Crystal Structure of a Cu,Zn Superoxide Dismutase From the Thermophilic Fungus Chaetomium thermophilum

Author(s): Imran Mohsin, Li-Qing Zhang, Duo-Chuan Li*, Anastassios C. Papageorgiou*

Journal Name: Protein & Peptide Letters

Volume 28 , Issue 9 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Thermophilic fungi have recently emerged as a promising source of thermostable enzymes. Superoxide dismutases are key antioxidant metalloenzymes with promising therapeutic effects in various diseases, both acute and chronic. However, structural heterogeneity and low thermostability limit their therapeutic efficacy.

Objective: Although several studies from hypethermophilic superoxide dismutases (SODs) have been reported, information about Cu,Zn-SODs from thermophilic fungi is scarce. Chaetomium thermophilum is a thermophilic fungus that could provide proteins with thermophilic properties.

Methods: The enzyme was expressed in Pichia pastoris cells and crystallized using the vapor-diffusion method. X-ray data were collected, and the structure was determined and refined to 1.56 Å resolution. Structural analysis and comparisons were carried out.

Results: The presence of 8 molecules (A through H) in the asymmetric unit resulted in four different interfaces. Molecules A and F form the typical homodimer which is also found in other Cu,Zn- SODs. Zinc was present in all subunits of the structure while copper was found in only four subunits with reduced occupancy (C, D, E and F).

Conclusion: The ability of the enzyme to form oligomers and the elevated Thr:Ser ratio may be contributing factors to its thermal stability. Two hydrophobic residues that participate in interface formation and are not present in other CuZn-SODs may play a role in the formation of new interfaces and the oligomerization process. The CtSOD crystal structure reported here is the first Cu,Zn-SOD structure from a thermophilic fungus.

Keywords: Enzyme stability, Chaetomium thermophilum, metal binding, superoxide, thermophilic fungus, crystal structure.

[1]
Bannister, J.V.; Bannister, W.H.; Rotilio, G. Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit. Rev. Biochem., 1987, 22(2), 111-180.[http://dx.doi.org/10.3109/10409238709083738] [PMID: 3315461]
[2]
Hassan, H.M. Microbial superoxide dismutases. Adv. Genet., 1989, 26, 65-97.[http://dx.doi.org/10.1016/S0065-2660(08)60223-0] [PMID: 2554697]
[3]
Fridovich, I. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem., 1995, 64, 97-112.[http://dx.doi.org/10.1146/annurev.bi.64.070195.000525] [PMID: 7574505]
[4]
Imlay, J.A. Cellular defenses against superoxide and hydrogen peroxide. Annu. Rev. Biochem., 2008, 77, 755-776.[http://dx.doi.org/10.1146/annurev.biochem.77.061606.161055] [PMID: 18173371]
[5]
Abreu, I.A.; Cabelli, D.E. Superoxide dismutases-a review of the metal-associated mechanistic variations. Biochim. Biophys. Acta, 2010, 1804(2), 263-274.[http://dx.doi.org/10.1016/j.bbapap.2009.11.005] [PMID: 19914406]
[6]
Wuerges, J.; Lee, J.W.; Yim, Y.I.; Yim, H.S.; Kang, S.O.; Djinovic Carugo, K. Crystal structure of nickel-containing superoxide dismutase reveals another type of active site. Proc. Natl. Acad. Sci. USA, 2004, 101(23), 8569-8574.[http://dx.doi.org/10.1073/pnas.0308514101] [PMID: 15173586]
[7]
Holley, A.K.; Dhar, S.K.; Xu, Y.; St Clair, D.K. Manganese superoxide dismutase: beyond life and death. Amino Acids, 2012, 42(1), 139-158. PMID: 20454814.
[8]
Robinett, N.G.; Culbertson, E.M.; Peterson, R.L.; Sanchez, H.; Andes, D.R.; Nett, J.E.; Culotta, V.C. Exploiting the vulnerable active site of a copper-only superoxide dismutase to disrupt fungal pathogenesis. J. Biol. Chem., 2019, 294(8), 2700-2713.[http://dx.doi.org/10.1074/jbc.RA118.007095] [PMID: 30593499]
[9]
Miller, A.F. Superoxide dismutases: active sites that save, but a protein that kills. Curr. Opin. Chem. Biol., 2004, 8(2), 162-168.[http://dx.doi.org/10.1016/j.cbpa.2004.02.011] [PMID: 15062777]
[10]
Wintjens, R.; Noël, C.; May, A.C.; Gerbod, D.; Dufernez, F.; Capron, M.; Viscogliosi, E.; Rooman, M. Specificity and phenetic relationships of iron- and manganese-containing superoxide dismutases on the basis of structure and sequence comparisons. J. Biol. Chem., 2004, 279(10), 9248-9254.[http://dx.doi.org/10.1074/jbc.M312329200] [PMID: 14672935]
[11]
Perry, J.J.; Shin, D.S.; Getzoff, E.D.; Tainer, J.A. The structural biochemistry of the superoxide dismutases. Biochim. Biophys. Acta, 2010, 1804(2), 245-262.[http://dx.doi.org/10.1016/j.bbapap.2009.11.004] [PMID: 19914407]
[12]
Hart, P.J.; Balbirnie, M.M.; Ogihara, N.L.; Nersissian, A.M.; Weiss, M.S.; Valentine, J.S.; Eisenberg, D. A structure-based mechanism for copper-zinc superoxide dismutase. Biochemistry, 1999, 38(7), 2167-2178.[http://dx.doi.org/10.1021/bi982284u] [PMID: 10026301]
[13]
Getzoff, E.D.; Tainer, J.A.; Stempien, M.M.; Bell, G.I.; Hallewell, R.A. Evolution of CuZn superoxide dismutase and the Greek key beta-barrel structural motif. Proteins, 1989, 5(4), 322-336.[http://dx.doi.org/10.1002/prot.340050408] [PMID: 2798409]
[14]
DiDonato, M.; Craig, L.; Huff, M.E.; Thayer, M.M.; Cardoso, R.M.; Kassmann, C.J.; Lo, T.P.; Bruns, C.K.; Powers, E.T.; Kelly, J.W.; Getzoff, E.D.; Tainer, J.A. ALS mutants of human superoxide dismutase form fibrous aggregates via framework destabilization. J. Mol. Biol., 2003, 332(3), 601-615.[http://dx.doi.org/10.1016/S0022-2836(03)00889-1] [PMID: 12963370]
[15]
Souza, P.C.T.; Thallmair, S.; Marrink, S.J.; Mera-Adasme, R. An allosteric pathway in copper, zinc superoxide dismutase unravels the molecular mechanism of the G93A amyotrophic lateral sclerosis-linked mutation. J. Phys. Chem. Lett., 2019, 10(24), 7740-7744.[http://dx.doi.org/10.1021/acs.jpclett.9b02868] [PMID: 31747286]
[16]
Furukawa, Y.; O’Halloran, T.V. Posttranslational modifications in Cu,Zn-superoxide dismutase and mutations associated with amyotrophic lateral sclerosis. Antioxid. Redox Signal., 2006, 8(5-6), 847-867.[http://dx.doi.org/10.1089/ars.2006.8.847] [PMID: 16771675]
[17]
Furukawa, Y.; Kaneko, K.; Yamanaka, K.; Nukina, N. Mutation-dependent polymorphism of Cu,Zn-superoxide dismutase aggregates in the familial form of amyotrophic lateral sclerosis. J. Biol. Chem., 2010, 285(29), 22221-22231.[http://dx.doi.org/10.1074/jbc.M110.113597] [PMID: 20404329]
[18]
Rakhit, R.; Chakrabartty, A. Structure, folding, and misfolding of Cu,Zn superoxide dismutase in amyotrophic lateral sclerosis. Biochim. Biophys. Acta, 2006, 1762(11-12), 1025-1037.[http://dx.doi.org/10.1016/j.bbadis.2006.05.004] [PMID: 16814528]
[19]
Trotti, A. Toxicity antagonists in cancer therapy. Curr. Opin. Oncol., 1997, 9(6), 569-578.[http://dx.doi.org/10.1097/00001622-199711000-00013] [PMID: 9370079]
[20]
Matés, J.M.; Sánchez-Jiménez, F.M. Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int. J. Biochem. Cell Biol., 2000, 32(2), 157-170.[http://dx.doi.org/10.1016/S1357-2725(99)00088-6] [PMID: 10687951]
[21]
Angelova, M.; Dolashka-Angelova, P.; Ivanova, E.; Serkedjieva, J.; Slokoska, L.; Pashova, S.; Toshkova, R.; Vassilev, S.; Simeonov, I.; Hartmann, H.J.; Stoeva, S.; Weser, U.; Voelter, W. A novel glycosylated Cu/Zn-containing superoxide dismutase: production and potential therapeutic effect. Microbiology (Reading), 2001, 147(Pt 6), 1641-1650.[http://dx.doi.org/10.1099/00221287-147-6-1641] [PMID: 11390695]
[22]
Zwacka, R.M.; Zhou, W.; Zhang, Y.; Darby, C.J.; Dudus, L.; Halldorson, J.; Oberley, L.; Engelhardt, J.F. Redox gene therapy for ischemia/reperfusion injury of the liver reduces AP1 and NF-kappaB activation. Nat. Med., 1998, 4(6), 698-704.[http://dx.doi.org/10.1038/nm0698-698] [PMID: 9623979]
[23]
Altobelli, G.G.; Van Noorden, S.; Balato, A.; Cimini, V. Copper/Zinc superoxide dismutase in human skin: current knowledge. Front. Med. (Lausanne), 2020, 7, 183.[http://dx.doi.org/10.3389/fmed.2020.00183] [PMID: 32478084]
[24]
Deng, W.; Bivalacqua, T.J.; Champion, H.C.; Hellstrom, W.J.; Murthy, S.N.; Kadowitz, P.J. Superoxide dismutase - a target for gene therapeutic approach to reduce oxidative stress in erectile dysfunction. Methods Mol. Biol., 2010, 610, 213-227.[http://dx.doi.org/10.1007/978-1-60327-029-8_13] [PMID: 20013181]
[25]
Kaipel, M.; Wagner, A.; Wassermann, E.; Vorauer-Uhl, K.; Kellner, R.; Redl, H.; Katinger, H.; Ullrich, R. Increased biological half-life of aerosolized liposomal recombinant human Cu/Zn superoxide dismutase in pigs. J. Aerosol. Med. Pulm. Drug Deliv., 2008, 21(3), 281-290.[http://dx.doi.org/10.1089/jamp.2007.0667] [PMID: 18578594]
[26]
Shin, D.S.; Didonato, M.; Barondeau, D.P.; Hura, G.L.; Hitomi, C.; Berglund, J.A.; Getzoff, E.D.; Cary, S.C.; Tainer, J.A. Superoxide dismutase from the eukaryotic thermophile Alvinella pompejana: structures, stability, mechanism, and insights into amyotrophic lateral sclerosis. J. Mol. Biol., 2009, 385(5), 1534-1555.[http://dx.doi.org/10.1016/j.jmb.2008.11.031] [PMID: 19063897]
[27]
e, S.; Guo, F.; Liu, S.; Chen, J.; Wang, Y.; Li, D. Purification, characterization, and molecular cloning of a thermostable superoxide dismutase from Thermoascus aurantiacus. Biosci. Biotechnol. Biochem., 2007, 71(4), 1090-1093.[http://dx.doi.org/10.1271/bbb.60709] [PMID: 17420576]
[28]
Maheshwari, R.; Bharadwaj, G.; Bhat, M.K. Thermophilic fungi: their physiology and enzymes. Microbiol. Mol. Biol. Rev., 2000, 64(3), 461-488.[http://dx.doi.org/10.1128/MMBR.64.3.461-488.2000] [PMID: 10974122]
[29]
Zhang, L.Q.; Guo, F.X.; Xian, H.Q.; Wang, X.J.; Li, A.N.; Li, D.C. Expression of a novel thermostable Cu,Zn-superoxide dismutase from Chaetomium thermophilum in Pichia pastoris and its antioxidant properties. Biotechnol. Lett., 2011, 33(6), 1127-1132.[http://dx.doi.org/10.1007/s10529-011-0543-6] [PMID: 21287231]
[30]
Wakadkar, S.; Zhang, L.Q.; Li, D.C.; Haikarainen, T.; Dhavala, P.; Papageorgiou, A.C. Expression, purification and crystallization of Chaetomium thermophilum Cu,Zn superoxide dismutase. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2010, 66(Pt 9), 1089-1092.[http://dx.doi.org/10.1107/S1744309110030393] [PMID: 20823534]
[31]
Stewart, R.R.; Bewley, J.D. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol., 1980, 65(2), 245-248.[http://dx.doi.org/10.1104/pp.65.2.245] [PMID: 16661168]
[32]
Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr., 2010, 66(Pt 2), 125-132.[http://dx.doi.org/10.1107/S0907444909047337] [PMID: 20124692]
[33]
Matthews, B.W. Solvent content of protein crystals. J. Mol. Biol., 1968, 33(2), 491-497.[http://dx.doi.org/10.1016/0022-2836(68)90205-2] [PMID: 5700707]
[34]
McCoy, A.J.; Grosse-Kunstleve, R.W.; Adams, P.D.; Winn, M.D.; Storoni, L.C.; Read, R.J. Phaser crystallographic software. J. Appl. Cryst., 2007, 40(Pt 4), 658-674.[http://dx.doi.org/10.1107/S0021889807021206] [PMID: 19461840]
[35]
Bunkóczi, G.; Read, R.J. Improvement of molecular-replacement models with Sculptor. Acta Crystallogr. D Biol. Crystallogr., 2011, 67(Pt 4), 303-312.[http://dx.doi.org/10.1107/S0907444910051218] [PMID: 21460448]
[36]
Langer, G.; Cohen, S.X.; Lamzin, V.S.; Perrakis, A. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc., 2008, 3(7), 1171-1179.[http://dx.doi.org/10.1038/nprot.2008.91]
[37]
Murshudov, G.N.; Vagin, A.A.; Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr., 1997, 53(Pt 3), 240-255.[http://dx.doi.org/10.1107/S0907444996012255] [PMID: 15299926]
[38]
Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr., 1994, 50(Pt 5), 760-763.[http://dx.doi.org/10.1107/S0907444994003112] [PMID: 15299374]
[39]
Liebschner, D.; Afonine, P.V.; Baker, M.L.; Bunkóczi, G.; Chen, V.B.; Croll, T.I.; Hintze, B.; Hung, L.W.; Jain, S.; McCoy, A.J.; Moriarty, N.W.; Oeffner, R.D.; Poon, B.K.; Prisant, M.G.; Read, R.J.; Richardson, J.S.; Richardson, D.C.; Sammito, M.D.; Sobolev, O.V.; Stockwell, D.H.; Terwilliger, T.C.; Urzhumtsev, A.G.; Videau, L.L.; Williams, C.J.; Adams, P.D. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol., 2019, 75(Pt 10), 861-877.[http://dx.doi.org/10.1107/S2059798319011471] [PMID: 31588918]
[40]
Adams, P.D.; Pannu, N.S.; Read, R.J.; Brünger, A.T. Cross-validated maximum likelihood enhances crystallographic simulated annealing refinement. Proc. Natl. Acad. Sci. USA, 1997, 94(10), 5018-5023.[http://dx.doi.org/10.1073/pnas.94.10.5018] [PMID: 9144182]
[41]
Brünger, A.T. Assessment of phase accuracy by cross validation: the free R value. Methods and applications. Acta Crystallogr. D Biol. Crystallogr., 1993, 49(Pt 1), 24-36.[http://dx.doi.org/10.1107/S0907444992007352] [PMID: 15299543]
[42]
Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. Acta Crystallogr., Sect. D: Biol. Crystallogr., 2010, 66(Pt 4), 486-501.[http://dx.doi.org/10.1107/s0907444910007493]
[43]
Diederichs, K.; Karplus, P.A. Improved R-factors for diffraction data analysis in macromolecular crystallography. Nat. Struct. Biol., 1997, 4(4), 269-275.[http://dx.doi.org/10.1038/nsb0497-269] [PMID: 9095194]
[44]
Diederichs, K.; Karplus, P.A. Better models by discarding data? Acta Crystallogr. D Biol. Crystallogr., 2013, 69(Pt 7), 1215-1222.[http://dx.doi.org/10.1107/S0907444913001121] [PMID: 23793147]
[45]
Chen, V.B.; Arendall, W.B., III; Headd, J.J.; Keedy, D.A.; Immormino, R.M.; Kapral, G.J.; Murray, L.W.; Richardson, J.S.; Richardson, D.C. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr., 2010, 66(Pt 1), 12-21.[http://dx.doi.org/10.1107/S0907444909042073] [PMID: 20057044]
[46]
Costantini, S.; Colonna, G.; Facchiano, A.M. ESBRI: a web server for evaluating salt bridges in proteins. Bioinformation, 2008, 3(3), 137-138.[http://dx.doi.org/10.6026/97320630003137] [PMID: 19238252]
[47]
Basse, M. J.; Betzi, S.; Morelli, X.; Roche, P. 2P2Idb v2: update of a structural database dedicated to orthosteric modulation of protein-protein interactions. Database (Oxford), 2016, 2016, baw007.[http://dx.doi.org/10.1093/database/baw007]
[48]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[49]
Thornton, J.M. Disulphide bridges in globular proteins. J. Mol. Biol., 1981, 151(2), 261-287.[http://dx.doi.org/10.1016/0022-2836(81)90515-5] [PMID: 7338898]
[50]
Krissinel, E.; Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol., 2007, 372(3), 774-797.[http://dx.doi.org/10.1016/j.jmb.2007.05.022] [PMID: 17681537]
[51]
Krissinel, E.; Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol. Crystallogr., 2004, 60(12), 2256-2268.[http://dx.doi.org/10.1107/s0907444904026460]
[52]
Gouet, P.; Robert, X.; Courcelle, E. ESPript/ENDscript: Extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res., 2003, 31(13), 3320-3323.[http://dx.doi.org/10.1093/nar/gkg556] [PMID: 12824317]
[53]
Djinović, K.; Gatti, G.; Coda, A.; Antolini, L.; Pelosi, G.; Desideri, A.; Falconi, M.; Marmocchi, F.; Rolilio, G.; Bolognesi, M. Structure solution and molecular dynamics refinement of the yeast Cu,Zn enzyme superoxide dismutase. Acta Crystallogr. B, 1991, 47(Pt 6), 918-927.[http://dx.doi.org/10.1107/S0108768191004949] [PMID: 1772629]
[54]
Djinović Carugo, K.; Battistoni, A.; Carrì, M.T.; Polticelli, F.; Desideri, A.; Rotilio, G.; Coda, A.; Wilson, K.S.; Bolognesi, M. Three-dimensional structure of Xenopus laevis Cu,Zn superoxide dismutase b determined by X-ray crystallography at 1.5 A resolution. Acta Crystallogr. D Biol. Crystallogr., 1996, 52(Pt 1), 176-188.[http://dx.doi.org/10.1107/S0907444995007608] [PMID: 15299740]
[55]
Ciriolo, M. R.; Battistoni, A.; Falconi, M.; Filomeni, G.; Rotilio, G. Role of the electrostatic loop of Cu,Zn superoxide dismutase in the copper uptake process. FEBS J., 2001, 268(3), 737-742.[http://dx.doi.org/10.1046/j.1432-1327.2001.01928.x]
[56]
Gabdoulline, R.R.; Stein, M.; Wade, R.C. qPIPSA: relating enzymatic kinetic parameters and interaction fields. BMC Bioinformatics, 2007, 8(1), 373.[http://dx.doi.org/10.1186/1471-2105-8-373] [PMID: 17919319]
[57]
Sinha, N.; Smith-Gill, S.J. Electrostatics in protein binding and function. Curr. Protein Pept. Sci., 2002, 3(6), 601-614.[http://dx.doi.org/10.2174/1389203023380431] [PMID: 12470214]
[58]
Sadeghi, M.; Naderi-Manesh, H.; Zarrabi, M.; Ranjbar, B. Effective factors in thermostability of thermophilic proteins. Biophys. Chem., 2006, 119(3), 256-270.[http://dx.doi.org/10.1016/j.bpc.2005.09.018] [PMID: 16253416]
[59]
Vieille, C.; Zeikus, G.J. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev., 2001, 65(1), 1-43.[http://dx.doi.org/10.1128/MMBR.65.1.1-43.2001] [PMID: 11238984]
[60]
Hait, S.; Mallik, S.; Basu, S.; Kundu, S. Finding the generalized molecular principles of protein thermal stability. Proteins, 2020, 88(6), 788-808.[http://dx.doi.org/10.1002/prot.25866] [PMID: 31872464]
[61]
De Vendittis, E.; Castellano, I.; Cotugno, R.; Ruocco, M.R.; Raimo, G.; Masullo, M. Adaptation of model proteins from cold to hot environments involves continuous and small adjustments of average parameters related to amino acid composition. J. Theor. Biol., 2008, 250(1), 156-171.[http://dx.doi.org/10.1016/j.jtbi.2007.09.006] [PMID: 17950361]
[62]
Trivedi, S.; Gehlot, H.S.; Rao, S.R. Protein thermostability in Archaea and Eubacteria. Genet. Mol. Res., 2006, 5(4), 816-827.[PMID: 17183489]
[63]
Panja, A.S.; Bandopadhyay, B.; Maiti, S. Protein thermostability is owing to their preferences to non-polar smaller volume amino acids, variations in residual physico-chemical properties and more salt-bridges. PLoS One, 2015, 10(7), e0131495.[http://dx.doi.org/10.1371/journal.pone.0131495] [PMID: 26177372]
[64]
Szilágyi, A.; Závodszky, P. Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure, 2000, 8(5), 493-504.[http://dx.doi.org/10.1016/S0969-2126(00)00133-7] [PMID: 10801491]
[65]
Suhre, K.; Claverie, J.M. Genomic correlates of hyperthermostability, an update. J. Biol. Chem., 2003, 278(19), 17198-17202.[http://dx.doi.org/10.1074/jbc.M301327200] [PMID: 12600994]
[66]
Taylor, T.J.; Vaisman, I.I. Discrimination of thermophilic and mesophilic proteins. BMC Struct. Biol., 2010, 10(Suppl. 1), S5.[http://dx.doi.org/10.1186/1472-6807-10-S1-S5] [PMID: 20487512]
[67]
Paz, A.; Mester, D.; Baca, I.; Nevo, E.; Korol, A. Adaptive role of increased frequency of polypurine tracts in mRNA sequences of thermophilic prokaryotes. Proc. Natl. Acad. Sci. USA, 2004, 101(9), 2951-2956.[http://dx.doi.org/10.1073/pnas.0308594100] [PMID: 14973185]
[68]
Parthasarathy, S.; Murthy, M.R. Protein thermal stability: insights from atomic displacement parameters (B values). Protein Eng., 2000, 13(1), 9-13.[http://dx.doi.org/10.1093/protein/13.1.9] [PMID: 10679524]
[69]
Tanaka, Y.; Tsumoto, K.; Yasutake, Y.; Umetsu, M.; Yao, M.; Fukada, H.; Tanaka, I.; Kumagai, I. How oligomerization contributes to the thermostability of an archaeon protein. Protein L-isoaspartyl-O-methyltransferase from Sulfolobus tokodaii. J. Biol. Chem., 2004, 279(31), 32957-32967.[http://dx.doi.org/10.1074/jbc.M404405200] [PMID: 15169774]
[70]
Clantin, B.; Tricot, C.; Lonhienne, T.; Stalon, V.; Villeret, V. Probing the role of oligomerization in the high thermal stability of Pyrococcus furiosus ornithine carbamoyltransferase by site-specific mutants. Eur. J. Biochem., 2001, 268(14), 3937-3942.[http://dx.doi.org/10.1046/j.1432-1327.2001.02302.x] [PMID: 11453986]
[71]
Wang, S.; Dong, Z.Y.; Yan, Y.B. Formation of high-order oligomers by a hyperthemostable Fe-superoxide dismutase (tcSOD). PLoS One, 2014, 9(10), e109657.[http://dx.doi.org/10.1371/journal.pone.0109657] [PMID: 25313557]
[72]
Li, M.; Zhu, L.; Wang, W. Improving the thermostability and stress tolerance of an archaeon hyperthermophilic superoxide dismutase by fusion with a unique N-terminal domain. Springerplus, 2016, 5, 241.[http://dx.doi.org/10.1186/s40064-016-1854-9] [PMID: 27026935]
[73]
Madeira, F.; Park, Y.M.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A.R.N.; Potter, S.C.; Finn, R.D.; Lopez, R. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res., 2019, 47(W1), W636-W641.[http://dx.doi.org/10.1093/nar/gkz268] [PMID: 30976793]
[74]
Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.e.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In: The Proteomics Protocols Handbook., Walker, J.M. Ed.; Humana Press: Totowa, NJ, 2005, , 571-607.[http://dx.doi.org/10.1385/1-59259-890-0:571]
[75]
Laskowski, R.A.; Chistyakov, V.V.; Thornton, J.M. PDBsum more: new summaries and analyses of the known 3D structures of proteins and nucleic acids. Nucleic Acids Res., 2005, 33(Database issue), D266-D268.[http://dx.doi.org/10.1093/nar/gki001] [PMID: 15608193]
[76]
Hakulinen, N.; Turunen, O.; Jänis, J.; Leisola, M.; Rouvinen, J. Three-dimensional structures of thermophilic beta-1,4-xylanases from Chaetomium thermophilum and Nonomuraea flexuosa. Comparison of twelve xylanases in relation to their thermal stability. Eur. J. Biochem., 2003, 270(7), 1399-1412.[http://dx.doi.org/10.1046/j.1432-1033.2003.03496.x] [PMID: 12653995]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 28
ISSUE: 9
Year: 2021
Published on: 15 March, 2021
Page: [1043 - 1053]
Pages: 11
DOI: 10.2174/0929866528666210316104919

Article Metrics

PDF: 364
HTML: 1