plasma tau levels. Neurology 2017; 88(7): 669-76.
[http://dx.doi.org/10.1212/WNL.0000000000003615] [PMID: 28100725]
[35]
Kosik KS, Orecchio LD, Bakalis S, Neve RL. Developmentally regulated expression of specific tau sequences. Neuron 1989; 2(4): 1389-97.
[http://dx.doi.org/10.1016/0896-6273(89)90077-9] [PMID: 2560640]
[36]
Kellogg EH, Hejab NMA, Poepsel S, Downing KH, DiMaio F, Nogales E. Near-atomic model of microtubule-tau interactions. Science 2018; 360(6394): 1242-6.
[http://dx.doi.org/10.1126/science.aat1780] [PMID: 29748322]
[37]
Rubenstein R, Chang B, Petersen R, Chiu A, Davies P. T-Tau and P-Tau in brain and blood from natural and experimental prion diseases. PLoS One 2015; 10(12): e0143103.
[http://dx.doi.org/10.1371/journal.pone.0143103] [PMID: 26630676]
[38]
Gustke N, Steiner B, Mandelkow EM, et al. The Alzheimer-like phosphorylation of tau protein reduces microtubule binding and involves Ser-Pro and Thr-Pro motifs. FEBS Lett 1992; 307(2): 199-205.
[http://dx.doi.org/10.1016/0014-5793(92)80767-B] [PMID: 1644173]
[39]
Tollervey JR, Wang Z, Hortobágyi T, et al. Analysis of alternative splicing associated with aging and neurodegeneration in the human brain. Genome Res 2011; 21(10): 1572-82.
[http://dx.doi.org/10.1101/gr.122226.111] [PMID: 21846794]
[40]
Wade-Martins R. Genetics: The MAPT locus-a genetic paradigm in disease susceptibility. Nat Rev Neurol 2012; 8(9): 477-8.
[http://dx.doi.org/10.1038/nrneurol.2012.169] [PMID: 22940644]
[41]
Qiang L, Sun X, Austin TO, et al. Tau does not stabilize axonal microtubules but rather enables them to have long labile domains. Curr Biol 2018; 28(13): 2181-2189.e4.
[http://dx.doi.org/10.1016/j.cub.2018.05.045] [PMID: 30008334]
[42]
Criado-Marrero M, Sabbagh JJ, Jones MR, Chaput D, Dickey CA, Blair LJ. Hippocampal neurogenesis is enhanced in adult tau deficient mice. Cells 2020; 9(1): E210.
[http://dx.doi.org/10.3390/cells9010210] [PMID: 31947657]
[43]
Harrison TM, Maass A, Adams JN, Du R, Baker SL, Jagust WJ. Tau deposition is associated with functional isolation of the hippocampus in aging. Nat Commun 2019; 10(1): 4900.
[http://dx.doi.org/10.1038/s41467-019-12921-z] [PMID: 31653847]
[44]
Song JX, Malampati S, Zeng Y, et al. A small molecule transcription factor EB activator ameliorates beta-amyloid precursor protein and Tau pathology in Alzheimer’s disease models. Aging Cell 2020; 19(2): e13069.
[http://dx.doi.org/10.1111/acel.13069] [PMID: 31858697]
[45]
Kadavath H, Hofele RV, Biernat J, et al. Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Proc Natl Acad Sci USA 2015; 112(24): 7501-6.
[http://dx.doi.org/10.1073/pnas.1504081112] [PMID: 26034266]
[46]
Zhang CC, Xing A, Tan MS, Tan L, Yu JT. The role of MAPT in neurodegenerative diseases: Genetics, mechanisms and therapy. Mol Neurobiol 2016; 53(7): 4893-904.
[http://dx.doi.org/10.1007/s12035-015-9415-8] [PMID: 26363795]
[47]
Welden JR, van Doorn J, Nelson PT, Stamm S. The human MAPT locus generates circular RNAs. Biochim Biophys Acta Mol Basis Dis 2018; 1864(9 Pt B): 2753-60.
[http://dx.doi.org/10.1016/j.bbadis.2018.04.023] [PMID: 29729314]
[48]
Maccioni RB, Farías G, Morales I, Navarrete L. The revitalized tau hypothesis on Alzheimer’s disease. Arch Med Res 2010; 41(3): 226-31.
[http://dx.doi.org/10.1016/j.arcmed.2010.03.007] [PMID: 20682182]
[49]
Shen XN, Miao D, Li JQ, et al. MAPT rs242557 variant is associated with hippocampus tau uptake on 18F-AV-1451 PET in non-demented elders. Aging (Albany NY) 2019; 11(3): 874-84.
[http://dx.doi.org/10.18632/aging.101783] [PMID: 30708351]
[50]
Liyanage SI, Weaver DF. Misfolded proteins as a therapeutic target in Alzheimer’s disease. Adv Protein Chem Struct Biol 2019; 118: 371-411.
[http://dx.doi.org/10.1016/bs.apcsb.2019.08.003] [PMID: 31928732]
[51]
Chen TB, Lai YH, Ke TL, et al. Changes in plasma amyloid and tau in a longitudinal study of normal aging, mild cognitive impairment, and Alzheimer’s disease. Dement Geriatr Cogn Disord 2019; 48(3-4): 180-95.
[http://dx.doi.org/10.1159/000505435] [PMID: 31991443]
[52]
Manzine PR, Vatanabe IP, Peron R, et al. Blood-based biomarkers of Alzheimer’s disease: The long and winding road. Curr Pharm Des 2020; 26(12): 1300-15.
[http://dx.doi.org/10.2174/1381612826666200114105515] [PMID: 31942855]
[53]
Yue JK, Upadhyayula PS, Avalos LN, Deng H, Wang KKW. The role of blood biomarkers for magnetic resonance imaging diagnosis of traumatic brain injury. Medicina (Kaunas) 2020; 56(2): E87.
[http://dx.doi.org/10.3390/medicina56020087] [PMID: 32098419]
[54]
Montagne A, Huuskonen MT, Rajagopal G, Sweeney MD, Nation DA, Sepehrband F, et al. Undetectable gadolinium brain retention in individuals with an age-dependent blood-brain barrier breakdown in the hippocampus and mild cognitive impairment. Alzheimer's Dementia 2019; 15(12): 1568-75.
[http://dx.doi.org/10.1016/j.jalz.2019.07.012]
[55]
Watanabe H, Bagarinao E, Yokoi T, et al. Tau accumulation and network breakdown in Alzheimer’s disease. Adv Exp Med Biol 2019; 1184: 231-40.
[http://dx.doi.org/10.1007/978-981-32-9358-8_19] [PMID: 32096042]
[56]
Stancu IC, Ferraiolo M, Terwel D, Dewachter I. Tau interacting proteins: Gaining insight into the roles of tau in health and disease. Adv Exp Med Biol 2019; 1184: 145-66.
[http://dx.doi.org/10.1007/978-981-32-9358-8_13] [PMID: 32096036]
[57]
Gallardo G, Holtzman DM. Amyloid-β and Tau at the crossroads of Alzheimer’s disease. Adv Exp Med Biol 2019; 1184: 187-203.
[http://dx.doi.org/10.1007/978-981-32-9358-8_16] [PMID: 32096039]
[58]
Park JC, Han SH, Yi D, et al. Plasma tau/amyloid-β1-42 ratio predicts brain tau deposition and neurodegeneration in Alzheimer’s disease. Brain 2019; 142(3): 771-86.
[http://dx.doi.org/10.1093/brain/awy347] [PMID: 30668647]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 18
ISSUE: 1
Year: 2021
Published on: 24 March, 2021
Page: [56 - 66]
Pages: 11
DOI: 10.2174/1567205018666210324122840
Price: $65

Article Metrics

PDF: 39
HTML: 1