Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

A New Prognostic Strategy Based on four DNA Repair-Associated lncRNAs for Hepatocellular Carcinoma

Author(s): Hanyi Zeng, Chengdong Liu, Xiaohan Zhou and Li Liu*

Volume 25, Issue 5, 2022

Published on: 02 March, 2021

Page: [906 - 918] Pages: 13

DOI: 10.2174/1386207324666210302091432

Price: $65

Abstract

Background: Hepatocellular carcinoma (HCC) is a malignant tumour with a poor prognosis. The effect of DNA repair on prognosis cannot be ignored, and long non-coding RNA (lncRNA) can regulate the DNA repair process.

Objective: To obtain DNA repair-associated lncRNA (DR-lncRNA) prognostic signature for improving the ability to predict HCC prognosis.

Methods: Our study used the Cancer Genome Atlas database. Gene set variation analysis was performed to differentiate high and low levels of DNA repair to identify DR-lncRNAs. By performing univariate Cox regression, LASSO regression, and multivariate Cox regression analyses, we finally obtained a DR-lncRNA prognostic signature and constructed a nomogram prognostic model. Time-dependent receiver operating characteristic (ROC) curves, calibration plots, decision curve analysis (DCA), and clinical impact curves were used to assess predictive ability and clinical utility. Differentially expressed genes (DEGs) functional enrichment analysis was performed to further explore the underlying mechanisms that influence HCC prognosis.

Results: We obtained the following DR-lncRNA prognostic signature:AP002478.1, AC116351.1, LINC02580, and LINC00861. The ROC curves and calibration plots showed good discrimination and calibration properties. Combining the DR-lncRNA prognostic signature and tumour stages, we established a nomogram prognostic model. DCA and clinical impact curves showed the clinical utility of this model. DEGs of high-risk and low-risk groups predicted by the prognostic DRlncRNA were significantly associated with cell cycle, various metabolic pathways and biological processes, such as the oxidation-reduction process and cell division.

Conclusion: We identified a DR-lncRNA prognostic signature and constructed a nomogram prognostic model, which could be a beneficial prognostic strategy for HCC.

Keywords: Hepatocellular carcinoma, DNA repair, prognosis, lncRNA signature, nomogram model, hepatocytes.

Graphical Abstract
[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; Schwartz, M.; Porta, C.; Zeuzem, S.; Bolondi, L.; Greten, T.F.; Galle, P.R.; Seitz, J.F.; Borbath, I.; Häussinger, D.; Giannaris, T.; Shan, M.; Moscovici, M.; Voliotis, D.; Bruix, J. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med., 2008, 359(4), 378-390.
[http://dx.doi.org/10.1056/NEJMoa0708857] [PMID: 18650514]
[3]
Bruix, J.; da Fonseca, L.G.; Reig, M. Insights into the success and failure of systemic therapy for hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(10), 617-630.
[http://dx.doi.org/10.1038/s41575-019-0179-x] [PMID: 31371809]
[4]
Qin, S.; Bai, Y.; Lim, H.Y.; Thongprasert, S.; Chao, Y.; Fan, J.; Yang, T.S.; Bhudhisawasdi, V.; Kang, W.K.; Zhou, Y.; Lee, J.H.; Sun, Y. Randomized, multicenter, open-label study of oxaliplatin plus fluorouracil/leucovorin versus doxorubicin as palliative chemotherapy in patients with advanced hepatocellular carcinoma from Asia. J. Clin. Oncol., 2013, 31(28), 3501-3508.
[http://dx.doi.org/10.1200/JCO.2012.44.5643] [PMID: 23980077]
[5]
Yu, L.; Kim, J.; Jiang, L.; Feng, B.; Ying, Y.; Ji, K.Y.; Tang, Q.; Chen, W.; Mai, T.; Dou, W.; Zhou, J.; Xiang, L.Y.; He, Y.F.; Yang, D.; Li, Q.; Fu, X.; Xu, Y. MTR4 drives liver tumorigenesis by promoting cancer metabolic switch through alternative splicing. Nat. Commun., 2020, 11(1), 708-720.
[http://dx.doi.org/10.1038/s41467-020-14437-3] [PMID: 32024842]
[6]
Zhang, Z.; Ouyang, Y.; Huang, Y.; Wang, P.; Li, J.; He, T.; Liu, Q. Comprehensive bioinformatics analysis reveals potential lncRNA biomarkers for overall survival in patients with hepatocellular carcinoma: an on-line individual risk calculator based on TCGA cohort. Cancer Cell Int., 2019, 19, 174.
[http://dx.doi.org/10.1186/s12935-019-0890-2] [PMID: 31312112]
[7]
Zuo, Q.; He, J.; Zhang, S.; Wang, H.; Jin, G.; Jin, H.; Cheng, Z.; Tao, X.; Yu, C.; Li, B.; Yang, C.; Wang, S.; Lv, Y.; Zhao, F.; Yao, M.; Cong, W.; Wang, C.; Qin, W. PGC1alpha suppresses metastasis of HCC by inhibiting Warburg effect via PPARgamma-dependent WNT/beta-catenin/PDK1 axis. Hepatology, 2020.
[http://dx.doi.org/10.1002/hep.31280]
[8]
Tian, H.; Gao, Z.; Li, H.; Zhang, B.; Wang, G.; Zhang, Q.; Pei, D.; Zheng, J. DNA damage response--a double-edged sword in cancer prevention and cancer therapy. Cancer Lett., 2015, 358(1), 8-16.
[http://dx.doi.org/10.1016/j.canlet.2014.12.038] [PMID: 25528631]
[9]
Yang, S.F.; Chang, C.W.; Wei, R.J.; Shiue, Y.L.; Wang, S.N.; Yeh, Y.T. Involvement of DNA damage response pathways in hepatocellular carcinoma. BioMed Res. Int., 2014, 2014, 153867.
[http://dx.doi.org/10.1155/2014/153867] [PMID: 24877058]
[10]
Buitrago-Molina, L.E.; Marhenke, S.; Longerich, T.; Sharma, A.D.; Boukouris, A.E.; Geffers, R.; Guigas, B.; Manns, M.P.; Vogel, A. The degree of liver injury determines the role of p21 in liver regeneration and hepatocarcinogenesis in mice. Hepatology, 2013, 58(3), 1143-1152.
[http://dx.doi.org/10.1002/hep.26412] [PMID: 23526443]
[11]
Chen, S.L.; Liu, L.L.; Wang, C.H.; Lu, S.X.; Yang, X.; He, Y.F.; Zhang, C.Z.; Yun, J.P. Loss of RDM1 enhances hepatocellular carcinoma progression via p53 and Ras/Raf/ERK pathways. Mol. Oncol., 2020, 14(2), 373-386.
[http://dx.doi.org/10.1002/1878-0261.12593] [PMID: 31670863]
[12]
Li, D.; Zeng, Z. Epigenetic regulation of histone H3 in the process of hepatocellular tumorigenesis. Biosci. Rep., 2019, 39(8), BSR20191815.
[http://dx.doi.org/10.1042/BSR20191815] [PMID: 31320544]
[13]
Yang, S.; Wang, X.Q. XLF-mediated NHEJ activity in hepatocellular carcinoma therapy resistance. BMC Cancer, 2017, 17(1), 344.
[http://dx.doi.org/10.1186/s12885-017-3345-y] [PMID: 28526069]
[14]
Gutschner, T.; Diederichs, S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol., 2012, 9(6), 703-719.
[http://dx.doi.org/10.4161/rna.20481] [PMID: 22664915]
[15]
Chen, C.C.; Chen, C.Y.; Ueng, S.H.; Hsueh, C.; Yeh, C.T.; Ho, J.Y.; Chou, L.F.; Wang, T.H. Corylin increases the sensitivity of hepatocellular carcinoma cells to chemotherapy through long noncoding RNA RAD51-AS1-mediated inhibition of DNA repair. Cell Death Dis., 2018, 9(5), 543.
[http://dx.doi.org/10.1038/s41419-018-0575-0] [PMID: 29749376]
[16]
Chen, C.C.; Chen, C.Y.; Wang, S.H.; Yeh, C.T.; Su, S.C.; Ueng, S.H.; Chuang, W.Y.; Hsueh, C.; Wang, T.H. Melatonin sensitizes hepatocellular carcinoma cells to chemotherapy through long non-coding RNA RAD51-AS1-mediated suppression of DNA repair. Cancers (Basel), 2018, 10(9), E320.
[http://dx.doi.org/10.3390/cancers10090320] [PMID: 30201872]
[17]
Chen, Y.; Shen, Z.; Zhi, Y.; Zhou, H.; Zhang, K.; Wang, T.; Feng, B.; Chen, Y.; Song, H.; Wang, R.; Chu, X. Long non-coding RNA ROR promotes radioresistance in hepatocelluar carcinoma cells by acting as a ceRNA for microRNA-145 to regulate RAD18 expression. Arch. Biochem. Biophys., 2018, 645, 117-125.
[http://dx.doi.org/10.1016/j.abb.2018.03.018] [PMID: 29559320]
[18]
Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics, 2013, 14, 7.
[http://dx.doi.org/10.1186/1471-2105-14-7] [PMID: 23323831]
[19]
Vickers, A.J.; Elkin, E.B. Decision curve analysis: a novel method for evaluating prediction models. Med. Decis. Making, 2006, 26(6), 565-574.
[http://dx.doi.org/10.1177/0272989X06295361] [PMID: 17099194]
[20]
Kathleen, F.; Marshall, D.; Kehao, Z.; Holly, J. Assessing the clinical impact of risk prediction models with decision curves guidance for correct interpretation and appropriate use. J. Clin. Oncol., 2016.
[21]
Wang, Z.; Wu, Q.; Feng, S.; Zhao, Y.; Tao, C. Identification of four prognostic LncRNAs for survival prediction of patients with hepatocellular carcinoma. PeerJ, 2017, 5, e3575.
[http://dx.doi.org/10.7717/peerj.3575] [PMID: 28729955]
[22]
Zhao, Q.J.; Zhang, J.; Xu, L.; Liu, F.F. Identification of a five-long non-coding RNA signature to improve the prognosis prediction for patients with hepatocellular carcinoma. World J. Gastroenterol., 2018, 24(30), 3426-3439.
[http://dx.doi.org/10.3748/wjg.v24.i30.3426] [PMID: 30122881]
[23]
Akinyemiju, T.A.S.; Ahmed, M.; Alam, N.; Alemayohu, M.A.; Allen, C. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global regional and national level results from the global burden of disease study 2015. JAMA Oncol., 2017.
[24]
Cao, L.; Cheng, H.; Jiang, Q.; Li, H.; Wu, Z. APEX1 is a novel diagnostic and prognostic biomarker for hepatocellular carcinoma. Aging (Albany NY), 2020, 12(5), 4573-4591.
[http://dx.doi.org/10.18632/aging.102913] [PMID: 32167932]
[25]
Huang, Z.L.; Li, W.; Chen, Q.F.; Wu, P.H.; Shen, L.J. Eight key long non-coding RNAs predict hepatitis virus positive hepatocellular carcinoma as prognostic targets. World J. Gastrointest. Oncol., 2019, 11(11), 983-997.
[http://dx.doi.org/10.4251/wjgo.v11.i11.983] [PMID: 31798779]
[26]
Chaosen, Y.; Yaoyao, R.; Hua, G. chaojie, L.; Yingchen, X.; Guangming, L.; Jixiang, W., Comprehensive analysis of potential prognostic genes for the construction of a competing endogenous RNA regulatory network in hepatocellular carcinoma. OncoTargets Ther., 2019, 12, 561-576.
[http://dx.doi.org/10.2147/OTT.S188913]
[27]
Liao, X.; Wang, X.; Huang, K.; Han, C.; Deng, J.; Yu, T.; Yang, C.; Huang, R.; Liu, X.; Yu, L.; Zhu, G.; Su, H.; Qin, W.; Zeng, X.; Han, B.; Han, Q.; Liu, Z.; Zhou, X.; Gong, Y.; Liu, Z.; Huang, J.; Winkler, C.A.; O’Brien, S.J.; Ye, X.; Peng, T. Integrated analysis of competing endogenous RNA network revealing potential prognostic biomarkers of hepatocellular carcinoma. J. Cancer, 2019, 10(14), 3267-3283.
[http://dx.doi.org/10.7150/jca.29986] [PMID: 31289599]
[28]
Mingjun, Z.; Yuexin, H.; Rui, G.; Xin, N.; Xiao, L.; Juanjuan, L.; Bei, L. Identification three LncRNA prognostic signature of ovarian cancer based on genomewide copy number variation. Biomed. Pharmacother., 2019.
[29]
Ma, L.; Deng, C. Identification of a novel four-lncRNA signature as a prognostic indicator in cirrhotic hepatocellular carcinoma. PeerJ, 2019, 7, e7413.
[http://dx.doi.org/10.7717/peerj.7413] [PMID: 31396449]
[30]
Yan, J.; Zhou, C.; Guo, K.; Li, Q.; Wang, Z. A novel seven-lncRNA signature for prognosis prediction in hepatocellular carcinoma. J. Cell. Biochem., 2019, 120(1), 213-223.
[http://dx.doi.org/10.1002/jcb.27321] [PMID: 30206981]
[31]
Gu, J.X.; Zhang, X.; Miao, R.C.; Xiang, X.H.; Fu, Y.N.; Zhang, J.Y.; Liu, C.; Qu, K. Six-long non-coding RNA signature predicts recurrence-free survival in hepatocellular carcinoma. World J. Gastroenterol., 2019, 25(2), 220-232.
[http://dx.doi.org/10.3748/wjg.v25.i2.220] [PMID: 30670911]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy